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Abstract: The high sensitivity of chiroptical responses to conformational changes and supramolecular
interactions has prompted an increasing interest in the development of chiroptical applications.
However, prediction of and understanding the chiroptical responses of the necessary large systems
may not be affordable for calculations at high levels of theory. In order to facilitate the development
of chiroptical applications, methodologies capable of evaluating the chiroptical responses of large
systems are necessary. The exciton chirality method has been extensively used for the interaction
between two independent chromophores through the Davydov model. For systems presenting
C2 or D2 symmetry, one can get the same results by applying the selection rules. In the present
article, the analysis of the selection rules for systems with symmetries Cn and Dn with n = 3
and 4 is used to uncover the origin of their chiroptical responses. We foresee that the use of the
Chiroptical Symmetry Analysis (CSA) for systems presenting the symmetries explored herein, as well
as for systems presenting higher symmetries will serve as a useful tool for the development of
chiroptical applications.

Keywords: chirality; chiroptical responses; exciton chirality; selection rules; symmetry

1. Introduction

Chirality, or the existence of a pair of non-superimposable mirror-image shapes, is a natural
property present in a wide variety of biological systems. While enantiomeric molecules present
the same interaction with other achiral molecules, they may interact differently with other chiral
molecules or entities. Besides its impact in the biological world being ubiquitous [1,2], chirality can
also be exploited in other areas such as materials science. For example, the interaction of chiral
compounds with light has been used for the construction of light-powered molecular motors [3] or in
the development of more sensitive and specific sensors [4,5]. The increasing interest in the potentiality
of chiral systems for miscellaneous applications makes essential the understanding of their chiroptical
responses and the development of methodologies to study them.

When linearly-polarized light passes through a chiral medium, the resulting light can become
elliptically polarized due to the different absorption of the right and left circularly-polarized light by
the chiral medium [6]. This phenomenon is known as circular dichroism, which can exist in two forms,
electronic (UV-visible range) or vibrational (IR range). Derived from the particular interaction of chiral
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molecules with light, optical methodologies were developed to characterize enantiomers according to
their absolute configurations [7].

Electronic Circular Dichroism (ECD) is one of the most used chiroptical spectroscopies [8,9].
Comparison of the experimental and theoretically-predicted ECD spectra is routinely used not only
for absolute and relative configuration assignment of small and medium-sized molecules [10], but also
for elucidating the conformational preferences of the systems under study [11,12]. The level of theory
employed for the simulation of the ECD spectra must be carefully chosen according to the nature
of the systems under study [13]. As an alternative to the use of ab initio calculations, the exciton
chirality method can be applied when two independent chromophores are present in the molecule [14].
The more general phenomenon known as the Davydov splitting [15], 2V12, emerges from the excitation
energy splitting between the in-phase and out-of-phase simultaneous two-chromophore transitions,
strongly dependent on their relative orientation (Scheme 1).

Molecules 2018, 23, x 2 of 17 

 

forms, electronic (UV-visible range) or vibrational (IR range). Derived from the particular interaction 

of chiral molecules with light, optical methodologies were developed to characterize enantiomers 

according to their absolute configurations [7]. 

Electronic Circular Dichroism (ECD) is one of the most used chiroptical spectroscopies [8,9]. 

Comparison of the experimental and theoretically-predicted ECD spectra is routinely used not only 

for absolute and relative configuration assignment of small and medium-sized molecules [10], but 

also for elucidating the conformational preferences of the systems under study [11,12]. The level of 

theory employed for the simulation of the ECD spectra must be carefully chosen according to the 

nature of the systems under study [13]. As an alternative to the use of ab initio calculations, the 

exciton chirality method can be applied when two independent chromophores are present in the 

molecule [14]. The more general phenomenon known as the Davydov splitting [15], 2V12, emerges 

from the excitation energy splitting between the in-phase and out-of-phase simultaneous 

two-chromophore transitions, strongly dependent on their relative orientation (Scheme 1). 

 

Scheme 1. Representation of the splitting of the energy excitation of two interacting chromophores 

due to the in-phase and out-of-phase interactions. Arrows represent the electronic transition for two 

chromophores, blue and magenta. Curves represent the absorption band in the UV-Vis spectra. 

Different torsion angles between the two chromophores lead to different relative intensities and ΔE 

between the two possible transitions. 

When the arrangement between the interacting chromophores is chiral, the Cotton effects 

emerging from the in-phase and out-of-phase excitations in the CD spectrum present opposite signs. 

Notable, the sign of the less energetic band in the resulting bisignated CD signal is diagnostic of the 

handedness of the chiral arrangement between the chromophores, allowing the absolute 

configuration determination of many compounds [14,16] (Scheme 2). 

Scheme 1. Representation of the splitting of the energy excitation of two interacting chromophores
due to the in-phase and out-of-phase interactions. Arrows represent the electronic transition for
two chromophores, blue and magenta. Curves represent the absorption band in the UV-Vis spectra.
Different torsion angles between the two chromophores lead to different relative intensities and ∆E
between the two possible transitions.

When the arrangement between the interacting chromophores is chiral, the Cotton effects
emerging from the in-phase and out-of-phase excitations in the CD spectrum present opposite signs.
Notable, the sign of the less energetic band in the resulting bisignated CD signal is diagnostic of the
handedness of the chiral arrangement between the chromophores, allowing the absolute configuration
determination of many compounds [14,16] (Scheme 2).
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Scheme 2. Representation of the bisignated CD signal arising from the interaction between two
independent chromophores with a relative positive (left) or negative (right) twist.

The Davydov model considers an ideal system formed by two non-conjugated chromophores
with two-fold degenerate excited states. Perturbation theory allows breaking degeneracy considering
the interaction between two chromophores. If two chromophores are represented by the corresponding

Electric Dipole Transition Moment (EDTM),
→
µ

t
i , the interaction between them, V12, is given (in au) by

Equation (1), where
→
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The application of the perturbation theory to the (originally degenerate) first electronically-excited
level yields an energy splitting, ∆E, between these two states (usually named α and β) given by
Equation (2). In this article, we restrict this study to electrostatic interactions. We are aware of the
importance of van der Waals interactions; however, it is not in the scope of this first approximation.

∆E = 2V12 (2)

This outcome is comparable with the analysis of C2 and D2 symmetric systems in terms of the
selection rules. In recent years, we have contributed with a number of highly symmetric systems
such as linear [12] and cyclic oligomers [17], molecular containers [18,19], or even all-carbon double
helices [20], presenting remarkable chiroptical responses in the search for valuable materials for
everyday chiroptical applications [21]. However, analysis of the chiroptical responses is often
tedious [22,23]. In this regard, in 1937, Condon [24] revised the work from Kirkwood [25], where he
demonstrated the possibility to determine the optical activity of a molecule by considering the relative
orientation of the different constituent groups. In 1974, Schellman developed the theory of optical
activity with simple electric and magnetic dipole interaction with radiation capable of resampling
rather accurately the experimental results [26]. In order to have a more accessible understanding of
the behavior of highly symmetric systems, herein we perform the Chiroptical Symmetry Analysis
(CSA) and apply it to systems with Cn and Dn symmetries for n = 2, 3, and 4. Even when this
approach is more specific, CSA could be applied to any other symmetry, and therefore, we hope that
it will serve as a design tool for the development of everyday chiroptical applications in the near
future. Additionally, since an exciton coupling approach in Vibrational CD (VCD), known as the
coupled oscillator model, has also been employed successfully by Monde [27] and further evaluated
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by Polavarapu [28], in analogy to electronic transition, the CSA could also be applied for the prediction
of the VCD of highly symmetric systems.

2. Results and Discussion

2.1. Theoretical Background (Binary Systems)

The interaction of UV-visible light with a molecule can result in an electric excitation, usually
depicted, within the Hartree–Fock framework, as the transition from one of the occupied molecular
orbitals, Φi

0, to an empty (virtual) one, Φj
a. This produces a rearrangement of the electron density of

the molecule, basically described by the EDTM as a linear displacement of electron density during the
transition (Scheme 3). Moreover, the intensity of the transition between the two states is proportional to
the square of the modulus of the EDTM, and forbidden electronic transitions yield null values of EDTM.
The selection rules establish that for a transition to be allowed, at least one of the components of the
EDTM must contain the totally-symmetric representation of the system point group, and consequently,
the direct product for the representations of the involved wave functions must contain at least one of
the representations of the electric dipole moment components.
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Scheme 3. Representation of the o→a electronic excitation of a model compound. The electron density
redistribution from the ground state o to the excited state a results in the Electric Dipole Transition
Moment (EDTM). EDTM has a defined direction and two equally-probable orientations. The blue
spheres represent the center of electron density for the electronic states.

Davydov’s molecular exciton model provides an elegant explanation for the CD Cotton effects in
a molecule with two identical chromophores [14]. The model predicts that dipole interaction between
chromophores splits the ideally degenerate excited states. Neglecting all kinds of interactions between
the chromophores (zero-order approximation), the relative energy of the excited states with regard
to the ground state would be the same as in an isolated chromophore, Ea. In fact, when considering
that the electronic transition only affects the chromophores, it is assumed that the rest of the molecule
remains unchanged by the transition. We consider it to be worth reviewing this model with a certain
level of detail before expanding it to three and four chromophores.

2.1.1. Approximated Wave Functions and Energy Levels

According to Davydov’s model, in the zero-order approach, the ground state, Ψ0(0), can be
represented by the product of two ground state wave functions for the isolated chromophore (3),
Ψ0. In the same vein, the zero-order degenerate excited electronic state, Ψa(0), can be expressed
by the product of ground and excited states, Ψa, of single chromophores, with two equivalent
possibilities: Ψ1

a(0) (4) and Ψ2
a(0) (5). The former refers to the chromophore 1 in the ground state and

the chromophore 2 in the excited state. This assumes that the electronic excitation only modifies the
electron density distribution of the chromophore where it takes place.



Molecules 2019, 24, 141 5 of 17

Ψ0(0) = ψ0ψ0 (3)

Ψa(0)
1 = ψ0ψa (4)

Ψa(0)
2 = ψaψ0 (5)

The application of the perturbation theory to the ground state (non-degenerated) provides for the
first-order correction to the energy, E0(1), the usual expression given by Equation (6). Considering only
the dipole-dipole interaction between the chromophores, the first-order correction for the energy of

the ground state is that shown by Equation (7), where
→
µ

0
i are the dipole moments of the chromophores

in the ground state, named V00
12 .

E0(1) =
〈

ψ0ψ0∣∣V̂12
∣∣ψ0ψ0

〉
(6)

E0(1) = V00
12 = R12

−3
[
→
µ

0
1·
→
µ

0
2 − 3R12

−2
(
→
µ

0
1·
→
R12

)(
→
µ

0
2·
→
R12

)]
(7)

Obtaining the first-order correction for the energy of the degenerated states leads to a set of linear
homogenous equations, with a non-trivial solution only when the condition (8) is verified. Ea(1) is the
first-order correction to the energy of the excited state for the two-chromophore system. Condition (8)
is only fulfilled by the two Ea(1) values contained in Expression (9). We observe that these values
involve the dipole–dipole interaction between one chromophore in the ground state and another in the
excited state, V0a

12 , and a term where the interaction applies over the electronic transition, Vtt
12, shown

in (10). ∣∣∣∣∣
〈
ψ0ψa

∣∣V̂12
∣∣ψ0ψa〉− Ea(1) 〈

ψ0ψa
∣∣V̂12

∣∣ψaψ0〉〈
ψaψ0

∣∣V̂12
∣∣ψ0ψa〉 〈

ψaψ0
∣∣V̂12

∣∣ψaψ0〉− Ea(1)

∣∣∣∣∣ = 0 (8)

Ea(1) = V0a
12 ±Vtt

12 (9)

Vtt
12 =

〈
ψ0ψa∣∣V̂12

∣∣ψaψ0
〉
= R12

−3
[
→
µ

t
1·
→
µ

t
2 − 3R12

−2
(
→
µ

t
1·
→
R12

)(
→
µ

t
2·
→
R12

)]
(10)

Thus, after introducing the first-order corrections obtained with perturbation theory for ground
and excited electronic states, the relative energy of the excited state, ∆Ea, can be expressed by
Equation (11). Obviously, the reliability of the formula can be improved including further corrections,
but the most significant fact is the splitting of the excited level into two different states (usually named
α and β), whose energy differs in 2Vtt

12. Moreover, replacing the two solutions for energy correction
(9) in the system of homogeneous equations and normalizing, it is found that the zero-order wave
functions for α and β states follow, respectively, Expressions (12) and (13).

∆Ea ∼= ∆Ea(0) + ∆Ea(1) = Ea + V0a
12 −V00

12 ±Vtt
12 (11)

ψ
(0)
α =

1√
2

(
ψaψ0 − ψ0ψa

)
(12)

ψ
(0)
β =

1√
2

(
ψaψ0 + ψ0ψa

)
(13)

One can directly obtain wave functions (12) and (13) by means of group theory if chromophores
are in the C2 arrangement. In this case, energies for α and β states (named, respectively, A and B
according to symmetry) can be calculated as average values (Scheme 4) (14).〈

ψ
(0)
β

∣∣V̂12
∣∣ψ(0)

β

〉
=
〈

ψ
(0)
α

∣∣V̂12
∣∣ψ(0)

α

〉
+ 2Vtt

12 (14)
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Scheme 4. Top: Representation of angles to define the position of the chromophores. Bottom:
Representation of a system presenting D2 symmetry. According to the selection rules, the two
equivalent chromophores 1 (blue) and 2 (magenta) can undergo a simultaneous excitation following
A or B3 symmetry leading to total EDTMs (black) parallel to y or z, respectively, as a result of the
summation of the EDTM of each chromophore. A circle with a dot in the middle represents an arrow
perpendicular to the plane pointing to the reader.

2.1.2. Rotatory Strength

According to Rosenfeld´s quantum theory [29], the rotatory strength, R, defined as the difference
between the absorption rate of Left Circularly-Polarized light (LCP) and Right Circularly-Polarized
light (RCP) in a certain transition, is given by (15), where µ̂e and µ̂m are, respectively, the operators
for electric (16) and magnetic dipole moment (17) in a system formed by J chromophores, each of
them with K electrons. rjk and pjk are, respectively, the position and linear momentum vectors for
electron k in chromophore j. Both are the summation of one-electron operators. Within the context
of the independent exciton model, the summation only involves the N electrons provided by the
chromophores, and these electrons can be assigned to a certain chromophore j.

R = Im
[〈

Ψ0|µ̂e|Ψa
〉
·
〈

Ψa|µ̂m|Ψ0
〉]

(15)

µ̂e = e
J

∑
j=1

K

∑
k=1

→
r jk (16)

µ̂m =
e}

2mci

J

∑
j=1

K

∑
k=1

→
r jk ×∇jk =

e
2mc

J

∑
j=1

K

∑
k=1

→
r jk ×

→̂
p jk (17)

Rosenfeld’s equation states that R depends on the scalar product of the EDTM and the
corresponding Magnetic Transition Dipole Moment (MDTM), both derived below. Consequently,
optical activity in a certain transition implies: (i) transition is both electric dipole and magnetic dipole
allowed; and (ii) EDTM and MDTM for the process are not mutually orthogonal.
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2.1.3. Electric Dipole Transition Moment

The fact that EDTMs are origin independent and in the form of Equation (16) allows defining an

EDTM vector for each chromophore,
→
µ

t
j , (18). The molecular EDTM results in a specific combination of

individual vectors for each particular electronic transition. In the case of a two-chromophore system,
the first electronically-excited states, labeled as α and β, are represented in the zero-order approach,
respectively, by wave functions (12) and (13) and the ground state by (3). Application of simple algebra
(for more information, see the Supporting Information) leads to molecular EDTM, which follows
Expression (19) in the α state and Expression (20) in the β state. The square modulus of the molecular
EDTM (directly related to Einstein coefficients in EDTM transitions) depends, in both cases, on the
angle between these vectors, γ. Thus, in the case of two identical chromophores, Expressions (21) and
(22) are respectively followed for transitions to α and β states. Let us now think about the γ angle.
For two isolated identical chromophores, the three components of their vectors will be equal. The only
difference in the independent exciton model is that the chromophores are placed in specific positions
in the molecule, introducing different orientation for the groups. The γ angle is the one measuring this
relative orientation. As a consequence, when the two chromophores are not orthogonally arranged in
the molecule, the absorptions for 0→α and 0→β transitions are of different intensity.

→
µ

t
j = e∑

k

〈
ψ0
(→

r jk

)∣∣∣→r jk

∣∣∣ψa
(→

r jk

)〉
(18)

→
µ

tα
=

→
µ

t
1 −

→
µ

t
2√

2
(19)

→
µ

tβ
=

→
µ

t
1 +

→
µ

t
2√

2
(20)

∣∣∣∣→µ tα
∣∣∣∣2 =

∣∣∣∣→µ t
1

∣∣∣∣2(1− cos γ) (21)

∣∣∣∣→µ tβ
∣∣∣∣2 =

∣∣∣∣→µ t
1

∣∣∣∣2(1 + cos γ) (22)

2.1.4. Magnetic Dipole Transition Moment

Within the hypothesis of the independent exciton model, the molecular MDTM for a certain
transition (t: 0→a) contained in Rosenfeld’s expression can be obtained as the vector summation of the
MDTMs corresponding to each chromophore, j. The MDTM of each chromophore is represented by a

vector,
⇀
M

t

j, defined by Expression (23), where subscript k refers to the electrons in chromophore j.

→
M

t

j =
e

2mc∑
k

〈
ψ0
(→

r jk

)∣∣∣∣→r jk ×
→̂
p jk

∣∣∣∣ψa
(→

r jk

)〉
(23)

→
M

t

j vectors are origin dependent. Thus, their summation should be done considering a common

origin for all the electron position vectors,
→
r jk. Introducing a reference point for each chromophore

(e.g., its center of mass), with position vector
→
R j, and the relative positions for the electrons in their

chromophore,
→
r
′
jk, (23) turns into (24), where

→
M

t

j splits into two parts.

→
M

t

j =
e

2mc

[
→
R j ×∑

k

〈
ψ0
(→

r jk

)∣∣∣∣→̂p jk

∣∣∣∣ψa
(→

r jk

)〉]
+

e
2mc∑

k

〈
ψ0
(→

r jk

)∣∣∣∣→r ′jk × →̂p jk

∣∣∣∣ψa
(→

r jk

)〉
(24)
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The first addend contains the linear transition moment of the chromophore,
→
p

t
j, defined by (25),

whereas the second one (internal MDTM) defines the MDTM of the isolated chromophore,
→
m

t
j, (26).

This allows one to relate (Equation (27)) the MDTM of the chromophore in the molecule,
→
M

t

j, with its

value in an isolated species,
→
m

t
j.

→
p

t
j = ∑

k

〈
ψ0
(→

r jk

)∣∣∣∣→̂p jk

∣∣∣∣ψa
(→

r jk

)〉
(25)

→
m

t
j =

e
2mc∑

k

〈
ψ0
(→

r jk

)∣∣∣∣→r ′jk × →̂p jk

∣∣∣∣ψa
(→

r jk

)〉
(26)

→
M

t

j =

e
(→

R j ×
→
p

t
j

)
2mc

+
→
m

t
j (27)

The replacement of
→
p

t
j in terms of the EDTM of the isolated chromophore,

→
µ

t
j (for more information,

see the Supporting Information), leads to Equation (28), where νt is the wave number for the transition.

→
M

t

j = iπνt
(→

R j ×
⇀
µ

t
j

)
+
→
m

t
j (28)

At this point, the summation of
⇀
M

t

j vectors leads to molecular MDTM. This is shown for a binary
system in states α and β in Equations (29) and (30).

→
M

tα
=

1√
2

[
iπνt

(→
R1 ×

⇀
µ

t
1 −

→
R2 ×

⇀
µ

t
2

)
+

(
→
m

t
1 −

→
m

t
2

)]
(29)

→
M

tβ

=
1√
2

[
iπνt

(→
R1 ×

⇀
µ

t
1 +

→
R2 ×

⇀
µ

t
2

)
+

(
→
m

t
1 +

→
m

t
2

)]
(30)

2.1.5. Expressions for Rotatory Strength

Introducing EDTM and MDTM expressions obtained for α ((19) and (29)) and β ((20) and (30))
states of a binary system within Rosenfeld’s expression (15) leads to obtaining the rotatory strength for
both transitions, (31) and (32), respectively.

Rα =
1
2

Im
[(→

µ 1 −
→
µ 2

)
·
(→

m1 −
→
m2

)]
− πνt

2

(→
R2 −

→
R1

)(→
µ 1 ×

→
µ 2

)
(31)

Rβ =
1
2

Im
[(→

µ 1 +
→
µ 2

)
·
(→

m1 +
→
m2

)]
+

πνt

2

(→
R2 −

→
R1

)(→
µ 1 ×

→
µ 2

)
(32)

In what follows, we restrict ourselves to those cases (e.g., π→π* transitions in simple
chromophores such as ethene or benzene) where internal MDTM are negligible, and therefore, the first
addend can be disregarded from Equations (31) and (32). In those cases, the Cotton effects for
transitions to α and β states display the same intensity with opposite signs ((33) and (34)).

Rα = −πνt

2

(→
R2 −

→
R1

)(→
µ 1 ×

→
µ 2

)
(33)

Rβ =
πνt

2

(→
R2 −

→
R1

)(→
µ 1 ×

→
µ 2

)
(34)
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These expressions are usually present in chiroptical spectroscopy reviews and monographies [7].
Taking into account symmetry, e.g., C2, a further step can be done, and the values of rotatory strength
can be predicted in terms of simple geometry parameters. Thus, for C2 symmetry, a convenient
reference system for the vectorial operations indicated above has its origin at the center of mass;
the z axis is given by the C2 axis; and x axis connects the molecular center of mass with that of
Chromophore 1. We notice that the orientation of the EDTMs is given by two angles, which are formed
with the C2 axis, coincident with the z axis, θ, and the angle between the projection of EDTM for each
chromophore on the zx plane with the x axis, ω. Thus, simple calculations lead to Expression (35),
where rotatory strength is a function of the distance between chromophores, R12 or R as the distance
from the center of the chromophores to the C2

Rα = πνtR12

∣∣∣⇀µ 1

∣∣∣2 sin(θ) cos(θ) sin(ω) = 2πνtR
∣∣∣⇀µ 1

∣∣∣2 sin(θ) cos(θ) sin(ω) = −Rβ (35)

2.2. Extending the Exciton-Independent Model to Systems with Three and Four Chromophores

In the following, we apply the independent exciton model to systems formed by three identical
chromophores with point groups C3 (the system presents one C3 axis) and D3 (the system presents
three C2 axes perpendicular to a C3 axis). Our aims are: (i) obtaining expressions for the splitting
between those first electronically-excited states attainable from the ground state by absorption of
electromagnetic radiation allowed by electric dipole transition; and (ii) predicting the corresponding
rotatory strengths.

2.2.1. C3 Geometries

Assuming that the electronic structure of the three chromophores is unchanged with regard to
the isolated one, the ground state wave functions could be zero-order approached by Equation (36)
and belong to the totally-symmetric irreducible representation of this point group, A. We can expect
three equivalent monoexcitations from the ground state, described by the wave functions shown
in (37) (Scheme 5). They can be used as a basis set for constructing C3 Symmetry-Adapted Linear
Combinations (SALC) for the first electronically-excited states. In this case, the reducible representation
decomposes into the symmetry irreducible species A and the pseudodegenerate reducible species
E, as shown in (38). Thus, one A excited state and two E excited electronic states can be predicted.
They are represented in the zero-order approach, respectively, by Equations (39)–(41). Transitions A
and E (E1 and E2) are both orbitally allowed.

Ψ0(0) = ψ0ψ0ψ0 (36)

Ψa(0)
1 = ψaψ0ψ0, Ψa(0)

2 = ψ0ψaψ0, Ψa(0)
3 = ψ0ψ0ψa (37)

Γ
(

Ψa(0)
1 , Ψa(0)

2 , Ψa(0)
3

)
= A⊕ E (38)

Ψa(0)
A =

1√
3

[
ψaψ0ψ0 + ψ0ψaψ0 + ψ0ψ0ψa

]
(39)

Ψa(0)
E1 =

1√
3

[
ψaψ0ψ0 + ψ0ψaψ0e2πi/3 + ψ0ψ0ψae−2πi/3

]
, (40)

Ψa(0)
E2 =

1√
3

[
ψaψ0ψ0 + ψ0ψaψ0e−2πi/3 + ψ0ψ0ψae2πi/3

]
, (41)



Molecules 2019, 24, 141 10 of 17

Molecules 2018, 23, x 10 of 17 

 

( )  aaaa

A  0000000

3

1
++=  (39) 

( )  32003200000

1
3

1 iaiaaa

E ee   −++= , (40) 

( )  32003200000

2
3

1 iaiaaa

E ee   ++= − , (41) 

 

Scheme 5. Representation of a system presenting D3 symmetry. According to the selection rules, the 

three equivalent chromophores 1 (blue), 2 (magenta), and 3 (green) can undergo a simultaneous 

excitation following A2 or E symmetry, leading to total EDTMs (black) parallel to z or y, respectively, 

as a result of the summation of the EDTM of each chromophore. A circle with a dot in the middle 

represents an arrow perpendicular to the plane pointing to the reader. 

Considering that the interaction between the three chromophores is pair additive (42) and the 

interactions between all pairs are equal, the first-order corrections for the energies of the ground, A, 

and E states are respectively shown by (43)–(45). We highlight that, within the first-order approach, 

both pseudodegenerate states display the same energy (45). Thus, in this case, the excited level 

splitting is 
ttV123  and therefore can be also calculated by means of Davydov ś equation. 
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Scheme 5. Representation of a system presenting D3 symmetry. According to the selection rules,
the three equivalent chromophores 1 (blue), 2 (magenta), and 3 (green) can undergo a simultaneous
excitation following A2 or E symmetry, leading to total EDTMs (black) parallel to z or y, respectively,
as a result of the summation of the EDTM of each chromophore. A circle with a dot in the middle
represents an arrow perpendicular to the plane pointing to the reader.

Considering that the interaction between the three chromophores is pair additive (42) and the
interactions between all pairs are equal, the first-order corrections for the energies of the ground, A,
and E states are respectively shown by (43)–(45). We highlight that, within the first-order approach,
both pseudodegenerate states display the same energy (45). Thus, in this case, the excited level splitting
is 3Vtt

12 and therefore can be also calculated by means of Davydov´s equation.

V̂ = V̂12 + V̂13 + V̂23 (42)

E0(1) = 3V00
12 (43)

Ea(1)
A = 2Va0

12 + V00
12 + 2Vtt

12 (44)

Ea(1)
E = 2Va0

12 + V00
12 −Vtt

12 (45)

The corresponding EDTMs for transitions A, (46), and E, (47) and (48), are straightforwardly
obtained extending to three excitons the procedure detailed in Section 2.1.3.

→
µ

tA
=

→
µ

t
1 +

→
µ

t
2 +

→
µ

t
3√

3
(46)

→
µ

tE1
=

1√
3

(
→
µ

t
1 + e2πi/3⇀µ

t
2 + e−2πi/3⇀µ

t
3

)
=

1√
3

→µ t
1 −

→
µ

t
2 +

→
µ

t
3

2

+
i
2

(
→
µ

t
2 −

→
µ

t
3

)
(47)

→
µ

tE2
=

1√
3

(
→
µ

t
1 + e−2πi/3⇀µ

t
2 + e2πi/3⇀µ

t
3

)
=

1√
3

→µ t
1 −

→
µ

t
2 +

→
µ

t
3

2

− i
2

(
→
µ

t
2 −

→
µ

t
3

)
(48)

A convenient reference system for performing vectorial combinations of the EDTMs is that where
the origin is at the center of mass, the z axis is given by the C3 axis, and the x axis connects the
molecular center of mass with that of Chromophore 1. We notice that the orientation of the EDTMs is
given by two angles, which are formed with the C3 axis, θ, and the angle between the projection of
EDTM for each chromophore on the xy plane with the x axis,ω for Chromophore 1. Thus, the total
EDTM for the transition to the A state displays only one non-zero component. It corresponds to the
symmetry axis (z axis by convention) as Equation (49) shows. Total EDTMs to E1 and E2 states are
orthogonal to that of the A state and contain imaginary parts, as indicated in Expressions (50) and (51).

→
µ

tA
=
√

3
∣∣∣∣→µ t

1

∣∣∣∣ cos(θ)
→
k (49)



Molecules 2019, 24, 141 11 of 17

→
µ

tE1
=

∣∣∣∣→µ t
1

∣∣∣∣ sin θ

2
√

3

[
(cos ω− i3 sin ω)

→
i + (sin ω + i3 cos ω)

→
j
]

(50)

→
µ

tE2
=

∣∣∣∣→µ t
1

∣∣∣∣ sin θ

2
√

3

[
(cos ω + i3 sin ω)

→
i + (sin ω− i3 cos ω)

→
j
]

(51)

The corresponding MDTMs, (52) to (54), are obtained extending the procedure detailed in
Section 2.1.4. and considering isolated chromophores with negligible internal MTDM.

→
M

tA
=

iπνt
√

3

(→
R1 ×

⇀
µ

t
1 +

→
R2 ×

⇀
µ

t
2 +

→
R3 ×

⇀
µ

t
3

)
(52)

→
M

tE1
=

iπνt
√

3

(→
R1 ×

⇀
µ

t
1 + e2πi/3

→
R2 ×

⇀
µ

t
2 + e−2πi/3

→
R3 ×

⇀
µ

t
3

)
(53)

→
M

tE2
=

iπνt
√

3

(→
R1 ×

⇀
µ

t
1 + e−2πi/3

→
R2 ×

⇀
µ

t
2 + e2πi/3

→
R3 ×

⇀
µ

t
3

)
(54)

As a consequence, the rotatory strength for the transition to the A state is represented by
Equation (55).

RA =
−πνt

3

[(→
R2 −

→
R1

)(→
µ 1 ×

→
µ 2

)
+

(→
R3 −

→
R1

)(→
µ 1 ×

→
µ 3

)
+

(→
R3 −

→
R2

)(→
µ 2 ×

→
µ 3

)]
(55)

which, taking into account the relationships imposed by C3 symmetry, results in (56), where R is the
distance from the center of the chromophores to the C3 axis,

RA = −3πνtR
∣∣∣∣→µ t

1

∣∣∣∣2 cos(θ) sin(θ) sin(ω) (56)

In a similar way, for the E1 and E2 states, we obtain Formula (57), which turns into (58) when the
symmetry restrictions for the Rj and µj vectors are applied.

RE1 =
πνt

3
Im
{

i
[

e−i2π/3
(→

R2 −
→
R1

)(→
µ1 ×

→
µ2

)
+ ei2π/3

(→
R3 −

→
R1

)(→
µ1 ×

→
µ3

)
+ ei4π/3

(→
R3 −

→
R2

)(→
µ2 ×

→
µ3

)]}
RE2 =

πνt

3
Im
{

i
[

ei2π/3
(→

R2 −
→
R1

)(→
µ1 ×

→
µ2

)
+ e−i2π/3

(→
R3 −

→
R1

)(→
µ1 ×

→
µ3

)
+ e−i4π/3

(→
R3 −

→
R2

)(→
µ2 ×

→
µ3

)]} (57)

RE1 = RE2 =

3πνtR
∣∣∣∣→µ t

1

∣∣∣∣2
2

cos(θ) sin(θ) sin(ω) (58)

We notice that, in line with the results already known for binary systems, the transition to a
totally-symmetric state (A in this case) and those to less symmetric states display opposite rotatory
strengths. Furthermore, when the two possible E transitions are considered, the absolute values of this
quantity are equivalent. The same trend is observed in the remaining symmetries herein considered.

2.2.2. D3 Geometries

In a D3 arrangement, the totally-symmetric species is represented as A1 (ground electronic state).
There are again three equivalent monoexcitations given by (37). They form a suitable basis set for
constructing D3 SALCs for the first electronically-excited states. The reducible representation of this
basis, Γa, decomposes into different symmetry-irreducible species depending on how the rotation
around any of the three perpendicular C2 axes affects the first electronically-excited state of the isolated
chromophore, ψa. When Ĉ2ψa = ψa, the typical situation when all the MOs describing the excited
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state are σ Γa decomposes into A1 and the truly degenerate reducible species E. In contrast, when the
excited state of the chromophore contains one πMO: Ĉ2ψa = −ψa, and Γa contains A2 and E species.
Thus, the two degenerate E excited electronic states, represented in the zero-order approach by any
linear combination of Equations (61) and (62), can be accompanied by one A1 or A2 state, represented
by a common expression, equivalent to that shown above for C3 systems (39).

The transition from the ground state is orbitally allowed for the three states only when the excited
state considered for the isolated chromophore is antisymmetric for C2 rotations (e.g., π* states). In this
case, the application of the first-order perturbation theory leads to the same splitting of the excited
level obtained for C3 geometries: 3Vtt

12. On the other hand, when C2 rotations are symmetric (this is the
case of σ* states), the transition to the A1 excited state is orbitally forbidden, and there is no splitting.

Ψa(0)
E1 =

1
2

[
2ψaψ0ψ0 − ψ0ψaψ0 − ψ0ψ0ψa

]
(59)

Ψa(0)
E2 =

1√
2

[
ψ0ψaψ0 − ψ0ψ0ψa

]
(60)

The presence of three C2 axes orthogonal to C3 restrains the orientations for EDTMs in D3 systems
with regard to C3 ones to those where ω = π/2. As a consequence, the EDTM for the transition to
the A2 state follows the same expression obtained for C3 symmetry (49), standing along the main
symmetry axis, whereas the EDTMs for transitions to true degenerate E states are contained within the
orthogonal plane, being linear combinations of the vectors represented by (61) and (62).

→
µ

tE1
=

3
∣∣∣∣→µ t

1

∣∣∣∣ sin(θ)

2

→
i (61)

→
µ

tE2
=

√
3
2

∣∣∣∣→µ t
1

∣∣∣∣ sin(θ)
→
j (62)

Furthermore, the MDTM involved in the transition to the A2 state follows the same expression as
that to the A excited state in C3 symmetry (52). Consequently, the expression for the rotatory strength
for this transition is common for C3 and D3 symmetries (56). Transitions to E states display, in contrast,
different expressions for MDTMs in D3 systems (linear combinations of (63) and (64)) and rotatory
strength ((65) and (66)).

→
M

tE1
=

iπνt

2

(
2
→
R1 ×

⇀
µ

t
1 −

→
R2 ×

⇀
µ

t
2 −

→
R3 ×

⇀
µ

t
3

)
(63)

→
M

tE2
=

iπνt
√

2

(→
R2 ×

⇀
µ

t
2 −

→
R3 ×

⇀
µ

t
3

)
(64)

RE1 =
πνt

4

{
2
[(→

R2 −
→
R1

)(→
µ 1 ×

→
µ 2

)
+

(→
R3 −

→
R1

)(→
µ 1 ×

→
µ 3

)]
−
(→

R3 −
→
R2

)(→
µ 2 ×

→
µ 3

)}
=

3πνt
∣∣∣∣→µ t

1

∣∣∣∣2R

2
sin(θ) cos(θ) (65)

RE2 =
πνt

2

(→
R3 −

→
R2

)(→
µ 2 ×

→
µ 3

)
=

3πνt
∣∣∣∣→µ t

1

∣∣∣∣2R

2
sin(θ) cos(θ) (66)

2.2.3. C4 and D4 Geometries

Considering a C4 structure including four chromophores (Scheme 6), a pairwise approach for the
interaction among them, where V12 and V13 are not equivalent, (27) the same approximations, and a
similar treatment to that shown above (see Supporting Information) leads to the following conclusions:
(i) there are four monoexcited states, two of them pseudodegenerate, belonging to the E symmetry
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species, the other with A and B symmetry; (ii) the electronic transition from the ground state to the B
one is orbitally forbidden, whereas those to A and E are allowed; and (iii) the energy of state A differs
from those of E (equivalent within the first-order approach) in 2

(
Vtt

12 + Vtt
13
)
; which is the splitting in

this case.
V̂ = 4V̂12 + 2V̂13 (67)

As in the three-chromophore case, replacing Cn symmetry by Dn splits some symmetry species (A
into A1 and A2 and B into B1 and B2), while pseudodegenerate E states become degenerate. A1 and B1

species are symmetric for C2 rotations over any perpendicular axis and correspond to excited states with
forbidden transitions from the ground state. In contrast, A2 and B2 states are antisymmetric for these
perpendicular rotations, and the transitions between the ground state and A2 are orbitally-allowed.
As a consequence, the excited state splitting is only observed for excited states involving the excitation
of one chromophore to an antisymmetric state with regard to a perpendicular rotation. In this case,
the energy of state A2 differs from the E ones again by 2

(
Vtt

12 + Vtt
13
)

(see the Supporting Information).
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Scheme 6. Representation of a system presenting D4 symmetry. According to the selection rules, the
four equivalent chromophores 1 (blue), 2 (magenta), 3 (green), and 4 (red) can undergo a simultaneous
excitation following A2 or E symmetry leading to total EDTMs (black) parallel to z or y, respectively,
as a result of the summation of the EDTM of each chromophore. A circle with a dot in the middle
represents an arrow perpendicular to the plane pointing to the reader.

Similarly, the expressions for molecular EDTM in C4 systems ((68) and (69)) show that the
absorption for 0→A and 0→E transitions depends on the molecular geometry. This can be described
in terms of θ and ω angles, defined as in C3 systems, but now identifying the z axis with C4 and
considering the recursive formula ωj+1 = ωj + π/2 for the series of ω angles of the chromophores.

MTDMs for the transitions E and A in a C4 system follow, respectively, Equations (70) and (71).
Thus, we arrive at Expressions (72) and (73) for the corresponding rotatory strength.

→
µ

tA
= 2

∣∣∣∣→µ t
1

∣∣∣∣ cos(θ)
→
k (68)

→
µ

tE1
=

∣∣∣∣→µ t
1

∣∣∣∣ sin θ

[
(cos ω− i sin ω)

→
i + (sin ω + i cos ω)

→
j
]

→
µ

tE2
=

∣∣∣∣→µ t
1

∣∣∣∣ sin θ

[
(cos ω + i sin ω)

→
i + (sin ω− i cos ω)

→
j
] (69)

→
M

tE1
= πνt

2

[
i
(→

R1 ×
⇀
µ

t
1 −

→
R3 ×

⇀
µ

t
3

)
−
(→

R2 ×
⇀
µ

t
2 −

→
R4 ×

⇀
µ

t
4

)]
→
M

tE2
= πνt

2

[
i
(→

R1 ×
⇀
µ

t
1 −

→
R3 ×

⇀
µ

t
3

)
+

(→
R2 ×

⇀
µ

t
2 −

→
R4 ×

⇀
µ

t
4

)] (70)
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→
M

tA
=

iπνt

2

(→
R1 ×

⇀
µ

t
1 +

→
R2 ×

⇀
µ

t
2 +

→
R3 ×

⇀
µ

t
3 +

→
R4 ×

⇀
µ

t
4

)
(71)

RE1 = RE2 = 2πνt
∣∣∣∣→µ t

1

∣∣∣∣2R sin θ cos θ sin ω (72)

RA =
−πνt

4

3

∑
j=1

4

∑
k=j+1

(→
Rk −

→
R j

)(
⇀
µ

t
j ×

⇀
µ

t
k

)
= −4πνt

∣∣∣∣→µ t
1

∣∣∣∣2R sin θ cos θ sin ω (73)

Imposing D4 symmetry (ω = π/2 for Chromophore 1) does not alter any of the expressions
shown for transition A. Nevertheless, it allows obtaining vectors with real components for EDTMs
and imaginary ones for MDTMs to E degenerate states. These vectors are linear combinations of those
shown respectively in (74) and (75). The former is always contained in the orthogonal plane to the C4

axis, whereas the latter are parallel to it.

→
µ

tE1
=

→
µ

t
1 −

→
µ

t
3√

2
=
√

2 sin(θ)
→
i ;

→
µ

tE2
=

→
µ

t
2 −

→
µ

t
4√

2
=
√

2 sin(θ)
→
j (74)

→
M

tE1
= iπνt
√

2

(→
R1 ×

⇀
µ

t
1 −

→
R3 ×

⇀
µ

t
3

)
;

→
M

tE2
= iπνt
√

2

(→
R2 ×

⇀
µ

t
2 −

→
R4 ×

⇀
µ

t
4

) (75)

Finally, the expressions for rotatory strength can be simplified taking into account theω restriction.

RE =
πνt

2

(→
R3 −

→
R1

)(
⇀
µ

t
1 ×

⇀
µ

t
3

)
= 2πνt

∣∣∣∣→µ t
1

∣∣∣∣2R sin θ cos θ (76)

RA =
−πνt

4

3

∑
j=1

4

∑
k=j+1

(→
Rk −

→
R j

)(
⇀
µ

t
j ×

⇀
µ

t
k

)
= −4πνt

∣∣∣∣→µ t
1

∣∣∣∣2R sin θ cos θ (77)

2.3. Comparison with DFT Calculations

The rotatory strength for the two lower energetic transitions were calculated with DFT and CSA
for three systems bearing two, three, and four ethene moieties with a 5 Å distance to the center of
mass and a 30◦ torsion angle with respect to the y axis with D2, D3, and D4 symmetry, respectively
(Scheme 7).

The sign of the energy difference between the two allowed transitions, which is reflected on the
order of the two rotatory strengths at the spectrum, was correctly predicted by the CSA model giving
the same chirality as the DFT calculations. Even when the values calculated from the CSA were only
relative, they led to the same relative intensities as compared to the DFT calculations.



Molecules 2019, 24, 141 15 of 17

Molecules 2018, 23, x 15 of 17 

 

( ) ( ) ji
tt

tE
tt

tE 









 sin2

2
;sin2

2

422311 =
−

==
−

=  (74) 

( )

( )tt
t

tE

tt
t

tE

RR
i

M

RR
i

M

4422

2

3311

1

2

;
2











−=

−=

 

(75) 

Finally, the expressions for rotatory strength can be simplified taking into account the  

ω restriction.  

( )( ) 


cossin2
2

2

13113 RRRR tttt
t

E 
=−=  (76) 

( )( ) 


cossin4
4

2

1

3

1

4

1

RRRR tt

j jk

t

k

t

jjk

t
A 

−=−
−

= 
= +=

 (77) 

2.3. Comparison with DFT Calculations 

The rotatory strength for the two lower energetic transitions were calculated with DFT and CSA 

for three systems bearing two, three, and four ethene moieties with a 5 Å distance to the center of 

mass and a 30° torsion angle with respect to the y axis with D2, D3, and D4 symmetry, respectively 

(Scheme 7). 

 

Scheme 7. Top: DFT predicted (graph bottom) and CSA predicted (graph top) rotatory strengths for 

D2, D3, and D4 (from left to right) symmetries. The bottom axis represents the relative energy for each 

symmetry (from left to right: higher to lower). Bottom: Dn systems. 

The sign of the energy difference between the two allowed transitions, which is reflected on the 

order of the two rotatory strengths at the spectrum, was correctly predicted by the CSA model 

giving the same chirality as the DFT calculations. Even when the values calculated from the CSA 

were only relative, they led to the same relative intensities as compared to the DFT calculations. 

3. Conclusions 
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3. Conclusions

It has been shown how the Chiroptical Symmetry Analysis (CSA) may significantly contribute to
uncovering the chiroptical responses of highly-symmetric systems bearing independent chromophores
given that: (i) Vij can be calculated according to the Davydov equation; (ii) the allowed transitions
can be predicted by applying the selection rules; (iii) ∆E between those transitions can be calculated
according to theory; (iv) the symmetry of the allowed transitions enables simple calculation of the total
EDTM, MDTM, and rotatory strength associated.

This approach is not intended to predict the experimental CD response of a particular system
accurately, but rather to be employed as a useful tool for the design of valuable systems for chiroptical
applications. Next, we intend to develop software for a straightforward analysis of diverse systems to
explore the scope of the Chiroptical Symmetry Analysis (CSA).

Supplementary Materials: The following are available online: S0. Obtaining molecular EDTMs from those of
isolated chromophores in a binary system. S1. Excited state splitting for C4 geometries. S2. Excited state splitting

for D4 geometries. S3. Deriving the relationship between the
⇀
p

t
and

→
µ

t
vectors.

Author Contributions: Analysis of the selection rules for the different symmetries, S.C.-F.; contextualization
of the chiroptical symmetry analysis within the state-of-the-art, A.P.-G.; theoretical demonstration, R.A.M.;
conceptualization, J.L.A.-G.

Funding: This research was funded by the Spanish Government under Grant Numbers CTQ2014-58629-R,
RYC-2012-10364, and CTQ2013-50575-EXP” and the Galician Government, EM2013/017, GRC2015/17, and
ED431F 2016/005.

Acknowledgments: N. Berova (Columbia University, New York, USA) and F. Santoro (Institute of Chemistry of
Organometallic Compounds (ICCOM) of the Italian National Research Council, Pisa, Italy) are acknowledged for
fruitful discussions, as well as Centro de Supercomputación de Galicia (CESGA) for the allocation of chiroptical
simulations. The reviewers are acknowledged for their valuable suggestions to improve this manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the
decision to publish the results.



Molecules 2019, 24, 141 16 of 17

References

1. Bentley:, R. From Optical Activity in Quartz to Chiral Drugs: Molecular Handedness in Biology and Medicine.
Perspect. Biol. Med. 1995, 38, 188–229. [CrossRef]

2. Gal, J. History Molecular Chirality in Chemistry and Biology: Historical Milestones. Helv. Chimica Acta. 2013,
96, 1617–1657. [CrossRef]

3. Kelly, T.R.; De Silva, H.; Silva, R.A. Unidirectional rotary motion in a molecular system. Nature 1999, 401,
150–152. [CrossRef] [PubMed]

4. Sauvage, J.-P.; Amendola, V.; Ballardini, R.; Balzani, V.; Credi, A.; Fabbrizzi, L.; Gandolfi, M.T.;
Gimzewski, J.K.; Gómez-Kaifer, M.; Joachim, C.; et al. (Eds.) Molecular Machines and Motors. In Structure
and Bonding; Springer: Berlin/Heidelberg, Germany, 2001; Volume 99, ISBN 978-3-540-41382-0.

5. Zsila, F. Circular Dichroism Spectroscopy Is a Sensitive Tool for Investigation of Bilirubin-Enzyme
Interactions. Biomacromolecules 2011, 12, 221–227. [CrossRef] [PubMed]

6. Barron, L.D. Molecular Light Scattering and Optical Activity; Cambridge University Press: New York, NY, USA,
2004.

7. Pescitelli, G.; Di Bari, L.; Berova, N. Application of electronic circular dichroism in the study of
supramolecular systems. Chem. Soc. Rev. 2014, 43, 5211–5233. [CrossRef]

8. Polavarapu, P.L. Chiroptical Spectroscopy: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA,
2016; ISBN 9781420092462.

9. Nakanishi, K.; Berova, N.; Polavarapu, P.L.; Woody, R.W. Comprehensive Chiroptical Spectroscopy, Volume 1,
Instrumentation, Methodologies, and Theoretical Simulations; Wiley-VCH Verlag: Weinheim, Germany, 2013.

10. Petrovic, A.G.A.G.; Navarro-Vázquez, A.; Alonso-Gómez, J.L.J.L.; Navarro-Vazquez, A.; Alonso-Gomez, J.L.
From Relative to Absolute Configuration of Complex Natural Products: Interplay Between NMR, ECD,
VCD, and ORD Assisted by ab initio Calculations. Curr. Org. Chem. 2010, 14, 1612–1628. [CrossRef]

11. Alonso-Gómez, J.L.; Petrovic, A.G.; Harada, N.; Rivera-Fuentes, P.; Berova, N.; Diederich, F. Chiral induction
from allenes into twisted 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs): Conformational assignment by circular
dichroism spectroscopy. Chem. Eur. J. 2009, 15, 8396–8400. [CrossRef]

12. Rivera-Fuentes, P.; Alonso-Gómez, J.L.J.L.; Petrovic, A.G.A.G.; Santoro, F.; Harada, N.; Berova, N.;
Diederich, F. Amplification of chirality in monodisperse, enantiopure alleno-acetylenic oligomers.
Angew. Chem. Int. Ed. 2010, 49, 2247–2250. [CrossRef]

13. Petrovic, A.G.; Berova, N.; Alonso-Gómez, J.L. Structure Elucidation in Organic Chemistry. In Structure
Elucidation in Organic Chemistry: The Search for the Right Tools; Cid, M.-M., Bravo, J., Eds.; Wiley-VCH Verlag
GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 65–104. ISBN 9783527664610.

14. Harada, N.; Nakanishi, K. Exciton chirality method and its application to configurational and conformational
studies of natural products. Acc. Chem. Res. 1972, 5, 257–263. [CrossRef]

15. Davydov, A.S. The theory of molecular excitons. Sov. Phys. Usp. 1964, 7, 145–178. [CrossRef]
16. Berova, N.; Di Bari, L.; Pescitelli, G. Application of electronic circular dichroism in configurational and

conformational analysis of organic compounds. Chem. Soc. Rev. 2007, 36, 914–931. [CrossRef] [PubMed]
17. Alonso-Gómez, J.L.J.L.; Rivera-Fuentes, P.; Harada, N.; Berova, N.; Diederich, F. An enantiomerically

pure alleno-acetylenic macrocycle: Synthesis and rationalization of its outstanding chiroptical response.
Angew. Chem. Int. Ed. 2009, 48, 5545–5548. [CrossRef] [PubMed]

18. Míguez-Lago, S.; Llamas-Saiz, A.L.; Magdalena Cid, M.; Alonso-Gómez, J.L. A Covalent Organic Helical
Cage with Remarkable Chiroptical Amplification. Chem. A Eur. J. 2015, 21, 18085–18088. [CrossRef]
[PubMed]

19. Míguez-Lago, S.; Cid, M.M.M.; Alonso-Gómez, J.L.; Míguez-Lago, S.; Cid, M.M.M.; Alonso-Gómez, J.L.
Covalent Organic Helical Cages as Sandwich Compound Containers. Eur.J. Org. Chem. 2016, 2016, 5716–5721.
[CrossRef]

20. Castro-Fernández, S.; Yang, R.; García, A.P.; Garzón, I.L.; Xu, H.; Petrovic, A.G.; Alonso-Gómez, J.L.
Diverse Chiral Scaffolds from Diethynylspiranes: All-Carbon Double Helices and Flexible Shape-Persistent
Macrocycles. Chem. A Eur. J. 2017, 23, 11747–11751. [CrossRef]

21. Ozcelik, A.; Pereira-Cameselle, R.; Von Weber, A.; Paszkiewicz, M.; Carlotti, M.; Paintner, T.; Zhang, L.;
Lin, T.; Zhang, Y.-Q.; Barth, J.V.V.; et al. Device-Compatible Chiroptical Surfaces through Self-Assembly of
Enantiopure Allenes. Langmuir 2018, 34, 4548–4553. [CrossRef]

http://dx.doi.org/10.1353/pbm.1995.0069
http://dx.doi.org/10.1002/hlca.201300300
http://dx.doi.org/10.1038/43639
http://www.ncbi.nlm.nih.gov/pubmed/10490021
http://dx.doi.org/10.1021/bm1012103
http://www.ncbi.nlm.nih.gov/pubmed/21141881
http://dx.doi.org/10.1039/C4CS00104D
http://dx.doi.org/10.2174/138527210793563215
http://dx.doi.org/10.1002/chem.200900103
http://dx.doi.org/10.1002/anie.200906191
http://dx.doi.org/10.1021/ar50056a001
http://dx.doi.org/10.1070/PU1964v007n02ABEH003659
http://dx.doi.org/10.1039/b515476f
http://www.ncbi.nlm.nih.gov/pubmed/17534478
http://dx.doi.org/10.1002/anie.200901240
http://www.ncbi.nlm.nih.gov/pubmed/19533690
http://dx.doi.org/10.1002/chem.201503994
http://www.ncbi.nlm.nih.gov/pubmed/26449173
http://dx.doi.org/10.1002/ejoc.201600997
http://dx.doi.org/10.1002/chem.201702986
http://dx.doi.org/10.1021/acs.langmuir.8b00305


Molecules 2019, 24, 141 17 of 17

22. Rivera-Fuentes, P.; Alonso-Gómez, J.L.J.L.; Petrovic, A.G.A.G.; Seiler, P.; Santoro, F.; Harada, N.; Berova, N.;
Rzepa, H.S.H.S.; Diederich, F. Enantiomerically pure alleno-acetylenic macrocycles: Synthesis, solid-state
structures, chiroptical properties, and electron localization function analysis. Chem. Eur. J. 2010, 16, 9796–9807.
[CrossRef]

23. Castro-Fernández, S.; Cid, M.M.; López, C.S.; Alonso-Gómez, J.L. Opening Access to New Chiral Macrocycles:
From Allenes to Spiranes. J. Phys. Chem. A 2015, 119, 1747–1753. [CrossRef]

24. Condon, E.U. Theories of Optical Rotatory Power. Rev. Mod. Phys. 1937, 9, 432–457. [CrossRef]
25. Kirkwood, J.G. On the theory of optical rotatory power. J. Chem. Phys. 1937, 5, 479–491. [CrossRef]
26. Schellman, J.A. Circular Dichroism and Optical Rotation. Chem. Rev. 1974, 75, 323–331. [CrossRef]
27. Taniguchi, T.; Monde, K. Exciton chirality method in vibrational circular dichroism. J. Am. Chem. Soc. 2012,

134, 3695–3698. [CrossRef] [PubMed]
28. Covington, C.L.; Nicu, V.P.; Polavarapu, P.L. Determination of the Absolute Configurations Using Exciton

Chirality Method for Vibrational Circular Dichroism: Right Answers for the Wrong Reasons? J. Phys. Chem. A
2015, 119, 10589–10601. [CrossRef] [PubMed]

29. Rosenfeld, L. Quantenmechanische Theorie der natürlichen optischen Aktivität von Flüssigkeiten und Gasen.
Z. Phys. 1929, 52, 161–174. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/chem.201001087
http://dx.doi.org/10.1021/jp508414r
http://dx.doi.org/10.1103/RevModPhys.9.432
http://dx.doi.org/10.1063/1.1750060
http://dx.doi.org/10.1021/cr60295a004
http://dx.doi.org/10.1021/ja3001584
http://www.ncbi.nlm.nih.gov/pubmed/22299596
http://dx.doi.org/10.1021/acs.jpca.5b07940
http://www.ncbi.nlm.nih.gov/pubmed/26401833
http://dx.doi.org/10.1007/BF01342393
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Theoretical Background (Binary Systems) 
	Approximated Wave Functions and Energy Levels 
	Rotatory Strength 
	Electric Dipole Transition Moment 
	Magnetic Dipole Transition Moment 
	Expressions for Rotatory Strength 

	Extending the Exciton-Independent Model to Systems with Three and Four Chromophores 
	C3 Geometries 
	D3 Geometries 
	C4 and D4 Geometries 

	Comparison with DFT Calculations 

	Conclusions 
	References

