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As a member of the TRIM protein family, TRIM27 is a RING-mediated

E3 ubiquitin ligase that can mark other proteins for degradation. Its

ubiquitination targets include PTEN, IκBα and p53, which allows it to

regulate many signaling pathways to exert its functions under both

physiological and pathological conditions, such as cell proliferation,

differentiation and apoptosis. During the past decades, TRIM27 was reported

to be involved in many diseases, including cancer, lupus nephritis, ischemia-

reperfusion injury and Parkinson’s disease. Although the research interest in

TRIM27 is increasing, there are few reviews about the diverse roles of this

protein. Here, we systematically review the roles of TRIM27 in cancer and other

human diseases. Firstly, we introduce the biological functions of TRIM27. Next,

we focus on the roles of TRIM27 in cancer, including ovarian cancer, breast

cancer and lung cancer. At the same time, we also describe the roles of

TRIM27 in other human diseases, such as lupus nephritis, ischemia-

reperfusion injury and Parkinson’s disease. Finally, we discuss the future

directions of TRIM27 research, especially its potential roles in tumor immunity.
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Introduction

The TRIM (tripartite-motif) family of proteins, as a large family of E3 ubiquitin

ligases, are characterized by an N-terminal RING finger domain, one or two B box

domains (B1 box and B2 box) and a coiled-coil region with a variable C-terminus

(Hatakeyama, 2017). In humans, there are approximately 80 members of the TRIM

family, which are classified in subfamilies I to XI (C-I to C-XI) based on the variable

C-terminus. The variable C-terminal region includes PRY domain, SPRY domain, COS

domain, fibronectin type III repeat (FNIII), acid-rich region (ACID), Meprin and TRAF-

homology domain (MATH), ADP-ribosylation factor family domain (ARF), filamin-type

IG domain (FIL), NHL domain, PHD domain, bromodomain (BROMO), and

transmembrane region (TM) (Esposito et al., 2017; Hatakeyama, 2017). Additionally,

the variable domains in the C-terminal region define the specific biochemical properties of
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these subfamilies and confer target specificity (Esposito et al.,

2017; Bhaduri andMerla, 2021). For example, PRYSPRY is found

in the C-I and C-IV subfamilies, where it could mediate

protein–protein interactions, particularly in immune related

proteins and give them the ability to regulate immune

response (Esposito et al., 2017). Additionally, PHD and

Bromodomain, contained in C-V subfamily, plays an

important role in chromatin biology and transcriptional

regulation and make them obtain the ability to regulate the

expression of downstream genes (Nisole et al., 2005).

Meantime, C-I, C-II and C-III subfamilies contain COS

domain and exert a vital role in microtubule binding (Baldini

et al., 2020). The NHL domain, found in the C-VII subfamily,

plays an important role in protein–protein and protein-RNA

interactions (Bawa et al., 2021).

TRIM27 (tripartite motif-containing 27) was firstly identified

as a Rfp/Ret fusion protein, with a vital role in the full

transforming activity of Rfp/Ret (Hasegawa et al., 1996). As a

member of the TRIM family of proteins, TRIM27 can act as a

RING-mediated E3 ubiquitin ligase to induce the ubiquitination

of other proteins, such as PTEN, RIP1 and JAK1 to regulate

signaling pathways (Zurek et al., 2012; Lee et al., 2013; Zaman

et al., 2013; Conwell et al., 2015; Nie et al., 2016; Zhuang et al.,

2016; Zhang H. X. et al., 2018). Meantime, TRIM27 belongs to

C-IV subfamily and contains PRYSPRY, which could interact

with immune related proteins and involved in immune response

(Esposito et al., 2017). Additionally, TRIM27 was also found to

play vital roles in the cell proliferation, differentiation and

apoptosis (Gillot et al., 2009; Yao et al., 2020; Hao et al., 2021).

Many studies demonstrated that TRIM27 might contribute to the

progression of cancer, ischemia-reperfusion injury, cardiac

hypertrophy and brain diseases (Gillot et al., 2009; Zaman

et al., 2013; Liu et al., 2014; Conwell et al., 2015; Zheng et al.,

2015; Nie et al., 2016; Zhuang et al., 2016; Zhuang et al., 2017; Li Y.

et al., 2021; Yang et al., 2022). However, there are few reviews

about it. Hence, we make a review about the roles of TRIM27 in

cancer and other human diseases. Firstly, the biological features of

TRIM27 were described. Next, we focus on the roles of TRIM27 in

cancer and other human diseases. Finally, we provide the future

directions of TRIM27 research, especially the discussion about its

potential effect in tumor immunity.

The structure and functions of
TRIM27

TRIM27 is a 58 kDa protein containing 533 amino acids,

encoded by the trim27 gene on chromosome 6 in humans,

consisting of six introns and seven exons spanning a length of

2,963 bps (Takahashi and Cooper, 1987). This protein contains

three zinc-binding domains, a RING domain, two Box domains

and a coiled-coil domain (Zoumpoulidou et al., 2012) (Figure 1).

TRIM27 was found to be highly expressed in the mouse thymus,

spleen and hematopoietic compartment cells (Tezel et al., 1999;

Rajsbaum et al., 2008). Similar to many other TRIM proteins, the

expression of TRIM27 is regulated by type I IFNs (Rajsbaum

et al., 2008; Carthagena et al., 2009). However, as a member of

TRIM family of proteins, TRIM27 could act as a RING-mediated

E3 ubiquitin ligase to induce the ubiquitination of other proteins

(Yang et al., 2022). At the same time, TRIM27 can interact with

the enhancer of the polycomb protein gene to inhibit its

expression (Zoumpoulidou et al., 2012).

Signaling pathways related to TRIM27

TRIM27 on PI3K/AKT signaling

PI3K/AKT signaling pathway is a classical signal

transduction pathway that exerts an important role in

cellular growth, proliferation, differentiation and apoptosis

(Fresno Vara et al., 2004). In this pathway, growth factors

(GFs), such as EGF, VEGFA and FGR19, could activate PI3K,

which then recruits and activates AKT. The activation of AKT

could exert its function by regulating its downstream

substrate, such as TSC2, BAD, and MDM2 et al. (Porta

et al., 2014). However, PTEN could dephosphorylate

PIP3 to release PIP2, whereby the decrease of PIP3 level

could inhibit the activation of PI3K/AKT signaling (Song

et al., 2012). James et al. reported that TRIM27 could

interact with PTEN and lead to the atypical

polyubiquitinations of PTEN. However, these

ubiquitinations didn’t affect the protein level of PTEN, but

rather attenuated the phosphatase activity of PTEN, thus

FIGURE 1
The structure of TRIM27. TRIM 27 contains a Ring domain, two boxes, a coiled-coil domain and a PRYSPRY domain.
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decreasing its ability to regulate PI3K/AKT signaling (Lee

et al., 2013). Accordingly, TRIM27 could promote PI3K/AKT

signaling by interacting with and decreasing the phosphatase

activity of PTEN.

TRIM27 on Wnt/β-catenin signaling

Wnt/β-catenin signaling pathway is a highly conserved

pathway in biological evolution (Yu et al., 2021). Under

normal physiological conditions, β- Catenin is an integral

E-cadherin and acts as an intercellular adhesion adaptor

protein and a transcriptional cofactors. In the absence of Wnt

ligands, adenomatous polyposis coli (APC), AXIN1, casein

kinase 1 (CK1) and glycogen synthase kinase 3β (GSK3β)
complex phosphorylates β-catenin leads to its ubiquitination

and subsequent proteasomal degradation to maintain a low

protein level of cytosolic β-catenin (Liu J. et al., 2022). When

Wnt ligands interact with the Frizzled receptors, AXIN1 and

GSK3β are recruited to the plasma membrane by phosphorylated

Dvl/Dsh, which protects β-catenin from being phosphorylated

and degraded (Nusse and Clevers, 2017). Accumulated cytosolic

β-catenin could translocate into the nucleus and interact with the

TCF/LEF complex to transactivate downstream genes (Nusse

and Clevers, 2017). SIX3 is a member of the sine oculis

homeobox transcription factor family, which could inhibit the

expression of both Wnt1 and Wnt8b to negatively regulate the

activation ofWnt/β-catenin signaling (Kumar et al., 2010). TRIM

27 was reported to interact with and ubiquitinates SIX3, whose

subsequent proteasomal degradation could promote the

activation of Wnt/β-catenin signaling (Liu et al., 2020).

TRIM27 on NF-κB signaling

NF-κB is a eukaryotic transcription factor that is involved

in the control of cellular growth and differentiation, immune

response, inflammation and tumorigenesis (Yu et al., 2020).

Under the physiological condition, IκBs, such as IκBα、
IκBβ、IκBγ and IκBε, could interact with and prevent NF-

κB from translocating into the nucleus to stimulate the

expression of downstream genes by covering the nuclear

localization signal (NLS) of NF-κB (Panahi et al., 2016).

Under various stimuli, IκBs could be phosphorylated,

whose subsequent proteasomal degradation could uncover

the NLS of NF-κB and make it translocate into the nucleus to

promote the expression of downstream genes (Yamamoto

and Gaynor, 2001). Additionally, TRIM27 was reported to

interact with IκBα and lead to the ubiquitination of IκBα
(Xiao et al., 2021). Meantime, TRIM27 could promote the

activation of NF-κB signaling. Taken together,

TRIM27 might regulate NF-κB signaling by ubiquitinating

IκBα (Xiao et al., 2021).

TRIM27 on JAK/STAT3 signaling

The JAK-STAT3 signaling pathway is a cytokine-stimulated

signal transduction pathway, containing receptor tyrosine

kinases (RTKs), Janus kinases (JAKs), and signal transducer

and activator of transcription 3 (STAT3) (Xu et al., 2022).

JAKs includes JAK1, JAK2, JAK3 and TYK2 family members

(Xu et al., 2022). In this signaling pathway, Various cytokines,

such as EGF, HGF, IL-6 and TGFβ could activate PKTs, which

recruits and phosphorylates JAKs(Jin, 2020). The activation of

JAKs could phosphorylate STATA3, which then translocate into

the nucleus and promote the expression of downstream genes

(Jin, 2020). TRIM27 was reported to interact with JAK1 and

STAT3 and essential for JAK1–STAT3 complex formation

(Zhang H. X. et al., 2018). Additionally, TRIM27 could

promote the activation of JAK/STAT3 signaling by enhancing

the association between JAK1 and STAT3 (Zhang H. X. et al.,

2018).

Role of TRIM27 in cancer

During the past decades, numerous studies showed that

TRIM27 was abnormally expressed in many kinds of cancer.

For example, TRIM27 was highly expressed in hepatocellular

carcinoma, non-small-cell lung cancer (NSCLC), ovarian cancer

and breast cancer (Ma et al., 2016; Liu et al., 2020; Xing et al.,

2020; Sakamoto et al., 2022) (Figure 2; Table 1). High

TRIM27 expression in these kinds of cancer was associated

with worse clinicopathological features and a poor prognosis

(Ma et al., 2016; Zhang H. X. et al., 2018; Liu et al., 2020; Xing

et al., 2020; Sakamoto et al., 2022). The details were as follows.

Ovarian cancer is the eighth most common cancer in women

(Lheureux et al., 2019; Stewart et al., 2019). In 2022, there were

about 21,000 new cases of ovarian cancer in the United States

(Siegel et al., 2021). In ovarian cancer, the expression of

TRIM27 was significantly related to metastasis and FIGO stag

(Ma et al., 2016). At the same time, downregulation of

TRIM27 expression inhibited the proliferation of ovarian

cancer cells in vivo and in vitro by upregulating the

phosphorylation of p38 and downregulating the

phosphorylation of AKT, (Ma et al., 2016). However, the

exact mechanism that TRIM27 upregulates the

phosphorylation of p38 and downregulates the

phosphorylation of AKT needs further investigations. In

addition, other studies demonstrated that TRIM27 could

enhance cellular proliferation and chemoresistance by

activating PI3K-AKT signaling (Horio et al., 2012; Jiang et al.,

2019), further validating the above results.

Breast cancer is the most frequently diagnosed cancer in

women and ranks second among causes for cancer related deaths

in women (Harbeck and Gnant, 2017; Nardin et al., 2020).

TRIM27 was found to inhibit the apoptosis and senescence of
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cancer cells in breast cancer (Xing et al., 2020). Meantime, the

overexpression of TRIM27 could enhance cellular viability and

tumor growth and attenuate the anti-cancer effects of Tamoxifen

(Xing et al., 2020). Additionally, TRIM27 could mediate these

above effects by inducing the ubiquitination and degradation of

p21 (Xing et al., 2020). Autophagy was found to stimulate the

progression of advanced cancer by promoting drug resistance

and immune escape (Amaravadi et al., 2019). Yang et al.

demonstrated that TRIM27 could promote the tumorigenesis

of breast cancer by cooperating with STK38L to inhibit Unc-51-

like kinase 1 (ULK1)-induced autophagy, (Yang et al., 2022),

where ULK1 is a cytoplasmic kinase that can interact with the

FIGURE 2
The roles of TRIM27 in cancer. TRIM27 exerts multiple effects, such as proliferation, metastasis, autophagy and chemoresistance via many
signaling pathways.

TABLE 1 The roles of TRIM27 in cancer.

Cancer type The expression of
TRIM27

Functions of TRIM27 Related signaling
pathways

References

Ovarian cancer High expression Promote cell proliferation and
chemoresistance

PI3K-AKT signaling Horio et al. (2012), Ma et al. (2016), Jiang
et al. (2019)

Breast cancer High expression Promote tumorigenesis; Inhibit
autophagy

P21 signaling; ULK1 signaling Xing et al. (2020), Yang et al. (2022)

Lung cancer High expression Promote proliferation and
metastasis

Wnt/β-catenin signaling Ji et al. (2020), Liu et al. (2020)

Colorectal cancer High expression Promote tumorigenesis PI3K-AKT signaling; IL6-STAT3
signaling

Zhang et al. (2018a), Zhang et al. (2018b)

Hepatocellular
carcinoma

High expression Promote proliferation and
metastasis

STAT3 signaling Mao et al. (2021), Sakamoto et al. (2022)

Gastric cancer High expression Promote cell proliferation and
chemoresistance

Hippo-BIRC5 signaling Yao et al. (2020)

Renal cell carcinoma High expression Promote proliferation and inhibit
apoptosis

NF-κB signaling Xiao et al. (2021)

Skin cancer — Inhibit tumorigenesis — Zoumpoulidou et al. (2012)
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autophagy-related gene 13 (ATG13), and focal adhesion kinase

interacting protein 200 kDa (FIP200) to trigger the initiation of

autophagy (Amaravadi et al., 2019).

Lung cancer is a malignant tumor originating from the

bronchial mucosa or glands of the lungs (Hirsch et al., 2017;

Bray et al., 2018).Non-small-cell lung carcinoma (NSCLC) is the

most common type of lung cancer (Fois et al., 2021).In NSCLC,

TRIM27 was found to promote the cell proliferation and

metastasis in vivo and vitro by interacting with SIX3 and

promoting its degradation to activate Wnt/β-catenin signaling

(Liu et al., 2020). At the same time, another study demonstrated

that smoking could change the methylation of the trim27 gene,

whose methylation level was associated with the overall survival

of NSCLC patients (Ji et al., 2020).

Colorectal cancer (CRC) is a complex and heterogeneous

carcinoma tightly associated to dietary and lifestyle factors, and

increasing studies have reported that genetic alterations and

epigenetic dysregulation contributed to CRC (Bhandari et al.,

2017; Li J. et al., 2021). Zhang et al. demonstrated that the

overexpression of TRIM27 promoted tumor growth and

metastasis in vivo and vitro in CRC (Zhang Y. et al., 2018).

Meantime, TRIM27 could promote the epithelial-mesenchymal

transition (EMT) of CRC cells by activating PI3K-AKT signaling

(Zhang Y. et al., 2018). At the same time, another study

demonstrated that TRIM27 could induce colitis to promote

the tumorigenesis of colitis-associated cancer by recruiting

gp130 and JAK1 to activate the IL6-STAT3 signaling pathway

(Zhang H. X. et al., 2018).

Hepatocellular carcinoma (HCC) is the most common

gastrointestinal neoplasm, and is responsible for

500,000–600,000 deaths annually (Forner et al., 2018; Kulik

and El-Serag, 2019). In HCC, TRIM27 was found to promote

cell proliferation and metastasis of HCC cell lines in vitro by

activating STAT3 (Sakamoto et al., 2022). Another study

demonstrated that the knockdown of Circ_0091579 inhibited

the proliferation, migration of HCC cells by suppressing cell cycle

progression and promoting epithelial-mesenchymal transition

(EMT). As a targeted molecule of Circ_0091579, MiR-136-5p

could overturn its effects. Additionally, MiR-136-5p interacted

with the 3′ untranslated region (3′UTR) of TRIM27 and

decreased the expression of TRIM27. At the same time, the

overexpression of TRIM27 largely attenuated the influence of

miR-136-5p in HCC cells. To sum up, Circ_0091579 could

promote the proliferation and migration of HCC cells via the

miR-136-5p/TRIM27 axis (Mao et al., 2021).

Gastric cancer is a malignant tumor originating from the

gastric mucosal epithelium, accounting for 738,000 deaths

annually (Smyth et al., 2020; Siegel et al., 2021). Yao et al.

reported that TRIM27 knockdown could suppress cell

proliferation and promote cell apoptosis in gastric cancer (Yao

et al., 2020). 5-Fluorouracil, a broad-spectrum chemotherapeutic

agent, could block DNA replication to inhibit tumor growth.

Moreover, the knockdown of TRIM27 increased the sensitivity of

gastric cancer cells to 5-fluorouracil treatment (Yao et al., 2020).

Additionally, it was revealed that TRIM27 could mediate the

above effects by activating the Hippo-BIRC5 pathway (Yao et al.,

2020).

Renal cell carcinoma is the eighth most common cancer in

the United States (Bray et al., 2018). In 2018, approximately

400,000 patients were diagnosed with renal cell carcinoma

(Jonasch et al., 2014; Bray et al., 2018). TRIM27 was reported

to promote the tumor growth of RCC cell lines in vivo and vitro

(Xiao et al., 2021). Furthermore, the expression of

TRIM27 expression was positively related to NF-κB
expression in RCC patients and blocking NF-κB pathway

overturned the TRIM27-mediated effects.(Xiao et al., 2021).

Additionally, TRIM27 could bind to Iκbα, an inhibitor of NF-

κB, to promote its ubiquitination, which led to the activation of

NF-κB pathway (Xiao et al., 2021). Taken together,

TRIM27 might regulate NF-κB signaling to promote the

growth of human renal cancer cells.

Skin cancers are the most common solid cancers in

Caucasian populations, which lack strong pigment protection

(Brunssen et al., 2017; Leiter et al., 2020). Zoumpoulidou et al.

(2012) reported that the knockdown of TRIM27 could attenuate

the chemically induced development of skin cancer in a mouse

model. Retinoblastoma protein (Rb) is a negative regulator of the

cell cycle and exerts a vital role in cellular senescence, which

limits oncogenic transformation (Salama et al., 2014). Meantime,

another study demonstrated that TRIM27 overexpression could

reduce RB protein–driven senescence in human cells (Krutzfeldt

et al., 2005). Additionally, the loss of TRIM27 resulted in

excessive senescence in response to replicative as well as

oncogene-associated stress (Zoumpoulidou et al., 2012).

Accordingly, TRIM27 might decrease senescence to contribute

to the progression of skin cancer via RB pathway.

The roles of TRIM27 in other human
diseases

TRIM27 in the antiviral immune response

In the process of fighting against viruses, pattern recognition

receptors (PRRs) sense viral nucleic acids and trigger

downstream signaling pathways, resulting in the production of

type I interferons (IFNs) and other proinflammatory cytokines

(Lester and Li, 2014; Li B. et al., 2020). The production of type I

IFN plays a vital role in the process of fighting against viruses, but

excessive production of type I IFN can result in the autoimmune

damage (Lester and Li, 2014). Conversely, a deficiency in the

production of type I IFN can result in failure to contain the

infection (Li B. et al., 2020). However, the mechanisms

safeguarding the balance of type I IFN production remain

unclear. Upon viral infection, pattern recognition receptors

(PRRs) recognize viruses and trigger TBK1 activation via the
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key adaptors TRIF, MAVS, or STING, which then activates the

transcription factor IRF3 to induce type I IFN production

(O’Neill et al., 2013). Additionally, TRIM27 was reported to

interact with and ubiquitinate TBK1 to induce its proteasomal

degradation and thereby negatively regulate the production of

type I IFN(Zheng et al., 2015; Zheng et al., 2016; Cai et al., 2018).

Type I IFN can induce a decrease of miRNA-27a, which targets

TRIM27 and decreases its expression (Zheng et al., 2015; Zheng

et al., 2016; Cai et al., 2018). These interactions form a negative

feedback loop that tightly controls the balance of type I IFN

production. Notably, TRIM27 was also found to be induced by

hepatitis C virus (HCV) infection (Zheng et al., 2019). The

upregulation of TRIM27 can in turn promote the replication

of HCV by blocking the type I IFN response (Zheng et al., 2019).

At the same time, TRIM27 was found to inhibit the activation of

mast cells by interacting with PI3KC2β to induce its degradation
(Srivastava et al., 2012). Similarly, TRIM27 was also reported to

negatively regulate CD4+ T cells by interacting with PI3KC2β to

induce its degradation (Cai et al., 2011). However, TRIM27 was

reported to inhibit the survival of mycobacteria in macrophages

by enhancing innate immune responses to mycobacterial

infection (Wang et al., 2016). These studies indicate that

TRIM27 might play dual roles in the immune response by

regulating different pathways, such as IFN and AKT signaling.

TRIM27 in ischemia-reperfusion injury

Ischemia-reperfusion injury (IRI) is tissue damage that

occurs when blood supply returns after a period of ischemia

(Kalogeris et al., 2012; Zang et al., 2020). The absence of oxygen

and nutrients from blood during the ischemic period creates

conditions in which the restoration of circulation results in

inflammation and oxidative damage (Kalogeris et al., 2012).

TRIM27 was reported to be downregulated in liver tissue

from liver transplantation patients. Furthermore, TRIM27 was

found to attenuate liver ischemia/reperfusion injury in mice by

interacting with TAB2/3 to induce its degradation and inhibit

TAK1-JNK/p38 signaling (Chen et al., 2021). At the same time,

TRIM27 was found to attenuate cardiac ischemia-reperfusion

injury in mice by interacting with p53 and enhancing its

ubiquitination (Li Y. et al., 2021). In addition, TRIM27 was

reported to protect against acute kidney injury in mice by

reducing inflammation and apoptosis (Li X. K. et al., 2020).

TRIM27 in lupus nephritis

Lupus nephritis is one of the most common complications of

systemic lupus erythematosus, and can gradually lead to end-

stage renal disease (Lech and Anders, 2013; Almaani et al., 2017).

Destruction of the glomerular filtration barrier is the most typical

pathological feature of lupus nephritis (Lech and Anders, 2013).

TRIM27 was reported to be highly expressed in the glomerular

endothelial cells of patients with lupus nephritis, and

TRIM27 knockdown could attenuate glomerular endothelial

cell injury by regulating the FoxO1 signaling pathway (Liu

et al., 2021). At the same time, another study reported that

knockdown of TRIM27 could inhibit the proliferation of

mesangial cells in lupus nephritis via the FoxO1 pathway (Liu

et al., 2019). These findings indicate that TRIM27 contributes to

the progression of lupus nephritis via multiple effects.

TRIM27 in cardiac hypertrophy

The increase of myocyte size, as an adaptive response to the

overload of cardiac wall stress, is defined as cardiac hypertrophy

(Nakamura and Sadoshima, 2018; Zhu et al., 2019). In spite of

significant research interest, the exact molecular mechanisms of

cardiac hypertrophy are not clearly understood (Zhu et al., 2019).

Chen et al. (2022) reported that TRIM27 was upregulated in the

transverse aortic constriction (TAC) group compared to the

sham operation (Sham) group, and TRIM27 knockdown

could attenuate cardiac hypertrophy in vitro and in vivo.

Mechanistically, TRIM27 was found to activate Akt/mTOR

signaling by interacting with PTEN (Lee et al., 2013; Chen

et al., 2022). TRIM 27 therefore contributes to cardiac

hypertrophy by activating the PTEN/Akt/mTOR axis.

TRIM27 in Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative disorder

characterized by slowness of movement, muscle rigidity,

resting tremor, and postural instability (Kalia and Lang, 2015;

Tolosa et al., 2021). Pathologically, PD is characterized by the

death of dopaminergic neurons in the basal ganglia (Kalia and

Lang, 2015). TRIM27 was reported to be upregulated in PBMC

from PD patients compared to healthy controls, and Knockdown

of TRIM27 could protect dopaminergic neurons by inhibiting

apoptosis in vitro and in vivo (Liu et al., 2014). Taken together,

these findings indicate that TRIM27 might play a role in the

progression of PD.

TRIM27 in epilepsy

Epilepsy is a chronic neurological disorder, in which the

abnormal discharge of neurons leads to transient brain

dysfunction (Pitkanen et al., 2016; Thijs et al., 2019).

Glutamate-mediated neurotoxicity plays an important role in

epilepsy (Tobaben et al., 2011). Hao et al. (2021) reported that

TRIM27 was upregulated in patients, and glutamate treatment

could induce the upregulation of TRIM27 in HT22 cells. The

upregulated TRIM27 could in turn enhance glutamate-induced
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apoptosis and inflammation by interacting with PPARγ and

leading to its degradation (Hao et al., 2021). These findings

imply that TRIM27 might be involved in the progression of

epilepsy.

TRIM27 in psoriasis

Psoriasis is a chronic autoimmune disease of the skin and

joints, whose classical symptoms include salmon-pink plaques in

persons with white skin or grey plaques in persons with dark skin

(Boehncke and Schon, 2015; Griffiths et al., 2021). Miao et al.

reported that TRIM27 was upregulated in psoriatic skin, and

TRIM27 knockdown could inhibit the IL-6-induced proliferation

of HaCaT cells (Miao et al., 2020). Mechanistically, TRIM27 was

found to interact with PIAS3 and induce its degradation to block

IL-6/STAT3 signaling (Miao et al., 2020). This study indicates

that TRIM27 may be involved in the development of psoriasis.

TRIM27 in Crohn’s disease

Crohn’s disease is a type of inflammatory bowel disease

(IBD) that may affect any segment of the gastrointestinal tract

(Rimola et al., 2022). The clinical manifestations of this disease

are abdominal pain, diarrhea, intestinal obstruction,

accompanied by fever, nutritional disorders and other

extraintestinal manifestations (Liu D. et al., 2022).

Additionally, the polymorphisms of NOD2 (nucleotide-

binding oligomerization domain containing two) were found

to be with susceptibility to Crohn’s disease. NOD2 deficiency

could result in dysregulated immune responses to gut bacteria to

contribute to the progression of Crohn’s disease (Fritz et al.,

2011). Zurek et al. (2012) reported that TRIM27 was highly

expressed in Crohn’s disease patients. Additionally,

TRIM27 could interact with NOD2 and make it ubiquitinated

with K48-linked ubiquitin chains followed by proteasomal

degradation (Zurek et al., 2012). Accordingly, TRIM27 might

affect NOD2-mediated proinflammatory responses to promote

the progression of Crohn’s disease.

Conclusion and perspectives

In this paper, we systematically reviewed the roles of

TRIM27 in cancer and other human diseases, such as

ischemia-reperfusion injury, lupus nephritis and cardiac

hypertrophy (Liu et al., 2019; Li Y. et al., 2021; Chen et al.,

2022). In all the available studies on the roles of TRIM27 in

cancer, TRIM27 was reported to play an oncogenic role, with no

studies indicating a tumor suppressor role. By contrast, many

members of the TRIM family were found to exert dual roles in the

development of cancer (Hatakeyama, 2017; Jaworska et al., 2020).

For example, TRIM33 acts as a tumor enhancer in some cancers,

while playing a tumor suppressor role in other cancers (Yu et al.,

2019). At the same time, the mRNA level of TRIM27 was found

to be downregulated in cervical squamous cell carcinoma and

acute myeloid leukemia in the TCGA database (Tang et al., 2017).

Whether TRIM27 exerts a tumor suppressor role in these two

cancers needs further investigation.

TRIM27 has been reported to promote tumorigenesis via

multiple effects, such as promoting tumor proliferation and

metastasis, inducing chemoresistance, and inhibiting

autophagy (Liu et al., 2020; Yao et al., 2020; Yang et al.,

2022). However, there is a lack of studies investigating the

effect of TRIM27 on tumor immunity. TRIM27 was reported

to play vital roles in the innate immune response, such as

inhibiting the production of type I IFN and inhibiting the

activation of mast cells (Srivastava et al., 2012; Zheng et al.,

2016). Notably, the innate immune response plays an important

role in cancer immune escape (Vesely et al., 2011; Gajewski et al.,

2013). For example, NK cells can inhibit tumor proliferation by

directly killing tumor cells (Vesely et al., 2011). Hence, it is urgent

to explore the effects of TRIM27 on the tumor immune response,

as it might become a new immunotherapy target.
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