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Abstract

Gaucher disease (GD) is caused by deficiency of the lysosomal membrane enzyme gluco-

cerebrosidase (GCase) and the subsequent accumulation of its substrate, glucosylcera-

mide (GC). Mostly missense mutations of the glucocerebrosidase gene (GBA) cause

GCase misfolding and inhibition of proper lysosomal trafficking. The accumulated GC leads

to lysosomal dysfunction and impairs the autophagy pathway. GD types 2 and 3 (GD2-3), or

the neuronopathic forms, affect not only the Central Nervous System (CNS) but also have

severe systemic involvement and progressive bone disease. Enzyme replacement therapy

(ERT) successfully treats the hematologic manifestations; however, due to the lack of equal

distribution of the recombinant enzyme in different organs, it has no direct impact on the ner-

vous system and has minimal effect on bone involvement. Small molecules have the poten-

tial for better tissue distribution. Ambroxol (AMB) is a pharmacologic chaperone that

partially recovers the mutated GCase activity and crosses the blood-brain barrier. Eliglustat

(EGT) works by inhibiting UDP-glucosylceramide synthase, an enzyme that catalyzes GC

biosynthesis, reducing GC influx load into the lysosome. Substrate reduction therapy (SRT)

using EGT is associated with improvement in GD bone marrow burden score and bone min-

eral density parallel with the improvement in hematological parameters. We assessed the

effects of EGT and AMB on GCase activity and autophagy-lysosomal pathway (ALP) in pri-

mary cell lines derived from patients with GD2-3 and compared to cell lines from healthy

controls. We found that EGT, same as AMB, enhanced GCase activity in control cells and

that an individualized response, that varied with GBA mutations, was observed in cells from

patients with GD2-3. EGT and AMB enhanced the formation of lysosomal/late endosomal

compartments and improved autophagy, independent of GBA mutations. Both AMB and

EGT increased mitochondrial mass and density in GD2-3 fibroblasts, suggesting enhance-

ment of mitochondrial function by activating the mitochondrial membrane potential. These

results demonstrate that EGT and AMB, with different molecular mechanisms of action,

enhance GCase activity and improve autophagy-lysosome dynamics and mitochondrial

functions.
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Introduction

Gaucher disease (GD) (OMIM 23080, 231000, 231005), the most common lysosomal storage

disorder (LSD), is caused by pathologic GBA variants (OMIM 606463), resulting in the defi-

ciency of the lysosomal membrane enzyme glucocerebrosidase (GCase) (EC 3.2.1.45). The

GBA mutations lead to misfolding of GCase in the endoplasmic reticulum with the inhibition

of proper trafficking and targeting to the lysosomes, and as a result, the deficient enzymatic

activity and chronic accumulation of the substrate glucosylceramide (GC) in the lysosomes

[1]. The major phenotypic presentations of GD are based on whether the CNS is impacted or

not. GD type 1 is the non-neuropathic form, whereas types 2 and 3 (GD2 and GD3) are “neu-

ropathic” GD. GD3 phenotypes are very heterogeneous; however, patients can present with

horizontal ophthalmoplegia and varying neurological signs, such as progressive myoclonus,

cerebellar ataxia, cognitive changes, or dementia in some cases [2]. The majority of GBA mis-

sense variants in patients with GD3 include L444P (L483P) (77%) and D409H (D448H) (7%)

[3, 4]. Patients with L444P represent a phenotypically very diverse group with a range of sys-

temic disease severity and neurological involvement [4]. The unique presentation with cardiac

involvement, corneal clouding, and hydrocephalus is reported mainly in patients with homo-

zygous D409H variants. In GD3, the disease onset is before 2 years of age, and with neurologi-

cal symptoms in half of the cases. Psychomotor development is affected mostly. Seizures may

occur later or manifest as myoclonic epilepsy resistant to antiepileptic drugs. Severe spleno-

megaly is almost always present and is associated with thrombocytopenia in 60% of cases.

Growth retardation (30% of patients) may be the first sign, sometimes associated with

cachexia. Lung lesions are sometimes observed, a result of pulmonary infiltration by Gaucher

cells or sometimes due to recurrent aspiration [2]. GD type 2 (<5% GD cases) presents in

infants aged 3–6 months old with early, severe, and rapidly progressive neurological involve-

ment. Rigidity of the neck and trunk (opisthotonus), bulbar signs (particularly swallowing

abnormalities), oculomotor paralysis, unilateral or bilateral alternating strabismus, followed by

fixed strabismus are common presentations for the disease [2]. The mean survival age for GD2

without intervention is 11.7 months (range 2–25 months). Before the advent of ERT, children

with GD3 succumbed to complications such as portal hypertension and bleeding of esophageal

varices, with significantly reduced lifespans.

ERT is the standard of care in GD for the treatment of systemic symptoms, such as spleno-

megaly, hepatomegaly, thrombocytopenia, and low platelets [2, 5]. However, ERT is not effec-

tive in treating CNS pathology because of a lack of access through the Blood-Brain Barrier

(BBB). Other alternative therapy modes to access CNS are using small molecules that may

cross BBB, such as “new generation forms of SRT and pharmacologic chaperones (PCT) [6].

Glycosphingolipids (GSLs) are involved in a large number of cellular processes, including sig-

nal transduction, membrane trafficking, and the formation of cytoskeletal domains. GC is the

primary precursor of complex glycosphingolipids, and its synthesis and degradation are crucial

steps for GSL metabolism. GC is formed by UDP-glucosylceramide synthase (UGCG) in the

Golgi apparatus from its precursor ceramide (Fig 1). As an inhibitor of the cytoplasmic

enzyme UGCG, EGT is prescribed for type 1 GD patients [7, 8]. In clinical trials, EGT has

demonstrated significant efficacy for improving systemic disease manifestations, including

hepatosplenomegaly, hematologic manifestations, and bone involvement in subjects with GD

type 1 [7, 9]. However, EGT is not effective for treating GD’s neuropathic forms due to the

lack of ability to cross the BBB [3]. A new generation of UGCG inhibitor, venglustat (GZ/

SAR402671), could cross the BBB and is in trials for Gaucher, Fabry, and Tay-Sachs diseases

[3]. GD and GD-Parkinson mouse studies and cell models currently provide evidence that the

related compound (GZ667161) reduces GC’s level in the brain [10].
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Other therapy alternatives for GD using small molecules are enzyme-enhancement (EET)

or pharmacologic chaperone (PCT) therapies. PCT is based on the small molecules’ ability to

fold the misfolded mutant enzyme, deliver an enzyme to the lysosomes, and increase enzy-

matic activity [6]. The advantage of PCT is that the small molecules can cross the BBB and

could potentially treat the neurological symptoms. An open-label pilot study with ambroxol

(AMB) showed promising results in neuronopathic GD patients with N188S, G193W, F213I/

RecNciI, and D409H/IVS10-1G>A genotypes [11–13]. AMB demonstrated good tolerability

while enhancing GCase activity and improving neurological manifestations [14]. AMB inter-

acts with active and non-active sites of enzymes, explaining the mixed type of activation/inhi-

bition and pH-dependent activity [11, 15, 16]. Ambroxol stabilizes GCase, and demonstrates

inhibitory GCase activity at neutral pH and absence of inhibitory effect at the acidic pH of

lysosomes [11]. Different GBA mutations have different effects on protein folding, trafficking,

and enzymatic activity, and AMB demonstrates a mutation-dependent chaperoning profile

[11, 15, 17]. The in vitro response to AMB is rather “personalized” and differs even for siblings

[11]. In primary cell lines from patients with N370S/L444P, AMB shows a positive effect; how-

ever, in cells derived from patients with L444P/L444P, there is no uniform GCase activation

after AMB treatment [11, 15, 18]. In the present study, we investigate in vitro effects of EGT

and AMB on GCase enzymatic activity, the autophagy-lysosomal pathway, and mitochondrial

activity.

Materials and methods

Patients

The patient’s demographics and clinical characteristics are presented in Table 1. The diagnosis

of GD was confirmed by enzymatic activity and molecular analysis. As expected, among the

pathogenic variants, L444P (L483P) variant was highly prevalent in both homozygous (12/15)

and compound heterozygous states (3/15), including the recombinant alleles. Overall, eight

Fig 1. Glucosylceramide (GC) metabolism in Gaucher diseases. Ceramide, glucosylceramide shift between the Golgi apparatus and lysosomes. Ceramides, generated

in the ER, are transported to the Golgi apparatus, where UDP-glucosylceramide synthase (UGCG synthase) converts Cer to GC on the cytosolic side of the Golgi [19].

After, GC transport back into the ER. To transport ceramide to lysosome, GS, GCase, and saposin C (reaction facilitator) are embedded within intralysosomal

membrane where cleavage of lipid tail will occur [20]. Eliglustat inhibits UGCG synthase. Ambroxol increases GCase enzyme activity.

https://doi.org/10.1371/journal.pone.0247211.g001
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patients have missense L444P/L444P mutation, and among patients who have multiple com-

plex alleles, the L444P (L483P) variant was present in all seven of them. The clinical protocol

was approved by the ethics committees and data protection agencies at all participating sites

(Western Institutional Review Board, WIRB # 20131424). Written informed consent or assent

was obtained from patients or parents/guardians to collect samples and analyze the data.

Materials

Eliglustat hemitartrate (EGT) (MCE, MedChem Express, NJ, USA), ambroxol hydrochloride

(AMB) (Abcam, Cambridge, UK). Human anti-glucocerebrosidase (GBA) antibodies (Gen-

Tex), LAMP1, and LC3A/B antibodies (Cell signaling technology, Danvers, MA, USA).

NuPAGE SDS running buffer, bolt 8% Bis-Tris Plus gel, Novex ECL chemiluminescent sub-

strate reagents, sample reducing agents, media 106, low serum growth supplement kit, BCA

protein assay kit (Thermo Fisher Scientific, Rockford, IL, USA). Sodium taurocholate hydrate,

4-Methylumbelliferyl β-D-glucopyranoside (Sigma-Aldrich, St. Louis, MO, USA), normocin

(InvivoGen, San Diego, CA, USA).

Isolation and preparation of primary skin fibroblasts

Skin biopsies from GD patients were collected following standard procedures and an aseptic

technique, from the inner aspect of the upper arm in adults and older children or upper leg in

infants. Fibroblast cells were grown in complete M106 media (Life Technologies, Grand

Island, NY, USA) as previously described [15]. The primary fibroblasts after passage 5–6 were

grown and treated in Dulbecco’s modified Eagle’s media (DMEM) with 10% fetal bovine

serum (FBS). Cultures were terminated before passage 10.

Table 1. Demographics, clinical and molecular characteristics of subjects with GD.

# Gender Age Ethnicity GBA genotype GD Type Gcase residual activity

1 M 15 Caucasian L444P/L444P GD3 4.2%

2 M 8 Caucasian L444P/L444P GD3 3.8%

3 F 1 Caucasian L444P/L444P; A456P GD3 0.8%

4 M 8 Asian L444P/L444P GD3 3.5%

5 F 8 Caucasian L444P/L444P GD3 4.8%

6 M 1 Caucasian L444P/L444P; RecΔ55, Rec NciI GD2 0.66%

7 M 2 Caucasian L444P/L444P; R495P/R495P; A456P GD2 2.5%

8 F 4 Hispanic L444P/L444P D409H/A456P GD2 2.7%

9 M <1 African American L444P/D409H GD2-3 2%

10� F 40 Caucasian L444P/R463C GD3 4.7%

11� M 22 Other L444P/L444P GD3 10.4%

12� F 22 Hispanic L444P/L444P GD3 9.2%

13� M 21 Hispanic L444P/L444P GD3 9.4%

14� F 12 Hispanic L444P/L444P GD3 8.7%

15# M <1 Caucasian GBA-GBAp recombination intron1, L444P GD2 <1%

�: PBMC only

# Fig 3B and 3C.

Patogenic GBA variants:

L444P (c.1448T>G (p.Leu483Arg); protein change variants: L483P, L396P, L434P, L444P); RecΔ55 (c.1265_1319del); Rec NciI (c.14448C-1498C); D409H (c.1342G>C

(p.Asp448His); protein change variants: D448H, D361H, D3999H, D409H); R463C (c.1504C>T (p.Arg502Cys), protein change variants: R502C, R415C, R453C

R463C).

https://doi.org/10.1371/journal.pone.0247211.t001
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Isolation and purification of peripheral blood monocytes (PBMC)

PBMC were purified from blood samples from GD patients using Lymphoprep™ reagent and

SepMate™ tubes (Stemcell Technologies, Vancouver, Canada). Lymphoprep™ was added to the

lower compartment of the SepMate tube. Blood was mixed with PBS containing 2% fetal

bovine serum (FBS) in a 1:1 ratio and then layered on top of Lymphoprep™ following the man-

ufacturer’s protocol. PBMC cells were cultured in RPMI 1640 media with 5% FBS.

Differentiation of macrophages from PBMC

Freshly isolated PBMC are used for macrophage differentiation following the procedure

described below [15]. RPMI 1640 medium with 10% FBS was used to isolate, resuspend, and

culture PBMCs. For macrophage differentiation, the media RPMI 1640 was supplemented

with 10% FBS, 1% normocin, 2mM glutamine, 1% Na-pyruvate, 1% non-essential amino acids

(NEEA), and 50 ng/ml human recombinant M-CSF (ThermoFisher Scientific, Rockford, IL,

USA). After six days of PBMC culture, 100% by volume of fresh complete macrophage differ-

entiation media was added, and two days later, the media was replaced. On day ten, macro-

phages were treated with AMB and EGT at indicated time intervals and concentrations. In

GD, it is suggested that the macrophages have an activated status; in this study, some PBMC

differentiated into macrophages spontaneously. In these experiments, PBMC were collected

for analysis after treatment, and naturally differentiated macrophages were stained with DAL-

Green, LysoTracker Red, or MitoTracker Red CMXRos for further evaluation.

Protein isolation and western blot analysis

Whole-cell extracts (WCE) were prepared in radioimmunoprecipitation (RIPA) buffer. Pro-

tein concentrations were determined using the BCA protein assay kit (ThermoFisher Scien-

tific, Rockford, IL, USA). 30 μg of WCE were separated on mini protein TGX stain-free gel

and electroblotted using the PVDF transfer membrane (Bio-Rad, Hercules, CA, USA). The

ChemiDocTM MP imaging system (Bio-Rad, Hercules, CA, USA) was used to visualize and

quantitate optical density (IOD) for each band. The IODs of bands of interest were normalized

to the loading control, beta-actin, and the normalized value of the controls were set to 1 for

comparison between separate experiments.

Measurement of GCase activity

GCase enzymatic activity in cells was carried out using 4-methylumbelliferyl b-D-glucopyra-

noside. Released 4-methylumbelliferone was measured using a fluorescence plate reader (exci-

tation 360 nm and emission 460 nm) [21, 22]. The reaction was started by the addition of 5 or

10 μg of protein into substrates solution in 0.1 M citrated buffer, pH 5.2, supplemented with

sodium taurocholate (0.8% w/v). The reaction was terminated by adding 0.4 ml of 0.2 M gly-

cine sodium hydroxide buffer (pH 10.7).

Measurement of lysosome levels

The LysoTracker Red assay was used to follow the manufacturer’s protocol (LifeTechnology,

ThermoFisher, Rockford, IL, USA). LysoTracker Red (50 nM) was added to live cells in the

presence of AMB and EGT treatments and stained 30 min. Then, cells were stained with

Hoechst and washed 3 times with PBS before analysis. The red fluorescence of LysoTracker

was measured in triplicates using a SpectraMax M2 microplate reader with an excitation wave-

length: 577 mm; emission wavelength: 590 nm (Molecular Devices, Sunnyvale, CA, USA).
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Data was normalized to untreated cells. The resulting fluorescence was visualized by fluores-

cent microscopy (Evos, Hatfield, PA, USA).

Mitochondrial mass staining

According to the manufacture protocol, the MitoTracker Red CMXRos mitochondrial kit

(ThermoFisher Scientific) was used to quantify mitochondrial activity by measuring the mem-

brane potential. Nuclear Hoechst dye was used as an index of cell contents. Cells were stained

with a fluorescence probe for 30 min and then washed with PBS. MitoTracker Red CMXRos

signal was measured in triplicates using SpectraMax M2 microplate reader with excitation/

emission 577–590, or the fluorescence signal was visualized by fluorescent microscopy (Evos,

Hatfield, PA, USA).

Mitochondrial membrane potential assay

The mitochondrial membrane potential was determined using the JC-1 Mito-ID membrane

Potential Kit (Dojindo Molecular Technologies, Inc). In the energized inner membrane, the

mitochondria produced an orange fluorescence signal. If cells exhibit a shift from orange to

green fluorescence: mitochondrial function becomes compromised. After five days of treat-

ment with AMB and EGT, fibroblasts were stained with mito-ID membrane potential dye

solution in clear-bottom black 96-well tissue culture plates for 30 min. After incubation, cells

were washed three times with PBS, and the fluorescence signals were visualized by fluorescent

microscopy (Evos Digital microscope, Evos, Hatfield, PA, USA). Flow cytometry for JC-1 in

PBMC was perfomed using a BD Accuri C6 flow cytometer (BD Bioscience, San Jose, CA,

USA) according to Accuri cytometer protocol for JC-1 assay.

Mitochondrial computational analysis

2D image-based mitochondrial analysis and network characteristics were performed using

ImageJ. For network connectivity analysis, the "Skeleton 2D/3D" command was used to calcu-

late the number of branches and branch junctions in the skeletonized network [23]. The analy-

sis tags pixel/voxels in a skeleton image and counts junctions, triple and quadruple points, and

branches, and the program measured junction voxels and endpoints. The voxels are classified

as endpoint voxels (if they have less than two neighbors) and junction voxels (more than two

neighbors). The endpoint voxels are displayed in blue and junction voxels are displayed in pur-

ple. Briefly, fluorescence images of live cells were captured using 40x magnification with large

format 2048 X 2048 pixel with the same time exposure and brightness. Selected groups of 2–4

cells were first cropped from the original image to allow analysis on a cell-to-cell basis. The ini-

tial contrast of microscope images was enhanced, and residual background pixels were

removed following program algorithm recommendation. The parameters of contrast and

background were the same for all images.

Autophagy staining

DALGreen (Dojindo Molecular Technologies, Inc) was used for the detection of phagosome-

lysosome fusion. In several experiments, DALGreen was co-stained with a lysosomal marker,

LysoTracker Red. After DALGreen was stained, cells were washed with PBS three times and

stained with Hoechst 33342 dye as an index of the nucleus. The resulting fluorescence was

visualized by fluorescent microscopy (Evos, Hatfield, PA, USA).
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Glucocerebrosidase and LAMP1 immunofluorescence staining

Cells were grown on coverslips and were incubated with 10 μM of AMB and 10 μM of EGT for

five days. Cells were then fixed with cold methanol for 5 minutes and washed three times with

cold PBS. After blocking with 3% BSA and 0.3% Triton X-100 in PBS for 1 h, primary antibod-

ies GBA (β-glucosidase (A-16, sc-100544, Santa Cruz Biotechnology, Inc, CA, USA) and

LAMP1 (D401S, Cell Signalling Technology, MA, USA) were added at a 1:500 dilution for ON

+4C0. The cells were stained with secondary antibodies labeled with Alexa-Fluor 488 and

Alexa-Fluor 555 (ThermoFisher Scientific, Rockford, IL, USA). Cells were incubated with

nuclear-DAPI staining. Images were obtained using the EvosR Digital microscope (Evos, Hat-

field, PA, USA).

Cell viability and cytotoxicity assay

Cell viability was evaluated colorimetrically by measuring the dehydrogenase activity with

NADH released in the media using cell counting kit-8 (CCK-8, Dojindo Molecular Technolo-

gies, Rockville, MD, USA) according to the manufacturer’s instruction. In brief, cells were

seeded on 96-well plates at a density of 50% confluence. Then, the cells were treated with an

increasing concentration of AMB and EGT or vehicle control (0.1% DMSO) for 24, 48, 72 h,

and 5 days. CCK-8 was added, and absorbance (OD) at 450 nm was detected using the micro-

plate reader (Molecular Devices, Sunnyvale, CA, USA). The IODs were normalized to the

untreated control, and the normalized value of the controls was set to 100%.

ATP assay

The cell titer-Glo luminescent assay was used to measure the ATP levels (Promega, Madison,

WI, USA). The fibroblasts were plated in 96-well white plates with clear bottoms. After AMB

and EGT treatments, plates were divided, the half plate was used for CCK-8 assay, and the

other half of the plate was used to measure ATP. 100 μl of CellTiter-Glo reagent was added

directly to the samples, and after 15 min incubation, cells were analyzed by measuring biolu-

minescence signal in a Genini microplate reader (Molecular Device, San Jose, CA). Samples

were run in triplicates.

LDH release assay

To assess the potential cytotoxicity of the AMB and EGT, the lactate dehydrogenase (LDH)

release assay was performed. Control and GD3 fibroblasts were treated with increased concen-

tration of AMB and EGT for 5 days, and supernatants were collected to a new white opaque

96-well plate. After adding the LDH reaction solution (LDH-GloTM Cytotoxicity Assay, Pro-

mega, Madison, WI), the plate was incubated for 30 min. The luminescence signal was read

using a Gemini microplate reader (Molecular Device, San Jose, CA).

Immunofluorescence microscopy analysis

Interactive analysis ImageJ plugins (NIH, Bethesda, MD, USA) with the option of “Color

Inspector 3D” were used to analyze the colocalization projection of GBA and LAMP1. Pixels

with red intensity values (GBA) lay on the R (red) axis, and pixels with green intensity values

(LAMP1) lay on the G (green) axis. The areas of colocalization GBA and LAMP1 are seen in

yellow. Pixels with blue intensity values (nucleus) lay on the B (blue) axis. The 3D plot reveals

colocalized red and green pixels are located along the diagonal (yellow color), while those with

no colocalization occupy left (GBA) or right (LAMP1) portions.
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Statistical analysis

Statistical analyses were performed using Student’s t-test with 2-tailed distribution and 2-sam-

ple equal variance or 1-way ANOVA followed by Student-Newman-Keuls using GraphPad

Prism (GraphPad, San Diego, CA, USA).

Results

EGT, similar to AMB, induces GCase activity

As a GCase chaperone, AMB was demonstrated to increase GCase in cells with N370S/N370S

or L444P/N370S GBA mutations. However, in cell lines from GD2 or G3 patients with L444P/

L444P or L444P in combination with other GBA variants, the GCase activity was not uni-

formly enhanced [11, 15, 24]. The effect of EGT on GCase activity was never thoroughly inves-

tigated. Thus, EGT and AMB’s effect on GCase enzyme activity was compared to primary

fibroblasts derived from GD2 and GD3 patients with different GBA mutations (Table 1). Con-

trol or GD2-3 fibroblast lines were treated with increasing concentrations of AMB and EGT

for 5 days, and enzyme activity was measured. EGT increased GCase activity in control fibro-

blasts in a concentration-dependent manner, similar to AMB (Fig 2A).

In cells derived from patients with L444P/L444P, there was no uniform GCase activation

after AMB and EGT treatments (Fig 2A). AMB increased GCase activity in P1 and P2 fibro-

blasts, and EGT increased GCase activity in P1 fibroblast in a concentration-dependent man-

ner (Fig 2A). P3 fibroblasts increased GCase activity in the presence of 100 μM of AMB only.

In P2 fibroblasts, GCase activity increased in the presence of 10 μM of EGT, and in P5, there

was increased enzymatic activity in the presence of 1 μM of EGT. AMB and EGT did not affect

GCase activity in P4 fibroblasts (Fig 2A). Overall, in 3 out of 5 cell lines, there was an elevation

of GCase activity in the presence of AMB and EGT (Fig 2A).

GD2 fibroblasts demonstrated a “personalized” response to AMB and EGT treatments (Fig

2B). In P6 and P9 fibroblasts with L444P/L444P; RecΔ55, Rec NciI, and L444P/D409H GBA

variations, there was increased enzymatic activity in the presence of AMB and EGT in a con-

centration-dependent manner (Fig 2B). In P7 fibroblasts (L444P/L444P; R495P/R495P;

A456P), GCase activity increased in the presence of 10 μM of AMB and 1 μM of EGT. Only

1 μM of EGT increased GCase in P8 fibroblasts with L444P/L444P; D409H; A456P GBA varia-

tions (Fig 2B). In absolute terms, the individual levels of GCase in AMB and EGT treated GC

cells were still low compared with controls (Fig 2C).

PBMC was collected from five GD3 patients to examine if EGT induced GCase in PBMCs

and macrophages (S1 Fig). EGT, as well as AMB, increased GCase activity in controls and

GD3 PBMC and macrophages except for P13 GD3 cells (S1A and S1B Fig).

Both EGT and AMB improve lysosomal functions

AMB accelerates the folding and trafficking of GCase to lysosomes and restores lysosomal

functions [15, 24, 25]. To investigate if EGT mediates the trafficking of GCase to lysosomes,

control fibroblasts were treated with both compounds. Staining with anti-GBA (red) and anti-

LAMP1 (green) antibodies confirmed that EGT and AMB induce lysosomal localization of

GCase in WT and GD2 fibroblasts (Fig 3A and 3B). Color Inspector 3D analysis showed full

co-localization GBA with the lysosomes in the presence of AMB and increasing GBA-LAMP1

co-localization after EGT treatment in GD2 fibroblasts (Fig 3C). Then, to investigate lysosomal

biogenesis, we compared the effects of EGT and AMB on LAMP1 levels. Western blots showed

a significant increase in LAMP1levels in fibroblasts derived from patients with L444P/L444P

or L444P/L444P;D409H;A456P GBA mutations in response to AMB and EGT treatments.
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Furthermore, AMB but not EGT increased LAMP1 levels in a concentration-dependent fash-

ion (Fig 3D).

The LysoTracker Red, an acid-dependent dye, has been used for labeling lysosomal/late

endosomal compartments in live cells. Fibroblasts and PBMC were treated with EGT and

AMB for five days. Upon treatment with 10, 100 μM of AMB and 1, 10 μM of EGT, the num-

ber of acidic vesicles increased in control, GD2, and GD3 fibroblasts (Fig 4). Furthermore, an

increase in the LysoTracker Red intensity also was observed in control and GD3 PBMC in the

presence of EGT and AMB (S2 Fig). Altogether, the data suggests that activation of lysosomal

function is a universal response to EGT and AMB treatments.

EGT and AMB improve autophagy dynamics independent of GCase

activation

The accumulation of GC in the lysosomes is suggested to impair lysosomal functions and

inhibit autophagic flux [26, 27]. Autophagy and lysosomal staining with DALGreen and Lyso-

Tracker Red is used to compare EGT and AMB effects on autophagy-lysosomal function.

Fig 2. Assessing GCase activity in primary fibroblasts treated with AMB and EGT. A. Fibroblasts derived from healthy controls and GD3 patients with the genotypes

L444P/L444P and L444P/L444P/A456P were cultured for 5 days in the presence of increasing concentrations of AMB or EGT. Relative GCase enzyme activity was

estimated as a percentage towards untreated control. Each bar represents the average +/- STDEV. � p<0.05 compared with an untreated group. B. Fibroblasts derived

from GD2 with different GBA mutations, as indicated, were treated for 5 days in the presence of AMB and EGT. Relative GCase enzyme activity was estimated as a

percentage towards untreated control. Each bar represents the average +/- STDEV. � p<0.05 compared with an untreated group. C. Comparing GCase enzyme activity

estimated as nmol/μg/hr in healthy control fibroblasts and GD3 fibroblasts.

https://doi.org/10.1371/journal.pone.0247211.g002
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Fig 3. AMB and EGT induce lysosomal trafficking and LAMP-1 level in primary fibroblasts. A-B. Fluorescence

microscopy images of control fibroblast (A) and GD2 fibroblast (B). The cells were treated with 10 μM AMB and

10 μM EGT for five days. Each set of three side-by-side images shows anti-GBA (red), anti-LAMP1 (green color)

antibodies, and merged images. The yellow color indicates colocalization of GBA and LAMP1 in the lysosome. (C) The

interactive 3D color inspector plots displayed a three-dimensional graph of pixel distribution of images of GD2

fibroblasts. Nucleus (blue), GBA (red) and LAMP1 (green) colocalization. D. Top row represents the western blot of

LAMP1 in fibroblasts derived from GD3 patients. Actin is used as the loading control. P1, P2, P4, and P5 (n = 4). �

p<0.05 compared with an untreated group. E. The top: western blot of LAMP1 in GD2 fibroblasts derived from

patient 8 with L444P/L444P;D409H;A456P genotype. The bottom: quantification of the relative level of LAMP1/actin

from P8. Each bar represents the average +/- STDEV from three independent experiments. � p<0.05 compared with

an untreated group.

https://doi.org/10.1371/journal.pone.0247211.g003
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DALGreen autophagy detection kit is selective for monitoring late-phase autophagy and auto-

lysosomes [28]. The rate of autolysosome staining in control, GD3 and GD2 fibroblasts were

increased after treatment with 1, 10 μM of EGT and 10, 100 μM of AMB (Fig 4A and 4B).

Merged images confirm the autophagosomes’ activation and fusion with lysosomes in GD2

fibroblasts (Fig 4B). Similar to fibroblasts, the autolysosomes staining in PBMC was signifi-

cantly increased in control and GD3 cells after five days of treatment with 10 μM of EGT and

100 μM of AMB (S2 Fig). Merged analysis of autophagosomes with LysoTracker confirmed

autophagosome activation and fusion with lysosomes (S2 Fig). Autophagy flux marker LC3I-II

analysis showed a significantly increased level of LC3-II in GD3 fibroblasts and GD2 fibro-

blasts with L444P/L444P; D409H; A456P GBA mutations after EGT and AMB treatments in a

concentration-dependent manner (Fig 4D–4G). Interestingly, AMB increased autophagy/lyso-

somal function in P5 fibroblasts without enhancing GCase activity (Fig 4E and 4G). In sum-

mary, AMB and EGT improved autophagy-lysosomal dynamics in primary cells derived from

GD2 and GD3 patients.

EGT and AMB inhibit cell proliferation

To evaluate cytotoxic effects of EGT and AMB, control and GD fibroblasts were treated in the

presence of various concentrations of EGT and AMB, and then the cell proliferation and

Fig 4. EGT and AMB improve autophagy and lysosomal dynamics. A. The lysosome (red) and autophagy (green)

fluorescent staining in live control and GD3 (P5) fibroblasts with L444P/L444P GBA mutation after AMB and EGT

treatments for five days. B. Lysosome and autophagy colocalization analysis in GD2 fibroblasts after treatment with

AMB and EGT for five days. C. Quantification of fluorescence intensity of lysosomes. The signal intensity in untreated

cells was set at 100%. The graph indicates the relative intensity value of fluorescence signal related to LysoTracker in

control fibroblasts, GD3 fibroblasts with L444P/L444P, and GD2 fibroblasts. Values are expressed as

average ± STDEV. D, E, and F. Following AMB and EGT treatments, representative western blots showing LC3-I/

LC3-II protein expression level in GD3 fibroblast derived from patients: P1 (D), P5 (E), and GD2 patient P8 (F). G.

Quantification of the relative level of LC3-II to LC3-I. Each bar represents the average +/- SEM. � p<0.05 compared

with an untreated group. Student T-test, 2 tail, 2 type.

https://doi.org/10.1371/journal.pone.0247211.g004
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viability assays were done. The number of viable cells was significantly decreased in control

and GD2-3 fibroblasts in a concentration-dependent manner in the presence of both AMB

and EGT (Fig 5A and 5B). Analysis of individual cell lines confirmed that the highest concen-

tration of AMB and EGT decreased cell viability in GD fibroblasts derived from patients P5,

P6, P7, and P9 (S3 Fig). Moreover, time course treatment verified that the highest concentra-

tion of AMB and EGT decreased the number of cells after 24 h treatment (S4 Fig), possibly

due to cell proliferation inhibition. Then, we tested the response control, GD2, and GD3 fibro-

blasts to AMB and EGT exposure by measuring the intracellular ATP level. ATP levels signifi-

cantly decreased in all cell lines in a dose-dependent manner (Fig 5 and S3 Fig). The ATP/cell

viability ratio was analyzed to assess the reason for ATP inhibition: either due to reducing the

number of cells or alteration of mitochondrial function. The ATP/cell viability ratio was

increased in control fibroblasts after treatment with 10, 100 μM of AMB, and 1, 10 μM of EGT

(Fig 5A). In GD 2–3 cells, 10 μM of AMB and 1 μM of EGT increased ATP/cell viability ratio

(Fig 5B). Analysis of individual GD cell lines verified elevation of ATP/cell viability ratio in

AMB and EGT treated fibroblasts: P5, P6, and P9 (S3 Fig). AMB, not EGT, displayed the eleva-

tion of ATP/cell viability ratio in GD2 fibroblasts derived from patient 7 (S3D Fig). The release

of the LDH enzyme in media suggests the loss of membrane integrity, the active form of apo-

ptosis or necrosis. The cytotoxic effect of AMB and EGT on control and GD3 fibroblasts,

which were treated for five days, were analyzed by LDH assay. The results demonstrated no

increase in the level of LDH release in treated cells (S5 Fig). In summary, CCK-8, ATP, and

LDH results suggest that EGT and AMB inhibit cell proliferation and trigger mitochondrial

energy metabolism in healthy control and GD2-3 cells.

EGT and AMB enhance mitochondrial metabolism

Because both EGT and AMB increased ATP levels in fibroblasts, mitochondrial function was

further assessed. To visually detect mitochondrial activity in live cells, we used a cell-permeable

fluorescent dye, MitoTracker Red. The visual representation of mitochondrial mass and

Fig 5. Assessment of cell viability and metabolic status in fibroblasts. A. Control (WT) fibroblasts were treated with 1,

10 or 100 μM of AMB and 0.1, 1 or 10 μM of EGT for 5 days and were submitted to the CCK-8 cell viability assay and ATP

content. The obtain cell counting assay, CCK-8, and ATP results were normalized to the untreated cells. Additionally, the

ratio ATP/CCK-8 (cell viability) was estimated. Values are expressed as average ±SEM, n = 3. � p<0.05 compared with an

untreated group. B. Fibroblasts derived from three GD2 patients, P6 with L444P/L444P;RecΔ55;RecNCiI, P7 with L444P/

L444P;R495P/R495P;A456P GBA variations, P9 with L444P/D409H, and one GD3 patient with L444P/L444P mutation,

(P5) were treated with 1, 10, 100 μM of AMB and 0.1, 1,10 μM of EGT for 5 days. The CCK-8 cell viability assay and ATP

content were analyzed. The obtained cell counting assay, CCK-8, and ATP results were normalized in relationship to the

untreated cells. ATP/CCK-8 (cell viability) ratio was estimated. Values are expressed as average ±SEM, n = 4. � p<0.05

compared with an untreated group.

https://doi.org/10.1371/journal.pone.0247211.g005
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quantitative analysis demonstrated a significant increase in mitochondrial activity in control

(Fig 6A and 6B) and GD2-3 fibroblasts (Fig 6C and 6D) after both treatments in a concentra-

tion-dependent manner. Fig 6E description. We then analyzed the mitochondrial density

using the skeleton algorithm [29, 30]. As shown in Fig 7, the analysis of the 2D images revealed

a significant difference in mitochondrial density between untreated and AMB/EGT treated

cells. Consistent with increased mitochondrial density, the number of junction voxels and end-

point voxels were also increased in cells in the presence of AMB and EGT (Fig 7B).

The mitochondrial membrane potential (Δm) is generated by proton pumps (Complexes I,

III, and IV), and is an essential component of the ATP process during oxidative phosphoryla-

tion. Normally, the levels of ATP and ΔCm in the cell are kept stable. However, a decrease or

rise of ΔCm may induce apoptosis, which can be observed in various disease entities [31].

Therefore, we measured Δm using JC-1 dye in GD3 fibroblast and PBMC after treatment with

1, 10, 100 μM of AMB and 0.1, 1 and 10 μM of EGT for 5 days (Fig 8A and 8B). Healthy mito-

chondria have high Δm uptake dye and emit red fluorescence at 590 nm, damaged mitochon-

dria with low Δm emit green fluorescence. JC-1 assay showed that AMB and EGT treatments

increased red fluorescence intensity compared with untreated groups indicating activation of

hyperpolarization of mitochondria (Fig 8A and 8B, S6A Fig). Flow cytometry analysis con-

firmed that untreated PBMC stained with JC-1 represented two distinct populations of cells

with high JC-1 aggregates (with two subpopulations: intermediate ΔC P1 and high ΔC P2) and

low JC-1 aggregates (low ΔC P3 and intermediate ΔC P4 subpopulations) (S6 Fig). Following

Fig 6. MitoTracker deep red staining in AMB and EGT treated fibroblasts. (A) The mitochondrial visualization in live

control (WT) fibroblasts with AMB and EGT treatment for five days. Scale bar represents 400 μm. (B) Quantification of

fluorescent intensities of mitochondria. The signal intensity in untreated cells was set at 100%. The graph indicates the

relative intensity value of the fluorescence signal related to MitoTracker Red in control fibroblasts. Values are expressed as

average ±STDEV. (C) The mitochondrial visualization in GD fibroblasts with AMB and EGT treatment for five days. Scale

bar represents 100 μm. (D) Quantification of fluorescent intensities of mitochondria in GD cells. The signal intensity in

untreated cells was set at 100%. Values are expressed as average ±STDEV. � p<0.05 compared with an untreated group.

(E) The mitochondrial visualization in live GD3 fibroblasts. Representative images were assessed in regards to the degree

of mitochondrial branching.

https://doi.org/10.1371/journal.pone.0247211.g006
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AMB and EGT treatments, there were more cells with an increased ΔC (S6A Fig) and a shift to

P2 (56.2% untreated versus 64.7% and 61.2% AMB and EGT respectively) or P4 population

(6.4% untreated versus 19.7% and 11.5% AMB and EGT respectively) (S6B Fig). 100 μM of

AMB treatment increased green and red fluorescence intensity signal, especially in PBMC, indi-

cating the presence of both cytoplasmic JC-1 monomer and mitochondrial J-aggregates in cells

(Fig 8 and S6 Fig). The higher the ΔCm, the higher the energy capacity of the inner mitochon-

drial membrane, thus increasing ATP synthesis. However, the change in inner membrane ion

leaks can compromise ΔCm and potentially be harmful to the mitochondria [31, 32].

Discussion

Currently, there is no available therapy that can prevent, slow, or halt the neurodegenerative

process in GD. However, small molecules that can cross the intact BBB and enhance GCase

Fig 7. The skeleton algorithm identifies mitochondrial density in sample images from cells. (A) Post-processed images of living

mitochondria stained with MitoTracker. Control fibroblasts were treated with AMB and EGT for five days. Two-tone color (blue

turn to pink) represents the intensity of density. (B) Results of the corresponding mitochondrial assessment using skeleton 2D/3D

analysis.

https://doi.org/10.1371/journal.pone.0247211.g007
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[33] or inhibit GC accumulation may overcome the limitations of the standard therapeutic

approach [34]. Two oral small molecule therapies, SRT and chaperone therapy, are designed

to lower the accumulated GC in lysosomes with different mechanisms. In the chaperone ther-

apy strategy, mutated GCase is activated, whereas in the SRT approach GC production is pri-

marily reduced by the inhibition of UGCG synthase. Our results show that the UGCG

inhibitor (EGT) and the pharmacologic chaperone (AMB) increase the residual enzymatic

activity in primary cell lines from GD2 patients with L444P/L444P;RecΔ55;RecNCiI, and

L444P/D409H mutations. However, AMB, but not EGT, increased GCase activity in cells with

L444P/L444P;R495P/R495P;A456P mutations. Similar to AMB, EGT did not change the

GCase activity in cells with L444P/L444P;D409H;A456P GBA mutation. Our data fit previous

reports suggesting that the AMB chaperone activity may not simply depend on the type of

GBA mutation but seems to be individual to a given patient [11, 15, 18]. Other factors that can

be involved in AMB pharmacodynamics may hypothetically surge its efficiency; for example,

an increase SapC or LIMP2 levels can also stimulate AMB-induced GCase activity [25].

Fig 8. The effects of EGT and AMB on mitochondrial membrane potential in GD. Fibroblasts (A) and PBMC (B) were treated with

increasing concentrations of AMB or EGT for five days, then were stained with Mito-ID Membrane Potential reagent and visualized by

fluorescence microscopy. Green represents mitochondria with low membrane potential. Highly polarized mitochondria exhibit red color.

https://doi.org/10.1371/journal.pone.0247211.g008
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The cellular pathology in GD starts within the lysosome due to chronic substrate accumula-

tion. GC, as an integral part of glycosphingolipid metabolism, is involved in cell signaling

transduction, membrane trafficking, and cytoskeletal processes [35]. Mutant GCase is recog-

nized in cells as a misfolded protein, and instead of being trafficked to the lysosomes, it gets re-

translocated to the cytoplasm, where it is degraded via the ubiquitin-proteasome system [18].

Several studies and our results confirm that AMB increases GCase trafficking to the lysosome

and rescues the misfolded enzyme from degradation in GD macrophages and fibroblasts [16,

18, 36]. However, little is known about the effects of EGT on the trafficking and activity of

GCase, aside from the fact that EGT did not inhibit enzyme activity [37]. Computational

molecular docking analysis showed that, unlike AMB, EGT did not exhibit strong binding

affinity with the mutant N370S and L444P GCase protein. However, EGT demonstrated some

intermolecular hydrogen bonds between protein molecules and chaperone. The biochemical

characteristic of EGT makes it less likely that it is a lysosomal GCase activator and thus may

act as a secondary effector or a chemical chaperone. Here, we report that EGT increased

GCase activity in control, GD2, and GD3 cells. Based on data demonstrating that EGT

enhanced GCase transport to the lysosomes, we suggest that improving trafficking and lyso-

somal pathway in the presence of EGT may explain how GCase may retain some level of func-

tionality by escaping the cell quality control mechanism. This data further supports our

hypothesis that the inhibition of the first step of glycosphingolipid synthesis activates cellular

trafficking.

Dysfunctional lysosomes impair autophagy by blocking autophagic flux in GD [26, 27, 38]

as demonstrated in multiple GD model systems, including GBA mouse models, GBA-/- flies,

patient fibroblasts, PBMC, and iPSC- neuronal model with GCase or saposin C deficiency

[39–44]. Besides the EGT inhibitory activity and the chaperone activity of AMB, our results

reveal that both molecules significantly induce autophagic flux, autophagosome-lysosomal

fusion, and increased levels of acidic lysosomes in cells derived from GD2 and GD3 patients.

As opposed to GBA variant dependent chaperone activity, the activation of autophagy-lyso-

somal processes in the presence of AMB and EGT is irrespective of GBA variants. Several stud-

ies have shown that AMB enhances lysosomal function in cellular models of Parkinson’s

disease and reduces alpha-synuclein build-up, improving neuronal functions [24, 25, 44].

Moreover, AMB triggers lysosomal exocytosis [45]. Similarly, EGT inhibits alpha-synuclein

and stimulates autophagy flux in neurons by suppressing AKT-mTOR signaling in neurons

[46]. Pharmacological induction of ALP can be a useful mechanism to promote GC clearance

and protect cells against secondary toxic effects. The induction of autophagy and reversal of

lysosomal dysfunction may reduce neuronal cell death and potentially slow down neurologic

disease progression in patients with GD2-3 [47, 48].

AMB and EGT at higher concentrations cause inhibition of cell proliferation in GD2 and

GD3 fibroblasts. The highest dose of AMB and EGT yielded a cytotoxic effect on GD cells. Pre-

vious in vitro studies indicated that 60 μM of AMB has a deleterious effect on wild-type mouse

embryonic primary cortical neurons after 5 days of treatment [44], while the cause of

decreased cell viability was not investigated. Other studies demonstrated that AMB did not

cause cell death but disturbed mitochondrial membrane permeability [44]. EGT was shown to

decrease the frequency of B cell malignancy in mice by the inhibition of UGCG, which also

slows the cell proliferation in liver cells [49, 50].

Severe impairment of autophagy in GD2-3 leads to inhibition of mitophagy and mitochon-

drial metabolism [51], whereas suppression of autophagy and mitophagy in neural cells is asso-

ciated with progression of neurodegeneration [52]. Many studies have explored mitophagy

and energy metabolism in GD2 and GD3 models [26, 53]. However, only a few studies demon-

strated that AMB changed the mitochondrial content in mouse neurons [44, 54]. The results
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of the cell viability assay indicate that both AMB and EGT induce total ATP production. In

GD2-3 fibroblasts, the activation of mitochondria by AMB and EGT demonstrated by an

increase in mitochondrial mass and density, and activation of mitochondrial membrane

potential indicate that there are similarities in the cellular response to AMB and EGT.

Considering that animal and cell models to study genetic diseases that impact the CNS

mostly yield limited results that could not be replicated clinically, primary fibroblasts or

PBMC derived from patients are available choices to examine the effects of drugs at the cellular

level. Additionally, in vitro cell-based assays with cells derived from GD patients may provide

data to help assess the efficacy of ambroxol as a chaperone or lysosome stabilizer [15]. Fibro-

blasts have been traditionally used to study cellular pathology of lysosomal storage disorders,

neurodegenerative diseases mitochondrial dysfunction, and autophagy/lysosomal activation

[55–57]. However, the main drawback of the primary fibroblast and PBMC is that they are dif-

ferent than neuronal cells in terms of proliferation rate and different sensitivities to pharmaco-

logical treatments.

Conclusion

This study provides evidence towards enhancing our understanding of the cellular mecha-

nisms of GCase chaperone and GC substrate reduction therapies in GD. While substrate syn-

thesis inhibition and pharmacologic chaperone therapies have different modes of action, their

downstream effects both enhance GCase activity and improve lysosomal and mitochondrial

functions. Our data further supports the proposition that AMB can be used as chaperone ther-

apy for the neuronopathic forms of GD in patients with a positive response to AMB. Thus, the

primary cells derived from patients can be considered for evaluating GCase activity and clini-

cal validation of AMB and EGT.

Supporting information

S1 Fig. Assessment of AMB and EGT activity in PBMC and macrophages. A. PBMC derived

from healthy controls (n = 5) and GD3 patients with genotypes L444P/L444P and L444P/

R502C were cultured for 5 days in the presence of 100μM AMB and 10 μM EGT. Relative

GCase activity was estimated as a fold change towards untreated control. Each bar represents

the average +/- STDEV. � p<0.05 compared with an untreated group. B. PBMC and macro-

phages derived from three GD3 patients with the genotype L444P/L444P, as indicated in the

figure, were treated for 5 days in the presence of AMB and EGT. Relative GCase activity was

estimated as fold change towards untreated control. Each bar represents the average +/-

STDEV. � p<0.05 compared with an untreated group.

(TIF)

S2 Fig. EGT and AMB increase autophagosome-lysosome fusion in PBMC. Autophago-

some (green, DALGreen) and lysosome (red, LysoTracker) colocalization analysis in PBMC

derived from healthy control and GD3 patients (P12, P13, and P14) with the genotype L444P/

L444P.

(TIF)

S3 Fig. Cell viability and metabolic status in individual GD2 and GD3 fibroblast cell lines.

A. P5 fibroblasts from patients with L444P/L444P were treated with 1, 10, 100 μM of AMB and

0.1, 1,10 μM of EGT for 5 days. The CCK-8 cell viability assay, ATP content, and ATP/CCK-8

(cell viability) ratio were analyzed. The cell counting assay, CCK-8, and ATP results were nor-

malized in relationship to the untreated cells. B. P6 fibroblasts with L444P/L444P;RecΔ55;Rec

NCiI were treated with 1, 10, 100 μM of AMB and 0.1, 1,10 μM of EGT for 5 days. The CCK-8
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cell viability assay, ATP content, and ATP/CCK-8 (cell viability) ratio were analyzed. The cell

counting assay, CCK-8, and ATP results were normalized to the untreated cells. C. P7 fibro-

blasts derived from a patient with L444P/L444P;R495P/R495P;A456P mutation were treated

with 1, 10, 100 μM of AMB and 0.1, 1,10 μM of EGT for 5 days. The CCK-8 cell viability assay,

ATP content, and ATP/CCK-8 ratio were analyzed. The cell counting assay, CCK-8, and ATP

results were normalized to the untreated cells. D. P9 fibroblasts with L444P/D409H were

treated with 1, 10, 100 μM of AMB and 0.1, 1,10 μM of EGT for 5 days. The CCK-8 assay, ATP

content, and ATP/CCK-8 ratio were analyzed. The results were normalized to the untreated

cells. Values are expressed as average ± SEM. � p<0.05 compared with an untreated group.

(TIF)

S4 Fig. Time course of cell viability in individual GD2 and GD3 fibroblast cell lines. A. P5

fibroblasts derived from patient(s) with the GBA genotype L444P/L444P were treated with

AMB and EGT for 24, 48, 72 h, and 5 days. The CCK-8 was analyzed, and results were normal-

ized to the untreated cells. B. P6 fibroblasts were treated with AMB and EGT for 24, 48, 72 h,

and 5 days. The CCK-8 assay was measured, and results were normalized to the untreated

cells. C. P7 fibroblasts were treated with AMB and EGT for 24, 48, 72 h, and 5 days. The CCK-

8 assay was measured, and results were normalized to the untreated cells. Values are expressed

as average ±SEM. � p<0.05 compared with an untreated group.

(TIF)

S5 Fig. Lactate dehydrogenase (LDH) assay. Control and GD3 fibroblasts with L444P/L444P

were treated with AMB EGT for 5 days. The LDH assay was analyzed, and results were nor-

malized to the untreated cells. The data represents +/- SEM.

(TIF)

S6 Fig. Effect of the AMB and EGT treatments on mitochondrial membrane potential

(Δψ). PBMC derived from GD3 patient were treated with AMB and EGT for 5 days. The JC-1

assay was measured Δψ using Flow cytometry. A. Histogram of JC-1 red (left) and green

(right) fluorescence intensity of mitochondrial polarization. AMB and EGT induce JC-1 aggre-

gations, as is shown by a shift towards increasing red fluorescent signal. B. Scatterplot shows

the identification of cells with polarized (light green) and depolarized (red) mitochondria in

GD3 samples. Double-stained cells are present in areas P1, P2, and P4. Cells with preferential

green staining are found in area P3.

(TIF)

S7 Fig. Original western blots from Figs 3D, 3E, 4D, 4E and 4F.

(TIF)
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