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Nine aerobic cellulolytic bacterial cultures were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms
and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). The objectives of this study were to characterize
the cellulolytic bacteria and to determine the optimum moisture ratio required for solid state fermentation (SSF) of palm kernel
cake (PKC). The bacteria cultures were grown on reconstituted nutrient broth, incubated at 30∘C and agitated at 200 rpm.
Carboxymethyl cellulase, xylanase, and mannanase activities were determined using different substrates and after SSF of PKC.
The SSF was conducted for 4 and 7 days with inoculum size of 10% (v/w) on different PKC concentration-to-moisture ratios: 1 : 0.2,
1 : 0.3, 1 : 0.4, and 1 : 0.5. Results showed that Bacillus amyloliquefaciens 1067DSMZ, Bacillus megaterium 9885ATCC, Paenibacillus
curdlanolyticus 10248DSMZ, and Paenibacillus polymyxa 842ATCC produced higher enzyme activities as compared to other
bacterial cultures grown on different substrates. The cultures mentioned above also produced higher enzyme activities when they
were incubated under SSF using PKC as a substrate in different PKC-to-moisture ratios after 4 days of incubation, indicating that
these cellulolytic bacteria can be used to degrade and improve the nutrient quality of PKC.

1. Introduction

Agrowaste features high concentrations of nonstarch polysac-
charides (NSPs) such as mannan, xylan, and cellulose. These
molecules cannot be digested by monogastric animals and
need to be decomposed by cellulolytic microorganisms. The
most common agrowaste produced in Malaysia is palm
kernel cake (PKC). This by-product is produced as a result of
oil extraction from palm fruits.The concentration of NSPs in
PKC is 78% mannan, 3% arabinoxylan, 3% glucuronoxylan,
and 12% cellulose [1]. Therefore, 𝛽-mannanase, cellulase,
xylanase [2, 3], 𝛼-galactosidase [1], and 𝛽-mannosidase [4]
can be applied to degrade PKC effectively.

Recently, cellulolytic microorganisms have been used to
produce specific enzymes through fermentation technology
using agrobyproducts as substrates [2, 3]. Additionally, the
nutritive quality of agrobyproduct can be enhanced through
solid state fermentation (SSF) and used as animal feed stuff
[5, 6]. SSF is a technology that can be defined as the growth
of a microorganism in solid substrate containing moisture in
a ratio ranging from 1 : 0.1 to 1 : 1 [7]. The advantages of using
a low moisture level in SSF include reduced opportunities
for contamination by other microorganisms and improved
aeration as well as increased porosity between particles [8].
In contrast, the high level of moisture in the substrate during
SSF leads to increased chances for contamination by other
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microbes and reduced aeration as well as decreased porosity
between particles. Moreover, it causes agglomeration and a
gummy substrate texture.Thus, the problems associated with
heat and oxygen transfer would occur [9–11].

Usually, the substrate-to-moisture ratio in SSF mediated
by cellulolytic bacteria culture ranges between 1 : 0.1 and 1 : 1
[12]. However, some bacterial cultures require a higher level
of moisture for enzyme production or substrate degradation.
For instances, increased xylanase production by B. licheni-
formis A99 [9] and B. pumilus [10] occurred during SSF
with a moisture ratio of 1 : 2.5 (w/v), whereas a high level of
xylanase production was observed for Bacillus sp. AR-009
during SSF with a moisture ratio of 1 : 0.5 to 1 : 1.5 (w/v) [11].
In comparison, the optimum substrate-to-moisture ratio was
reported to be 1 : 0.75 (w/v) for fungus culture of Aspergillus
niger USM AI1 grown in PKC [13] and 1 : 0.85 (w/v) for B.
amyloliquefaciens grown in groundnut oil cake mixed with
wheat bran [10].

As for the effect of inoculum size, 10% (v/w) was reported
to be the optimal inoculum size of SSF for alkaliphilic
Bacillus sp. [11], B. megaterium [8], and B. pumilus [10].
However, the optimum inoculum size was reported to be
10 to 15% (v/w) for xylanase production by thermophilic B.
licheniformis A99 during SSF [9]. Therefore, reducing the
moisture content during SSF process is essential [14]. In
addition, the inoculum size should be sufficient to decrease
the possibility of contamination during SSF process.

PKC demonstrates high levels of NSPs; the nutritive
quality of this agro-byproduct can be improved by cellulolytic
microbes through SSF. Although fungi have many charac-
teristics and produce higher enzyme activity than bacteria,
the secondary products of fungi, such as mycotoxins would
depress the growth of animals. The mycotoxin problem can
be overcome by replacing fungi with cellulolytic bacteria
in SSF. Furthermore, information concerning the enhance-
ment of nutritive values of PKC through SSF using Bacillus
glucanolyticus DSMZ 5162, B. amyloliquefaciens DSMZ 1067,
Cellulomonas fimiDSMZ 20114, Paenibacillus curdlanolyticus
DSMZ 10248, P. polymyxa ATCC 842, B. circulans ATCC
61, B. megaterium ATCC 9885, B. wakoensis DSMZ 2512,
and B. cellulosilyticus DSMZ 2522 has been reported else-
where. Thus, the objectives of this study were to characterize
different cellulolytic bacteria with different substrates, such
as carboxymethyl cellulose (CMC), xylan, and locust bean
gum (LBG) galactomannan and to determine the optimum
PKC :moisture ratio for the SSF mediated by cellulolytic
bacteria.

2. Materials and Methods

2.1. Organisms and Growth Conditions. Nine aerobic cellu-
lolytic bacterial cultures were purchased from DSMZ and
ATCC. They were Bacillus glucanolyticus DSMZ 5162, Bacil-
lus amyloliquefaciens DSMZ 1067, Cellulomonas fimi DSMZ
20114, Paenibacillus curdlanolyticusDSMZ 10248, Paenibacil-
lus polymyxa ATCC 842, Bacillus circulans ATCC 61, Bacillus
megaterium ATCC 9885, Bacillus wakoensis DSMZ 2512, and
Bacillus cellulosilyticus DSMZ 2522.

The bacteria cultures were grown in nutrient broth and
agar containing (g/L) peptone, 15.0; sodium chloride, 6.0;
yeast extract, 3.0; agar-agar, 12.0; and glucose, 1.0 at pH 7.0.
However, B. wakoensis DSMZ 2512 and B. cellulosilyticus
DSMZ 2522 were grown in alkaline nutrient broth at pH
9. The glucose of nutrient broth and agar was substituted
with CMC, xylan from Birchwood, or LBG galactomannan
as a carbon source to determine the activity of CMCase (cel-
lulase), xylanase, and mannanase, respectively. The bacteria
cultures were incubated at 30∘C and agitated at 200 rpm in a
rotary shaker to prepare the working inoculum.

2.2. Cellulolytic Enzyme Production in SSF. After being
ground, sieved, and dried overnight at 60∘C, 5 g of PKC
was transferred to 150mL conical flasks. Distilled water was
added to the PKC to obtain PKC :moisture ratios of 1 : 0.2,
1 : 0.3, 1 : 0.4, and 1 : 0.5. The flasks were then stoppered with
a cotton plug and autoclaved at 121∘C for 30 min. The flasks
were then cooled to room temperature and inoculated with
10% (v/w) inocula (0.5mL/5 g). Finally, the conical flasks
were incubated at 30∘C for 4 and 7 days under humidified
conditions created by placing sterile distilled water inside the
incubator. The best bacterial cultures that produced higher
enzyme activity were cultured again with PKC :moisture
ratios of 1 : 0.2, 1 : 0.4, 1 : 0.6, 1 : 0.8, and 1 : 1 in order to
determine the optimum moisture ratio for each bacteria
culture.

2.3. Extraction of Crude Enzyme. The bacteria cultures were
revived in media containing CMC, xylan, or LBG galac-
tomannan for 9 days in order to obtain the working inocu-
lum. The crude enzyme was extracted by centrifugation at
10,000 g, 4∘C for 15min.The clear supernatantwas considered
to be the crude enzyme, and enzyme activity was determined
for each culture grown in different substrates.

Extraction of crude enzymeduring SSFwas accomplished
by adding 20mL sterile distilled water into each conical flask
and agitated overnight at 25∘C on a rotary shaker at 130 rpm.
The solution was filtrated using Whatman paper no. 1 and
then centrifuged at 10,000 g, 4∘C for 15 min. The supernatant
was kept at −20∘C for further analysis.

2.4. Enzyme Activity Assay. Mannanase, xylanase, and
CMCase activities were determined according to the modi-
fied methods of Araujo and Ward [15], Bailey et al. [16], and
Miller [17], respectively. Standard references were plotted for
mannose, xylose, and glucose, and the absorbance was read
using a spectrophotometer at 540 nm.

The soluble protein was determined [18] to calculate the
specific enzyme activity for each bacteria culture, and bovine
serum albumin (BSA) was used as a standard. All enzyme
activities were assayed in triplicate, and the average enzyme
activity was presented as 𝜇mol/min/mg protein. The enzyme
activity is defined as the ability of enzyme to release one 𝜇mol
of reducing sugar per minute in specific conditions.

2.5. Statistical Analysis. Data were analyzed using two-way
ANOVA for the moisture ratio treatments, and the treatment
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Figure 1: Specific CMCase, xylanase, and mannanase activities of
cellulolytic bacteria grown in CMCmedium.
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Figure 2: Specific CMCase, xylanase, and mannanase activities of
cellulolytic bacteria grown in xylan medium.

means, which showed significant differences at a probability
level of 0.05, were separated by Tukey’s test using general
linear model (GLM) procedure of Statistical Analysis System
[19].

3. Results and Discussion

The characteristics of cellulolytic bacterial cultures in CMC
medium are shown in Figure 1. The highest cellulase activity
was observed in B. megaterium and B. amyloliquefaciens
(17.11 and 7.69 𝜇mol/min/mg protein, resp.), whereas the
highest xylanase activity was 12.76 and 8.23 𝜇mol/min/mg
protein, produced by B. amyloliquefaciens andB.megaterium,
respectively (Figure 1).
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Figure 3: Specific CMCase, xylanase, and mannanase activities of
cellulolytic bacteria grown in LBG medium.

The characteristics of cellulolytic bacterial cultures in
xylan medium are shown in Figure 2. P. polymyxa ATCC
842 and P. curdlanolyticus DSMZ 10248 produced higher
xylanase activity (21.9 and 19.67𝜇mol/min/mg protein, resp.)
compared to the other bacterial cultures (Figure 2).

The findings are in agreement with [20, 21], who showed
that P. curdlanolyticus producedmultienzyme complexes and
that xylanase activity was the main enzyme produced.

The cellulolytic bacterial cultures characterized in LBG
medium are shown in Figure 3. The highest mannanase
activity was observed with P. polymyxa ATCC 842, B.
amyloliquefaciens DSMZ 1067, and P. curdlanolyticus DSMZ
10248 (42.85, 29.27, and 15.77 𝜇mol/min/mg protein, resp.) as
compared to the other bacterial cultures (Figure 3).

The high mannanase production could be a result of the
ability of these bacterial cultures to degrade mannan. These
findings are in agreement with [22], who reported that B.
amyloliquefaciens was capable of degrading galactomannan.
In addition, the findings are in agreement with other studies
[23, 24] indicating that P. curdlanolyticus was capable of
producing a multienzyme complex.

It appears that B. amyloliquefaciens DSMZ 1067 and
P. polymyxa ATCC 842 can be considered multifunctional
enzyme producers because of their abilities to produce higher
enzyme activity in both CMC and LBG mediums. This
finding is in agreementwith those ofMabrouk andElAhwany
[22], who screened B. amyloliquefaciens in galactomannan
medium. In addition, P. polymyxa ATCC 842 is able to
producemultienzymes such as𝛽-1,3 and𝛽-1,6 glucanase [25],
cellulase, xylanase, lichenase, and mannanase [22]. P. curd-
lanolyticus DSMZ 10248 appears to be xylanolytic bacteria
because of its capability to produce xylanase and mannanase
in xylan and mannan mediums. Sudo et al. [26] reported
that the genus Paenibacilluswas capable of degrading various
polysaccharides and able to secrete multifunctional enzymes,
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Table 1: Production of cellulolytic enzymes from bacterial cultures under SSF for 4 and 7 days with different PKC :moisture ratios.

Bacterial culture Moisture ratio CMCase Xylanase Mannanase
4 days 7 days 4 days 7 days 4 days 7 days

B. amyloliquefaciens
DSMZ

1 : 0.2 3.91 ± 0.060fgh 1.66 ± 0.045ghi 3.32 ± 0.023f 1.39 ± 0.082fg 4.07 ± 0.030f 2.08 ± 0.184fgh

1 : 0.3 3.72 ± 0.007gh 1.12 ± 0.084ij 3.20 ± 0.143f 1.10 ± 0.045ghi 3.83 ± 0.054f 1.49 ± 0.126hij

1 : 0.4 3.29 ± 0.033ghi 1.26 ± 0.096hij 2.81 ± 0.032f 1.15 ± 0.130ghi 3.37 ± 0.042fgh 1.48 ± 0.070hij

1 : 0.5 3.50 ± 0.012gh 0.20 ± 0.047mno 3.08 ± 0.018f 0.49 ± 0.127jklmn 3.58 ± 0.022fg 0.89 ± 0.006jkl

P. curdlanolyticus
DSMZ

1 : 0.2 4.84 ± 2.300efg 0.26 ± 0.150mno 9.36 ± 0.360c 0.25 ± 0.130klmno 7.87 ± 2.100d 0.78 ± 0.340klm

1 : 0.3 5.40 ± 0.440def 0.10 ± 0.030no 9.74 ± 0.070c 0.13 ± 0.030mno 4.82 ± 1.270ef 0.78 ± 0.280klm

1 : 0.4 6.38 ± 0.310d 2.16 ± 0.290efg 9.76 ± 0.370c 1.13 ± 0.280ghi 3.43 ± 1.420fgh 0.28 ± 0.140mno

1 : 0.5 10.40 ± 1.00d 5.70 ± 0.030c 14.35 ± 0.300b 6.67 ± 0.750b 8.82 ± 1.250cd 5.35 ± 1.140d

P. polymyxa ATCC

1 : 0.2 0.93 ± 0.112lmno 2.50 ± 0.204e 0.73 ± 0.006ij 2.36 ± 0.161de 0.80 ± 0.024jkl 2.15 ± 0.112fgh

1 : 0.3 0.62 ± 0.014mnop 0.91 ± 0.014jkl 0.48 ± 0.015jk 0.78 ± 0.002ghij 0.71 ± 0.031jkl 0.92 ± 0.074jkl

1 : 0.4 2.12 ± 0.303ijk 2.53 ± 0.131e 2.10 ± 0.044g 2.10 ± 0.027e 3.33 ± 0.580fgh 2.77 ± 0.547f

1 : 0.5 6.45 ± 0.035d 3.85 ± 0.110d 6.30 ± 0.016d 3.08 ± 0.300cd 10.01 ± 0.363cd 3.68 ± 0.083e

B. megaterium
ATCC

1 : 0.2 6.74 ± 0.570d 3.46 ± 0.070d 4.42 ± 0.080e 3.53 ± 0.940c 11.03 ± 3.760c 4.10 ± 0.590e

1 : 0.3 5.82 ± 0.270de 8.77 ± 0.220b 4.98 ± 0.005e 7.43 ± 0.030b 7.11 ± 0.010de 9.40 ± 0.090c

1 : 0.4 15.68 ± 0.230b 12.76 ± 0.170a 13.48 ± 0.020b 10.80 ± 1.41a 18.96 ± 0.440b 13.91 ± 0.050a

1 : 0.5 31.24 ± 0.430a 11.60 ± 0.110a 25.34 ± 1.01a 9.77 ± 0.260a 35.99 ± 0.020a 12.15 ± 0.090b

P. glucanolyticus
DSMZ

1 : 0.2 0.00 ± 0.000p 0.00 ± 0.000o 0.00 ± 0.000m 0.00 ± 0.000o 0.00 ± 0.000l 0.00 ± 0.0000

1 : 0.3 0.00 ± 0.000p 0.00 ± 0.000o 0.00 ± 0.000m 0.00 ± 0.000o 0.00 ± 0.000l 0.00 ± 0.000o

1 : 0.4 1.80 ± 0.220jkl 0.28 ± 0.004mno 1.38 ± 0.100h 0.16 ± 0.008mno 1.75 ± 0.080hijk 0.33 ± 0.030mno

1 : 0.5 1.20 ± 0.060klmno 1.00 ± 0.002jkl 0.79 ± 0.050ij 0.73 ± 0.002hijk 1.17 ± 0.030jk 1.12 ± 0.080jk

C. fimi DSMZ

1 : 0.2 1.16 ± 0.160klmno 0.51 ± 0.010lmn 0.06 ± 0.030lm 0.60 ± 0.250ijklm 1.05 ± 0.040jkl 1.94 ± 0.120gh

1 : 0.3 0.87 ± 0.260lmno 0.98 ± 0.680jkl 0.16 ± 0.040lm 1.29 ± 0.130fgh 1.80 ± 0.060ghijk 0.67 ± 0.390klmn

1 : 0.4 1.35 ± 0.390klmn 1.29 ± 0.030hij 0.78 ± 0.290ij 1.96 ± 0.060ef 3.50 ± 0.360fgh 2.48 ± 0.040fg

1 : 0.5 3.52 ± 0.030gh 1.79 ± 0.280fgh 1.80 ± 0.080gh 2.10 ± 0.160e 3.36 ± 0.100fgh 1.83 ± 0.020ghi

B.circulans ATCC

1 : 0.2 0.00 ± 0.000p 0.00 ± 0.000o 0.00 ± 0.000m 0.00 ± 0.000o 0.75 ± 0.500jkl 0.00 ± 0.000o

1 : 0.3 0.47 ± 0.200nop 0.38 ± 0.130mno 0.70 ± 0.400ij 0.00 ± 0.000o 1.41 ± 0.090ijk 0.05 ± 0.008o

1 : 0.4 0.55 ± 0.310mnop 0.53 ± 0.070klmn 0.94 ± 0.020i 0.26 ± 0.120jklmno 1.94 ± 0.130ghij 0.20 ± 0.150no

1 : 0.5 2.78 ± 0.040hij 0.60 ± 0.320klm 1.47 ± 0.030h 0.69 ± 0.020hijkl 3.60 ± 0.610fg 0.78 ± 0.080klmn

B. wakoensis DSMZ

1 : 0.2 1.42 ± 0.080klm 0.41 ± 0.270mno 0.29 ± 0.060kl 0.10 ± 0.020mno 0.69 ± 0.030jkl 0.29 ± 0.050mno

1 : 0.3 2.05 ± 0.020ijk 2.40 ± 0.180ef 0.56 ± 0.020jk 0.26 ± 0.030jklmno 1.28 ± 0.050jk 1.18 ± 0.020ijk

1 : 0.4 1.63 ± 0.030jkl 1.02 ± 0.020jk 0.52 ± 0.040jk 0.22 ± 0.003klmno 0.97 ± 0.040jkl 0.27 ± 0.040mno

1 : 0.5 2.17 ± 0.009ijk 1.65 ± 0.020ghi 0.77 ± 0.020ij 0.03 ± 0.004no 1.38 ± 0.020ijk 0.99 ± 0.040jk

B. cellulosilyticus
DSMZ

1 : 0.2 0.00 ± 0.000p 0.00 ± 0.000o 0.00 ± 0.000m 0.00 ± 0.000o 0.00 ± 0.000l 0.00 ± 0.000o

1 : 0.3 0.47 ± 0.002nop 0.00 ± 0.000o 0.32 ± 0.020kl 0.00 ± 0.000o 0.49 ± 0.030kl 0.00 ± 0.000o

1 : 0.4 0.38 ± 0.030op 0.00 ± 0.000o 0.47 ± 0.050jk 0.00 ± 0.000o 0.73 ± 0.010jkl 0.00 ± 0.000o

1 : 0.5 1.86 ± 0.160jkl 0.38 ± 0.020mno 0.78 ± 0.080ij 0.21 ± 0.008lkmno 3.00 ± 0.050fghi 0.42 ± 0.002lmno

a–pMeans ± SE. Means with different superscripts within the same column are significantly different (𝑃 < 0.05).

mainly xylanases. The results of this study are also consistent
with previous findings concerning P. curdlanolyticus, which
has been shown to exhibit effective degradation of xylan and
cellulose and to produce a multienzyme complex containing
several xylanases and cellulases [24].

The production of cellulolytic enzymes under SSF for 4
and 7 days with different PKC :moisture ratios is shown in
Table 1.

The highest cellulolytic enzyme activities were signifi-
cantly (𝑃 < 0.05) exhibited by B. megaterium ATCC 9885,

P. curdlanolyticus DSMZ 10248, and P. polymyxa ATCC 842
as compared to the other bacterial cultures. The production
of enzymes significantly (𝑃 < 0.05) declined at the 7th
day of SSF, and the highest production was observed in B.
megateriumATCC 9885, P. curdlanolyticusDSMZ 10248, and
P. polymyxa ATCC 842. The dramatic decline of cellulolytic
enzyme production could be due to the depletion of the
carbon source after 7 days of SSF.

The optimum PKC :moisture ratio appeared to be 1 : 0.8,
1 : 0.4, 1 : 1, and 1 : 0.6 (w/v) during SSF for P. polymyxa ATCC
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Figure 4: Specific enzyme activity for some bacterial cultures under
SSF with different PKC :moisture ratios.

842, B. megaterium ATCC 9885, P. curdlanolyticus DSMZ
10248, and B. amyloliquefaciens DSMZ 1067, respectively
(Figure 4).

The enzyme activity was higher than the other ratios
during SSF for 4 days. These findings are consistent with
the findings of Gessesse and Mamo [11], who claimed that
Bacillus sp. produced high enzyme activitywhen themoisture
ratios ranged from 1 : 0.5 to 1 : 1.5 (w/v). Themoisture content
in the substrate can be considered as an important factor
in SSF and microbial growth. A ratio greater than the
optimum level may decrease the porosity of the substrate,
produce a substrate with a gummy texture, and lower the
oxygen transfer rate. However, a lowermoisture level than the
optimum ratio could limit the growth of the microorganism
in the substrate [8–11, 27].

4. Conclusions

The bacterial cultures that exhibited the ability to degrade
different substrates were B. megaterium ATCC 9885, P.
curdlanolyticus DSMZ 10248, P. polymyxa ATCC 842, and B.
amyloliquefaciens DSMZ 1067. In addition, the best moisture
ratios were 1 : 0.8, 1 : 0.4, 1 : 1, and 1 : 0.6 (w/v) for P. polymyxa
ATCC 842, B. megaterium ATCC 9885, P. curdlanolyticus
DSMZ 10248, and B. amyloliquefaciens DSMZ 1067, respec-
tively, after 4 days of incubation during SSF. Based on the
results obtained, these cellulolytic bacteria can be used to
degrade and improve the nutrient quality of the PKC by
eliminating crude fibers.
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