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Abstract: While (Ph2CN2)B(C6F5)3 is unstable, single electron
transfer from Cp*2Co affords the isolation of stable products
[Cp*2Co][Ph2CNNHB(C6F5)3] 1 and [Cp*Co(C5Me4CH2B-
(C6F5)3)] 2. The analogous combination of Ph2CN2 and BPh3

showed no evidence of adduct formation and yet single
electron transfer from Cp*2Cr affords the species [Cp*2Cr]-
[PhC(C6H4)NNBPh3] 3 and [Cp*2Cr][Ph2CNNHBPh3] 4.
Computations showed both reactions proceed via transient
radical anions of the diphenyldiazomethane–borane adducts to
effect C@H bond activations.

The activation of small molecules has been a major driver of
organometallic chemistry over the last 60 years. Such efforts
have spawned great interest and important developments. In
recent years, such inquiries have begun to permeate main
group chemistry. One avenue of main group chemistry
exploited for the activation of small molecules has been
frustrated Lewis pair (FLP) chemistry.[1] While this initially
emerged from the finding of the heterolytic activation of H2

by combinations of Lewis acids and bases,[2] subsequent
efforts demonstrated reactivity of FLPs with a wide range of
small molecules.[3] Noticeably absence from these investiga-
tions have been studies involving dinitrogen.

Organometallic chemists have studied metal–N2 systems
since the seminal report of A. D. Allen[4] who described the
first transition metal–dinitrogen complex. Over the past
50 years numerous advances have emerged from the lumi-
naries of organometallic chemistry including Schrock,[5]

Cummins,[6] Peters,[7] Fryzuk,[8] Evans,[9] Gambarotta,[10] Nish-
ibiashi,[11] Holland,[12] Chatt,[13] and Liddle[14] among others.[15]

Avenues to metal-mediated N2 chemistry have typically
involved stoichiometric reductants.[8d] More recently, in 2017
the Szymczak[16] and Simonneau[17] groups demonstrated the
utility of a Lewis acidic borane in promoting reactivity of

metal-bound N2 fragments, effecting protonation, borylation
and silylation of N2 bound between the metal and boron.

Main group interactions with N2 have drawn much less
attention. A number of computational studies have addressed
the interactions of N2 with Lewis acids, while the species
(N2)BF3 was spectroscopically characterized upon generation
by supersonic expansion at 600 torr and 170 K.[18] The
compound Ph3PNNPPh3

[19] although not derived from N2,
was controversially described as N2 stabilized by two phos-
phine donors.[20] However, in a truly seminal finding,
Braunschweig et al.[21] described the first metal-free capture
of N2 using a cAAC-stabilized borylene (cAAC: cyclic
(alkyl)(amino) carbene).

In our own efforts towards main group-N2 chemistry, we
initiated studies of diazomethanes which liberate N2. Such
systems may provide insight for the design of main group-N2

systems.[22] In 2012, we reported the insertion of diazo-
methanes into B@C bonds of electrophilic boranes with the
liberation of N2 (Scheme 1).[23] Such insertions were recently
exploited in organic synthesis by Melen et al.[24] In recent
work,[25] we showed that the sterically-encumbered diazo-
methane, Ph2CN2, does not insert but rather forms a highly
reactive, yet isolable borane-adduct, (Ph2CN2)B(C6F5)3.
Moreover, we also showed weak Lewis acid–base adducts
were stabilized by stoichiometric reduction.[26] This notion
was also exploited by the Erker group in the isolation of Lewis
acid stabilized radicals.[27] Herein, we probe the impact of
reduction on the reactivity of the unstable (Ph2CN2)B(C6F5)3,
demonstrating that single electron transfer to diazomethane-
borane adducts stabilizes weak B···N interactions providing
reactive transient radicals which effect C@H bond activation.

A 1:1 combination of diphenyldiazomethane (Ph2CN2)
with B(C6F5)3 in chlorobenzene was stirred at @35 88C.
Addition of an equal molar amount of Cp*2Co immediately
gave a yellow solution. The crude 19F NMR spectrum showed
two sets of resonances at@134.0,@163.9, and@167.3 ppm and
@130.2, @161.9, @162.7 ppm, attributable to inequivalent
C6F5 rings. The 11B NMR spectrum showed two resonances at
@7.6 and @13.0 ppm attributable to two tetra-coordinated
boron species, 1 and 2, respectively. 1H NMR data showed
resonances at 6.61 and 2.43 ppm attributable to NH and CH2

fragments. Fractional recrystallization permitted formulation
of the two products 1 and 2 by X-ray crystallographic analysis.
Compound 1 was found to be the salt [Cp*2Co][Ph2CNNHB-
(C6F5)3] (Figure 1a). While the cation was unexceptional, the
diazoborate anion was derived from the interaction of the
hydrazide bound to borane. The B@N(H) bond length in 1 is
1.539(7) c, while the N@N and N@C bonds lengths is 1.342(5)
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and 1.303(7) c, respectively. The B@N@N angle was deter-
mined to be 118.2(3)88 while the C@N@N angle is 120.9(4)88.
The second isolated product was confirmed to be
[Cp*Co(C5Me4CH2B(C6F5)3)] 2 (Figure 1b). In this species,
one of the hydrogen atoms in one of the Cp* methyl groups
has been replaced by borane, affording the zwitterionic CoIII-
borate 2, with a methylene–boron B@C bond length of
1.66(1) c.

Collectively, the identification of 1 and 2 is consistent with
two possible reaction mechanisms involving single electron
transfer from a CoII center to either B(C6F5)3

[28] or the
diazomethane adduct of the borane, (Ph2CN2)B(C6F5)3.

[25] It is
noteworthy that although C@H activation by the radical
[B(C6F5)3)]C@ ,[29] is expected to give the anion [HB(C6F5)3]

@ ,

independent combination of diazomethane with [HB(C6F5)3]
@

showed no reaction. This supports the view that compound
1 is formed through hydrogen atom abstraction from Cp*2Co
by the transient diazomethane-borane adduct radical anion
[Ph2CN2B(C6F5)3]C@ (Scheme 2), consistent with the overall
reaction ratio of diazomethane:Cp*2Co:B(C6F5)3 of 1:2:2.

Ph2CN2 was combined with BPh3 in chlorobenzene at
@35 88C. Monitoring the solution by multinuclear NMR
spectroscopy revealed no evidence of adduct formation.
This is consistent with the poor Lewis basicity of the
diazomethane and the weaker Lewis acidity of the BPh3 in
comparison to B(C6F5)3, in line with the computed free
energies (see Supporting Information). Addition of Cp*2Cr to
a mixture of BPh3 and diazomethane at @35 88C generated an
orange solution. The 11B NMR spectrum showed resonances
at 23.0 and @3.5 ppm consistent with the formation of two
products, 3 and 4 which were isolated by fractional crystal-
lization. An X-ray diffraction study revealed species 3 to be
[Cp*2Cr][PhC(C6H4)NNBPh3] (Scheme 2, Figure 2a). While
the cation was typical, the anion of 3 was shown to be a borate
with a substituent derived from the cyclization of the N2

fragment onto the ortho position of one of the aryl rings on
the diazomethane carbon. The resulting five membered ring
which is fused to the aryl ring is 1,3-disubstituted with and
phenyl ring on carbon and BPh3 bound to nitrogen. The
resulting N@B bond is 1.566(6) c, while the N@N and new N@

Scheme 1. Interactions of main group systems with N2-fragments.

Figure 1. POV-Ray depiction of the anion of a) 1 and b) 2. The cation
and hydrogen atoms (except NH) are omitted for clarity. C: black, N:
blue, F: pink, B: yellow-green, Co: green, and H: grey.

Scheme 2. Reactions of Ph2CN2 with B(C6F5)3 and Cp*2Co, and with
BPh3 and Cp*2Cr.

Figure 2. POV-Ray depiction of the anion of a) 3 and b) 4. The cation
and hydrogen atoms (except NH) are omitted for clarity. C: black, N:
blue, and B: yellow-green.
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C bond distances are determined to be 1.312(5) and 1.351-
(5) c. The second product 4 was also characterized crystallo-
graphically revealing its formulation as [Cp*2Cr]
[Ph2CNNHBPh3] (Scheme 2, Figure 2 b). The B@N and N@N
distances in the anion of 4 were determined to be 1.562(4) c
and 1.322(3) c, respectively.

In contrast, the reaction of 9-diazofluorene ((C12H8)CN2)
with B(C6F5)3 did not form an adduct but led to loss of N2

(Scheme 3) and the formation of the carboboration product

(C12H8)C(C6F5)(B(C6F5)2) as confirmed spectroscopically and
crystallographically (see Supporting Information). This is
consistent with observations seen for less sterically encum-
bered diazomethanes.[23,30] However, monitoring the reaction
of (C12H8)CN2 with BPh3 and Cp*2Cr by 11B NMR spectros-
copy revealed the generation of three products as evidenced
by the resonances at 26.2, 2.4, and @1.7 ppm. The peaks at
@1.7 and 2.4 ppm were unambiguously assigned to [Cp*2Cr]
[C12H8CNNHBPh3] 5 and [Cp*Cr(C5Me4CH2BPh3)] 7 by
NMR and crystallographic methods (Figure 3, see Supporting
Information). The remaining resonance at 26.2 ppm, was
attributed to the species [Cp*2Cr][C13H7N2BPh3] 6 by analogy
to 3. These results suggest that the electron transfer to the

weak adducts gives a transient radical
[(C12H8)CN2BPh3]C@ , which reacts fur-
ther through competitive pathways
involving either intramolecular cycli-
zation or intermolecular H-atom
abstraction.

The mechanism of these reactions
were probed by density functional
theory (DFT) calculations at the
PW6B95-D3/def2-QZVP +

COSMO-RS// TPSS-D3/def2-TZVP
+ COSMO level of theory in chlor-
obenzene solution.[31] The reaction of
Ph2CN2 with BPh3 and Cp*2Cr is
initiated by single electron transfer
from Cp*2Cr to the unstable
Ph2CN2·BPh3 adduct (Figure 4)
affording the radical anion
[Ph2CNNHBPh3]C@ INT1 (spin on N
next to B: 0.53e) is 4.3 kcalmol@1

endergonic. Alternative pathways involving electron transfers
to separated BPh3 and Ph2CN2 species (14.8 and 8.9 kcal
mol@1) are significantly less favorable. Similarly, further
electron transfer to INT1 is unlikely (12.2 kcal mol@1 ender-
gonic). The N-centered radical INT1 may then add intra-
molecularly to the ortho position of a phenyl ring (via
transition structure TS1) to give INT2 affording delocaliza-
tion of the spin onto the ring. From here, a highly exergonic
H-transfer to another Ph2CN2 molecule (via TS2) gives the
anion of 3 and the neutral N-radical (Ph2CNNH)C (spin on N
next to H: 0.54e) with a moderate overall barrier of
23.5 kcal mol@1. The latter radical is readily reduced by
Cp*2Cr through electron transfer and trapped by BPh3

giving the anion of 4 (@66.4 kcalmol@1).
For the reaction of Ph2CN2 with the stronger Lewis acid

B(C6F5)3 and the more reductive Cp*2Co,[32] electron transfer
from Cp*2Co to the reversible adduct (Ph2CNN)B(C6F5)3 is
@15.3 kcalmol@1 exergonic affording the radical anion
[Ph2CN2B(C6F5)3]

·@. This intermediate is computed to effect
H-atom from one methyl group of Cp*2Co over a barrier of
16.6 kcal mol@1 to form the stable anion of 1 (see Supporting
Information). The alternative intramolecular pathway, anal-
ogous to that above encounters a higher overall barrier of
23.3 kcal mol@1 (see Supporting Information).

To garner further support for the computed mechanism,
efforts to observe the transient radical adducts in the
reactions were undertaken, but were unsuccessful. However,
monitoring the reaction of (C12H8)CN2, Cp*2Fe and Al(C6F5)3

in C6H5Cl at room temperature by EPR spectroscopy
revealed a pentet resonance at g(iso) = 2.0039, with (14N)
hyperfine couplings of 3.70 G and 3.58 G. This signal was
similar to the related N-based radicals[33] and was attributed to
the radical species [Ph2CN2Al(C6F5)3]C@ . This signal slowly
degrades at room temperature over 5 h, leaving a broad
resonance attributed to an organic radical (see Supporting
Information). Subsequent addition of Ph3SnH generated
a mixture of products, from which [Cp*2Fe]-
[(C12H8)CNNHAl(C6F5)3] 8 was identified by NMR spectros-
copy while single crystals of [Cp*2Fe][(C12H8)CHAl(C6F5)3] 9
were obtained from the reaction mixture (Figure 5). Com-

Scheme 3. Reactions of (C12H8)CN2 with BPh3 and Cp*2Cr.

Figure 3. POV-Ray
depiction of the anion
of 5. The cation and
hydrogen atoms
(except NH) are omit-
ted for clarity. C: black,
N: blue, and B: yellow-
green.

Figure 4. DFT-computed free energy profile (kcalmol@1, at 298 K and
1 molL@1 reference concentration) for the formation of anion of 3 and
4. Selected bond lengths are given in angstroms while selected C:
grey, H: white, N: blue, and B: pink.
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pound 8 was independently prepared and crystallographically
characterized from the reaction of (C12H8)CNNH2, Cp*2Fe,
and Al(C6F5)3. The formulations of 8 and 9 are consistent with
the generation of the spectroscopically observed radical
anions [(C12H8)CN2Al(C6F5)3]C@ and [(C12H8)CAl(C6F5)3]C@

(Scheme 4).

In conclusion, we have demonstrated that single electron
transfer to unstable diazomethane-borane adducts, accesses
reactive radical anions that effect H-atom abstraction from
C@H bonds. The resulting anionic species are significantly
more stable than the corresponding neutral adducts, suggest-
ing that in situ reductions may be a useful strategy to infer the
presence of weakly bound adducts. We suggest that this
strategy could be exploited in developing main group-N2

chemistry. At the same time, the potential utility of main
group radical anions in C@H bond homolysis offers an
interesting prospect for C@H functionalization.
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