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Abstract

Background: We focus on the importance of interpreting the quality of the labeling used as the input of predictive
models to understand the reliability of their output in support of human decision-making, especially in critical
domains, such as medicine.

Methods: Accordingly, we propose a framework distinguishing the reference labeling (or Gold Standard) from the
set of annotations from which it is usually derived (the Diamond Standard). We define a set of quality dimensions and
related metrics: representativeness (are the available data representative of its reference population?); reliability (do
the raters agree with each other in their ratings?); and accuracy (are the raters’ annotations a true representation?). The
metrics for these dimensions are, respectively, the degree of correspondence, W, the degree of weighted concordance o,
and the degree of fineness, ®. We apply and evaluate these metrics in a diagnostic user study involving 13 radiologists.

Results: We evaluate W against hypothesis-testing techniques, highlighting that our metrics can better evaluate
distribution similarity in high-dimensional spaces. We discuss how W could be used to assess the reliability of new
predictions or for train-test selection. We report the value of ¢ for our case study and compare it with traditional
reliability metrics, highlighting both their theoretical properties and the reasons that they differ. Then, we report the
degree of fineness as an estimate of the accuracy of the collected annotations and discuss the relationship between
this latter degree and the degree of weighted concordance, which we find to be moderately but significantly correlated.
Finally, we discuss the implications of the proposed dimensions and metrics with respect to the context of
Explainable Artificial Intelligence (XAl).

Conclusion: We propose different dimensions and related metrics to assess the quality of the datasets used to build
predictive models and Medical Artificial Intelligence (MAI). We argue that the proposed metrics are feasible for
application in real-world settings for the continuous development of trustable and interpretable MAI systems.

Keywords: Gold standard, Explainable Al, Machine learning, Reliability, Usable Al

*Correspondence: federico.cabitza@unimib.it

'Dipartimento di Informatica, Sistemistica e Comunicazione, Universita degli
Studi di Milano-Bicocca, Viale Sarca, 336, 20125 Milan, Italy

Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-020-01224-9&domain=pdf
http://orcid.org/0000-0002-4065-3415
mailto: federico.cabitza@unimib.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Cabitza et al. BMC Medical Informatics and Decision Making

Background

This study contributes to the assessment of the trustwor-
thiness of medical decision support systems built using
Machine Learning (ML) techniques, an instance of so-
called Medical Artificial Intelligence (MAI) [1]. Thus, we
begin with a general question: “when can we call a decision
support trustable?” Trust in technology is a vast research
topic (e.g., [2]), but we can ground our approach on an
intuitive notion of it: we trust an advisor (and hence are
willing to rely on his advice) if his reputation is good;
if we generally agree with his recommendations (i.e., we
find them plausible); if he convinces us that he is right (or
persuasiveness); and if we think his sources and knowl-
edge are good (or expertise). These intuitive notions have
clear counterparts in the MAI domain: reputation relates
to accuracy (on past cases); plausibility to human-machine
concordance; persuasiveness relates to explainability, or
better yet, to causability [3]; and the advisor’s expertise
relates to what one of the founders of ML evocatively
called the experience of the ML system [4] (p.2).

In this paper, we focus on this last! characteristic of a
trustable agent, the quality of the “experience,” on the basis
of which this agent learns how to recognize and classify
new instances; that is, the quality of the available training
dataset, which contains the so-called Gold Standard (i.e.,
the set of target labels associated with the data).

We interpret the quality of the MAI support in terms
of three complementary aspects, and we propose a novel
metric for each aspect (see Table 1):

1 the extent the MAT's training set is representative,
with respect to a reference population (or a random
sample drawn from it), in terms of its degree of
correspondence. This degree can also be used to
assess the extent to which the MATI’s “experience” (in
the sense above) is compatible with any new case in
which it is supposed to give its advice.

2 the extent the Gold Standard is accurate with respect
to the theoretically correct labels (which, in most
cases, is unknown) in terms of an estimate, which we
call degree of fineness;

3 and, in the advisable case where the Gold Standard is
derived from a set of annotations by multiple raters
(what we call Diamond Standard), the extent to
which the Gold Standard is reliable, evaluated in
terms of the degree of weighted concordance [5] of

n fact, in the case of decision support, we can assume further basic
determinants of trust, as these have been conceptualized in [6]: like the
trustee’s integrity, equatable to behavioral stability, which in humans is
supported by referring to a stable framework of values and by following a clear
set of principles and rules, and in machines it follows from their
deterministically algorithmic nature; and the trustee’s benevolence, which is a
more delicate matter (as this should be reflected into the manufacturer’s
benevolence). However, in regard to this latter aspect, we could argue that a
cautious MAI like one that would abstain when in doubt [7], could be
considered even more benevolent than a presumptuous one, like most of
those currently available.
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Table 1 A summary of the dimensions proposed, the related
metrics to measure them, and the information required to
compute the metrics

Dimension Metrics Required Information

Representativeness Degree of Two datasets of arbitrary

correspondance, W size
Reliability degree of weighted Raters” accuracy and
concordance g confidence on each rating
Gold Standard degree of fineness, ¢ Accuracy of the raters,
Accuracy type of reduction

its Diamond Standard. We will also explain why the
multi-rater case is more advisable than the
single-rater one and why the use of more raters is
better.

Although the topic of the reliability (in the broadest
sense) of the Gold Standard is seemingly consolidated,
we will make the point that it is in fact overly neglected,
and its impact on the overall quality of an MAI is greatly
underrated.

We pose the following research questions: How accu-
rate and reliable is the Gold Standard? How informative
(or representative) are the training data with respect to the
reference population and to any new case where we want
support from technology? And, related to this aspect, how
similar are two datasets? That is, how we can be confident
that the good performance of a model that has been val-
idated on one dataset will be reproduced when fed with
cases from the other dataset?

To address these questions, we propose a general frame-
work to circumscribe the main concepts related to the
quality of the data feeding the Machine Learning process.
With reference to Fig. 1, the Gold Standard is the avail-
able “experience” upon which the ML model is trained,
that is, the set of labels associated with the cases repre-
sented in the training set. Thus, each case is labeled with
a unique value for the target feature. We therefore distin-
guish the Gold Standard from what we call the Diamond
Standard: the collection of annotations that m annotators
(also called raters or observers) have associated with the
cases in the training set.

We then use the term reduction to refer to the data
transformation that produces the Gold Standard from the
Diamond Standard. Reductions necessarily entail some
information loss because they allow a shift from multi-
rater labeling to “the one best” type of labeling by a
“collective” rater (usually, but not necessarily always rep-
resenting the majority of the raters involved). Obviously, if
m (the number of raters) is equal to 1, the Gold Standard
and the Diamond Standard coincide.

We will discuss how to estimate the quality of the Gold
Standard on the basis of the type of reduction used to
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generate it from the Diamond Standard and the reliabil-
ity of this latter. This reliability, in turn, is assessed based
on the number and interpretative skills of the annotators
involved, that is, their accuracy and their confidence in
their choices. In other words, if the ground truthing pro-
cess is usually considered a black box in the ML literature,
our contribution aims to open this box and gain informa-
tion about the accuracy and trustworthiness of the models
built downstream of this process.

The paper is structured as follows. In the “Methods’,
we will define the three metrics mentioned above for
the quality dimensions of representativeness, reliability,
and accuracy: the degree of correspondance, the degree of
weighted concordance, and the degree of fineness, respec-
tively (see Table 1). In the “Results’, we will instan-
tiate the above metrics on a realistic case of MAI
taken from the domain of MRI interpretation. In the
“Discussion’, we will comment on the methods proposed
in more detail, and we will also propose an interpreta-
tion of our framework within the wider perspective of
Explainable Artificial Intelligence (XAI) [8]. Finally, in the
“Conclusion” sections, we will outline the main contri-
butions of this article and propose a research agenda
grounded upon them.

Methods
In what follows, we will propose novel methods to
compute the scores of three quality dimensions related

to the training data of machine learning Al: the accu-
racy of the Gold Standard and the reliability of the
data from which this labelling has been derived through,
respectively, the degree of fineness and the degree of
correspondance; and the representativess of those data
(with respect to either reference data, other training
data or single instances) through the degree of weighted
concordance.

Reliability

The intuitive notion of reliability is straightforward:
how much can we rely upon an agent to make deci-
sions? Similarly (although metaphorically) we can assess
how much we can rely on the data to train a predic-
tive model with to have it make realistic predictions.
Despite the broadness of this concept, which we treated
in a companion article published recently [5], we here
focus on the metrological interpretation [9] of reliabil-
ity: this latter regards precision of measurements and,
broadly meant, conusistency of performance: e.g., models
that give similar output for similar inputs, and raters
who attach the same label to the same case. Indeed,
here we focus on the even narrower technical under-
standing of reliability as the complement of inter-rater
variability [10]. In this sense, assessing reliability is
evaluating the degree to which the observed agreement
among the raters is expected to be genuine, and not due
to chance.
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According to the above perspective, we can speak of
reliability of a Gold Standard only in terms of the reli-
ability of the Diamond Standard from which the former
has been derived, by means of some specific reduction. In
its turn, the reliability of a Diamond Standard regards the
extent this set of annotations expresses a unitary interpre-
tation of the single cases observed, despite the multiplicity
of views entailed by the different raters involved in inter-
preting each case [11]. If all of the raters agree upon each
and every case, then no disagreement among the case’s
annotations is observed, and the reliability is maximum.

Over time, many metrics have been proposed to esti-
mate the inter-rater variability (also known as inter-rater
reliability and inter-rater agreement) within a dataset, like
the Fleiss’s Kappa, the Cohen’s Kappa, and the Krippen-
dorff’s Alpha [12]. These indices aim to go beyond the
simple proportion of matched pairs (a score called Pro-
portion of Agreement, and usually denoted as P,). This
aim is motivated for the important, and often neglected,
limitation of the P,: this score includes the amount of
agreement that could be due to chance, and hence it pro-
duces an overly optimistic measure of the real agreement
(and hence reliability).

All of the proposed metrics present some limitations,
for instance in regard to their ability to account for miss-
ing values, or to account for ratings of different nature
(e.g., categorical or ordinal), and all of them are subject
to a number of paradoxes, e.g., they have been shown to
behave paradoxically when the cases to be rated are not
well-distributed across the rating categories [13]. More-
over, all these measure of inter-rater agreement employ a
generic model of chance effects that does not take into
account background information provided by the raters
themselves.

To address this gap in the literature, in the recent arti-
cle mentioned above [5] we proposed two novel metrics of
inter-rater reliability that employ a model of chance based
on the information provided by the raters: the degree of
concordance (o) and the degree of weighted concordance
(0). The former can be seen as the degree of genuine agree-
ment among the raters, on the basis of the number of
agreements and the rater’s confidence of their ratings (see
also Appendix A); o is a generalization o where each sin-
gle agreement is weighted by the estimated accuracy of the
raters’ involved. While in this work we focus on g, here we
briefly recall the formula for both metrics (as o is used in
Appendix A):

1 -1
a(S,R,C):mZ(r;> 3 GAS ()

xeS ri#TER

-1
o(S,R,C) = i Z (m) Z GAS (ri, r/) -P (ri(x), rj (%) correct)

2
|S| x€S riF#rjER

2)
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where S is the set of cases annotated by the raters; R is
the set of raters; C is the |S| x |R| matrix of reported
confidence degrees; P (ri(x),rj(x) correct) is the condi-
tional probability (given that the two raters agreed) that
the annotation provided by the raters for case x is cor-
rect; GAE (ri, r,') is the (chance-discounted) agreement
between raters r; and r;, defined as

0 ri(x) # rj(x)

ci(x)cj(x) otherwise

GAE (7‘[, rj) = { (3)
where ¢;(x) (resp. ¢j(x)) is the corrected confidence
reported by rater r; (resp. rj) for case x. Thus, ¢ can be
considered as a generalization of o in which the accuracy
of the raters is taken into account.

For further information about the derivation of the pro-
posed metrics and its advantages in comparison with
existing approaches we refer the reader to [5]: here
we discuss about how our metrics relate to a different
approach for reliability assessment (mainly in the informa-
tion fusion literature) based on Dempster-Shafer theory of
evidence [14, 15]. While this latter theory has been widely
applied to model the reliability of imprecise, uncertain and
conflicting sources of information [16—19], the study of
inter-rater agreement has been mainly considered under
the Bayesian/probabilistic framework and, to the knowl-
edge of the authors, the evidence-theoretic approach has
not been applied to develop measures to quantify this
form of reliability. As we show in Appendix A this may
be due to the inability of Dempster combination rule
to properly differentiate between genuine agreement and
agreement due to chance (for further detail about this
distinction see [5, 20]): this is the key concept in the
measurement of inter-rater reliability; indeed the pur-
pose of this dimension may be described as quantifying
the amount of observed agreement that is not due to
chance. Despite the incompatibility between the standard
interpretation of Dempster-Shafer theory and the quan-
tification of inter-rater reliability, in Appendix A we show
how the proposed metrics can be interpreted as aris-
ing from the evidence-theoretic framework by relying on
non-standard aggregation rules discussed in the litera-
ture to avoid some shortcomings of the Dempster rule of
aggregation [21].

Finally, we discuss two aspects of the proposed metrics,
which are related to the additional data elements that are
required to compute g. First, we note that the computa-
tion of o requires an estimate of the accuracy of the raters.
This could be obtained in multiple ways, among which:

e Through the use of standardized tests, in a sort of
pre-testing certification: this is often the optimal
choice but it is of difficult application;

e Employing a statistical model (such as Rasch model
[22]) to estimate the raters’ accuracy: while effective,



Cabitza et al. BMC Medical Informatics and Decision Making

this approach may require additional information
(such as the complexity of the cases);

e Equating each rater accuracy to the number of times
they agree with the labeling obtained by the majority
of the other raters [23];

e Equating the raters’ accuracy to the fraction of times
they are in agreement with an external reference
(such as the result of an existing diagnostic test).

The second aspect regards the confidence expressed
by the raters in their annotations: this information is
employed in the computation of ¢ in order to develop a
model of uncertainty of the raters, so as to account for
chance effects in its computation. One possible limit of
this approach is that this elicitation process in itself may
be affected by uncertainty: the phenomenon of intra-rater
variability, that is the degree of self-agreement of a single
rater among repeated administrations of the same test, has
been widely studied and reported in the medical literature
[24, 25]. Here we propose a simple but effective approach
to measure this intra-rater variability, and to incorporate
such an estimation into the method to compute ¢. In
essence, the proposed approach involves a simple modifi-
cation of the data annotation process: a small random sub-
sample of cases must be repeated within the annotation
sequence, after an adequate interval (e.g. the repetitions
may be placed after tens of new cases). Thus, each rater
is asked to re-annotate some of the cases multiple times
(unaware of this), and an estimate of their variability can
be computed.

Specifically, let x1,..x% be the repetitions of a given case
x; r a rater and ¢’ the confidence expressed by rater r
on the i-th repetition of case x. Thus, denoting the stan-
dard deviation of the confidence on case x for rater r as
c, (x), the intra-rater variability of rater r on case x can
be defined as the width of the corresponding 95% confi-

& ®)

dence interval, that is irv(x, r) = 1.96 and the average

intra-rater variability of rater r can be defined as irv(r) =
@ erxrep irv(x,r), where X,,, is the set of repeated
cases in the annotation sequence.

Thus, how can we use this estimate of intra-rater vari-
ability in the computation of ¢? First, we note that intra-
rater variability irv(r) defines (for each rater r and case x)
an interval-valued estimate of the rater’s reported confi-
dence, as ¢,(x) = [cr(x) — irv(r), ¢, (x) + irv(r)]. Second,
it is easy to observe that ¢ is monotone with respect to
the reported confidence levels: therefore o (S,R,C,) <
0(S, R, C*) where C, is the matrix obtained from C by
exchanging each ¢,(x) with inf{¢,(x)}, and C* is simi-
larly obtained by exchanging each c,(x) with sup {2, (x)}.
Therefore, by using the interval-valued confidence (which
describes the elicitation uncertainty of each rater through
its intra-rater variability) we can obtain a robust interval-
valued estimate of o as:
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6 (SR C) =[e (SR C o (SR CY] )

We note that the original formulation of o(S,R, C)
can be easily obtained from o (S, R, é) as o(S,R,C) =

.
w, since all interval-valued confidence lev-

els are symmetric.

Fineness

Intuitively, the degree of fineness (®,.4(G, R)), for a Gold
Standard G and a set of raters R = {ry,..., Iy} involved
in its production, is an estimate of its actual accuracy,
which obviously is unknown. More technically, ®,.; is
the expected fraction of instances whose labels in G,
obtained from the Diamond Standard D by means of a
given reduction (red), match the theoretically correct (but
not necessarily known) labels. In this section we will how
the degree of fineness varies with different reductions and
how it can be computed for some noteworthy reductions.
In Appendix B, we will discuss the relationship between
the degree of fineness and computational learning theory,
showing how this degree has an impact on the capabil-
ity of any algorithm to learn the correct mapping between
instances and labels.

Let then R = {ry,..,7m} be m raters independently
labeling the cases in dataset D; let also assume that each
r; has a constant error rate 7n; and let Y = {yo,...,yy}
be the set of possible class labels. For a given case x let
R(x) = (r1(x), ..., rm(x)) be the vector of class assignments
and R(y) = {r,- € Rlrj(x) =y € Y} be the set of raters that
assigned label y to case x.

A reduction [26] is a function red : Y + C(Y), thatisa
function that maps any vector of class assignments R(x) to
a given structure over the labels: examples of C(Y) would
be Y (if the reduction returns a single label, as in the case
of majority voting) or the collection of probability distri-
butions over Y. Different reductions have been considered
and proposed in the literature [26], in this article we will
focus only on a set of single-label reductions, namely the
majority reduction, which simply considers the majority
vote among the raters in R (that is, the mode),

maj(x|R) = argmaxycy|R(y)| (5)

and the probabilistic reduction, according to which each of
the possible labels is associated with a probability equiv-
alent to the proportion of raters who voted for that label,
that is:

IR(yo)|
IR

) oo (6)

prob(x|R) = < IR(yn)|>

IR|

We will also consider the confidence weighted and accu-
racy weighted reductions, which are simply defined as
weighted versions of the majority reductions:
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conf (x|R) = argmaxycy Z conf(x) (7)
reR:r(x)=y

acc(x|R) = argmaxycy Z 1-17, (8)
reR:rr(x)=y

where conf,(x) is the degree of confidence reported by
rater 7 for its annotation of case x, and 7), is an estimate of
the accuracy of rater r.

How can we compute the degree of fineness fineness,,,
for a given reduction? As we mentioned, this is defined as
the probability that the labels obtained by means of red
are actually correct. This is the inverse of the probability
of error for red, that is

1
fineness,,;(G,R) = @ Z 1 — P, (error) 9)

xeG

where Pq(error) = Plred(R(x)) # yx], where yy is the
correct (in principle unknown) label associated with x.
Thus, in order to determine the formula of ®,,, for a given
reduction red, it suffices to quantify the probability that
this reduction commits an error on an arbitrary case x.
Consider the case of the majority reduction maj(x).
Then P;,4(error) amounts to the probability that at least
’"TH2 raters made a classification mistake, this probability
can be computed via the Poisson binomial distribution:

m
Pyyai(error) = Z Z MicaniMjga (1 — ) (10)

k=11 Ay

where Fj is the family of sets in which exactly k observers
gave the wrong labeling. Via the Chernoff bound, and
omitting some terms, we can upper bound P(error) as:

m+1

m+l g m+l
Pgj(error) < e 2 log %5 (11)

where 1 = ), n;. Thus, it is easy to observe that the
degree of fineness of the majority reduction increases
exponentially with both increasing number of raters and
their accuracies (i.e. 1 — n;).

We now consider the analogous result for the probabilis-
tic reduction. In this case, without loss of generality, let
Y = {0, 1} and let for case x, prob(R(x)) = (po,p1). We
can quantify the error probability P, (error) by applying
a re-sampling argument [27]: that is, we sample for case x
anew label (which is then used as the label for x) according
to distribution prob(R(x)). What is then the probability
that an extracted sample would have the wrong label? This
probability is given by:

m _
P;mb(err) = Do * (Wl >771y2n0 1 —np)" "m0
0
(12)

m _
+l71< )771’?1 1 —np)" ™
mi

2We consider this formulation over the possibly more common one T +1
because, as the majority is defined only when m is odd, we require that the
formula returns an integers when m is odd.
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Notice that in general P;mb(err) > Pygj(err): neverthe-
less, the main advantage of the probabilistic reduction is
that we do not discard the minority labels (this is espe-
cially significant when the margin of majority is small).
It is also easy to show that the error rate of the majority
reduction can however be approximated in the asymptotic
case through a re-sampling strategy: namely, we can sam-
ple multiple times the distribution for case x and then take
the majority reduction of the new labels sampled via the
probabilistic reduction. Given a number k of re-samples
we can define the probability of error as:

k

k ; k—i
P;mb(err) = Z (i)Plllmb(err)l (1 — P;mb(err))

k1
="

(13)

Then the following result holds:

Proposition 1 Vg, € € 0,1) 3k such that

P’;mb(err) — qu/(err)‘ < €.

While we do not directly present an analytical form
for the degree of fineness of the confidence and accuracy
weighted reductions, it is easy to observe that if 7, (resp.
conf,) are co-monotone with 7, then the degree of fine-
ness of this two reductions is greater than the one for the
majority reduction.

Representativeness
The quality of the data used to train a ML model is a mul-
tifaceted concept. The degrees of concordance and fineness
are scores conceived to quantify this quality from the per-
spective of accuracy in conditions of uncertainty due to
the lack of a true reference (this is why we also need to
evaluate the reliability of the original data). A third com-
ponent of data quality, no less important than the other
two, is representativeness, especially in light of the need
to have a decision support of real utility in real-world
practice. Intuitively, “representative” is a term that equally
applies to individuals, with respect to a group from which
they are ideally drawn; and to groups, with respect to
wider groups, or populations, from which these groups
are drawn as samples. Therefore, we will focus on rep-
resentativeness in terms of 1) the degree to which a new
case that has not been drawn from the training data is
nevertheless represented in this latter data (we can also
speak of compatibility between the former and the latter,
see Fig. 1); and 2) the degree to which the training data is
representative of the reference population; or for the sake
of availability, of a proxy set randomly drawn from this
population.

Both above uses require the comparison of the distri-
butions of two populations: this is a topic that has been
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widely studied in statistics literature. Indeed, there exist
two main approaches for comparing (general, that is both
uni-variate and multi-variate) distributions [28]: integral
probability metrics and divergences. The first approach
has been originally proposed in the statistical literature
to prove convergence theorems for distributions: indeed,
most non-parametric tests for distribution equality can be
described in terms of integral probability metrics (e.g. Kol-
mogorov Smirnov test [29], or Maximum Mean Discrep-
ancy test [30]). On the other hand, the second approach
is based on information-theoretic divergences (e.g. the
Kullback-Leibler and Renyi divergences [31]) or met-
rics (e.g. Jensen-Shannon distance [32]). While these two
approaches have the same goal of assessing whether two
distributions are similar, they have different properties:

e Integral probability metrics based approaches are
better suited at comparing continuous distributions;
are completely non-parametric (they require only the
empirical distribution functions, edf); and, at least in
the univariate case, they can be estimated efficiently
and effectively [28];

e Divergences, on the other hand are better suited at
comparing discrete distributions (estimation of
divergences for continuous distributions may either
require using the edf to fit a given parametric form,
binning of the edf, or employing non-parametric
estimation methods that however have limited
convergence guarantees [33]), and their estimation is,
in general, harder computationally [34].

Thus, while methods based on integral probability metrics
have been considered more effective [28] for distribu-
tion equality testing, divergences are comparatively more
effective and powerful (in the statistical sense) for the
implementation of goodness of fit tests [35] (i.e., a spe-
cific form of distribution equality test where the reference
distribution is in a parametric family).

Focusing on how representativeness can be computed,
the simplest way is to consider, when available, the ref-
erence distributions of the single features: this is the so-
called univariate representativeness. To this aim, multiple
tests can be applied: when the features are categorical, the
%2 test or the G test [36] can be used. On the other hand,
if the features are ordinal or continuous, non-parametric
tests (like the Kolmogorov—Smirnov test) can be applied.
Also divergences can be employed for this purpose: in this
case the p-value of the test must be computed through a
bootstrap or permutation procedure, as the distribution
of these measures in the general non-parametric setting
is not known. In all these cases, the p-value represents
a degree of the extent the distribution of each feature
can be considered as similarly shaped with respect to the
(corresponding features in the) reference population. This
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approach rests on the strong assumption that the fea-
tures are mutually independent, and requires strategies to
aggregate the representativeness degrees of each of the
features: this could be done by applying an aggregation
function [37] (e.g. the mean, or a t-norm) to the obtained
p-values.

A more sound approach would rather use the full joint
distributions for the two populations under comparison:
this approach defines a multivariate representativeness.
This kind of representativeness represents the similarity
between the two distributions more accurately than the
uni-variate approach, as it allows taking the interaction
among the features in due consideration . For this purpose,
one could apply the multivariate versions of the corre-
sponding statistical tests (e.g., see [38] for a multivariate
extension of the Kolmogorov—Smirnov test, or [39] for a
test based on order ranks comparison). A major limit of
these tests is that they can be considered computationally
feasible only when the number of features is relatively low
(e.g. 2 or 3): the cost for computing the relevant statistics
scales poorly with the number of the features or instances.
Tests based on kernels have been proposed to avoid this
limitation (e.g. the Maximum Mean Discrepancy method
[30]): however, these require to specify an appropriate ker-
nel function and their power have been shown to scale
poorly with respect to dimensionality [40]. Similar limits
also affect tests based on divergences, for which, as pre-
viously discussed [28], obtaining high-quality estimators
may be difficult, especially so in high dimensional contexts
[41, 42].

Thus, to consider the full dimensionality of the dataset,
and avoid its “curse’, we propose a novel metrics: the
degree of correspondance (V). The main idea is to match
each data point in the smaller dataset with the most sim-
ilar ones in the larger dataset to substitute these latter
points with those from the former set. Then, we assess if
this substitution has changed the topology of the result-
ing population. This approach is similar to comparing the
topology of the two considered groups with the Maximum
Mean Discrepancy approach [30]. Compared with this lat-
ter approach, however, our solution does not consider the
entire distributions but only the points that can be con-
sidered to be more important for the comparison: for this
reason, our approach can be considered as less sensitive
to outliers (i.e., to instances belonging to low-probability
regions).

More precisely, the method to compute the ¥ is the
following one:

1 Compute the distance distribution in the larger
group (e.g., reference population);

2 Match each instance in the smaller sample (e.g. the
training set) with the most similar instance in the
larger sample;
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3 Then substitute the instance in the larger dataset and
compute the deviation § between the pre- and
post-substitution distributions;

4 Perform a bootstrap procedure to compute the
approximate distribution of deviations and compute
the p-value of §;

5 The obtained p-value is W. The degree of
correspondence is then the probability that the two
datasets (or more diverse ones) come from the same
population.

In Appendix C, we provide more details on the algo-
rithm described above.

Data collection and illustrative experimentation

In order to provide an example of application and
illustrate (through a formative example) the proposed
ideas, we devised a realistic user study in which we
involved 13 radiologists from the IRCCS Orthope-
dics Institute Galeazzi of Milan (one of the largest
Italian research hospitals specialized in musculoskeletal
disorders).

In this user study, we asked each of the 13 raters to sep-
arately and independently annotate a sample of 417 cases
randomly extracted from the Stanford MRNet dataset
[43]. This dataset, by the Stanford University School of
Medicine, encompasses 1,370 knee MRI exams performed
at the Stanford University Medical Center: in particular
1104 exams are abnormal, of which 319 Anterior Cruci-
ate Ligament (ACL) tears and 508 meniscal tears. Among
these cases, only the normal cases and those cases with
either ACL or meniscal tears were considered: specifically,
the raters were asked to establish the MRNet cases that
were positive, and indicate whether these regarded either
ACL or meniscal tears. More in detail, the raters had to
say whether the presented imaging presented a case of
ACL tear (yes/no), or a meniscal tear (yes/no): hence two
classification decisions in total.

The radiologists were also requested to assess each own
rating (of each case) in terms of the confidence with which
they classified the case, on an ordinal scale. Our sam-
ple was balanced in order to respect the distributions of
abnormal cases and type of abnormality in the original
MRNet dataset.

The labels provided in the MRNet dataset were con-
sidered as the correct labels associated to the cases. This
allowed us to compute the raters’ accuracy in two ways:
by comparing the performance of the raters with the
above reference; and by comparing the performance of
each rater with the majority rating of the others. The first
method is obviously more precise (as its result could be
thought of the actual accuracy of the raters) but it is also
unfeasible in most real cases for the unavailability of such
a reference. As we will see, the second method yielded an
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overstimation of the raters’ accuracy, which nevertheless
was not significant (see Table 2).

In order to evaluate the intra-rater variability of the
raters we selected 2 cases from the 417 in the annotation
sequence among thse that had been considered of at least
medium complexity by the radiologist author: for each of
these 2 cases, 5 copies were randomly inserted into the
annotation sequence. Thus, the dataset annotated by the
raters contained a total of 427 images.

First, we evaluated the representativeness of the ran-
dom sample we extracted from the MRNet dataset with
the dataset of the other MRNet instances, both via
the univariate representativeness, using the Kolmogorov-
Smirnov test, and the multivariate representativeness,
using the degree of correspondance ¥ (based on the
Kolmogorov-Smirnov and Jensen-Shannon distance, and
the Maximum Mean Discrepancy) and, for compar-
ison purposes, a non-parametric test based on the
Kullback-Leibler distance (using the estimation procedure
described in [33]) and the Maximum Mean Discrepancy
test [30]. In order to compute all representativeness met-
rics, we first transformed the original images into 10-
dimensional vectors via Principal Component Analysis
(PCA) and then performed the statistical tests on this
vector-valued transformed representation.

Second, we evaluated the reliability of the Diamond
Standard: specifically, we computed the value of g, k and «
for the entire dataset. For all possible groups of size 1, 3, ...,
11 raters (among the 13 respondents) we also computed
the average value of g, the average value of the ¢ (for all
the discussed reductions) and the average Gold Standard
actual accuracy (i.e. the accuracy with respect to the ref-
erence labels in the MRNet dataset) for all the discussed
reductions. In doing so, we could assess the relationship
between these 3 dimensions.

Results

In regard to the univariate representativeness, we found
an average p-value of 0.50 (minimum: 0.11, maximum:
0.97) across all the features. By contrast, as regards
the multivariate representativeness, the Kullback-Leibler
test reported a p-value of 0.66, the Maximum Mean

Table 2 Estimates of the average accuracy of the raters with two
different methods: comparison with the MRNet reference (which
can be thought of as the raters’ “actual” accuracy); and
comparison with the majority of the (other) raters. The difference
between the two methods was not statistically significant at

o = 0.05 (p = 0.68) according to a x? test for proportions

Estimation method Rater's Average Accuracy (95% Cl)
0.81[0.80,0.82]

0.8710.86,0.88]

Actual accuracy

Accuracy wrt majority
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Discrepancy reported a p-value of 0.79. For the degree of
correspondance (based on Kolmogorov-Smirnov, Jensen-
Shannon and Maximum Mean Discrepancy, respectively)
we found a W of, respectively, 0.87, 0.74 and 1.00. The
histograms of the distribution of distances in the origi-
nal MRNet dataset (after removing the instances in the
sample that we randomly selected) and after matching
and substituting the selected samples are shown in Fig. 2:
as the two distributions are almost equivalent®> a good
metric of representativeness is expected to have a high
value, close to 1. On the other hand, the large differ-
ence between the univariate and multivariate metrics of
representativeness can be explained by observing that
the latter ones directly rely on the topology of the data:
thus they are capable to account for the correlations and
dependencies existing among the features; conversely, the
uni-variate representativeness assumes all features to be
mutually independent and cannot quantify the large sim-
ilarity between the two datasets correctly. Moreover, we
note that the degree of correspondance ¥, when based on
integral probability metrics, yielded the highest similarity
values, thus showing the greater efficacy of the proposed
method.

The average actual accuracy of the raters was acc =
0.81 + 0.04 (95% confidence interval) computed with
respect to the MRNet reference. The distribution of the
confidence levels reported by each radiologist is shown in
Fig. 3. The average intra-rater variability was irv = 0.08 +
0.02 (95% confidence interval): this means that the raters
were consistent in the reported confidence degrees. For
this reason, the average accuracy computed by majority
was higher, but not significantly so (see Table 2).

The interval-valued ¢ between the 13 radiologists was
[0.51,0.64], with average (i.e., ) 0.57. As regards the val-
ues of Krippendorff’s « and Fleiss’ k, they were both equal
to 0.63, while the value of P, was 0.82. As said above, P, is
much higher than the other metrics because it computes
simple agreement, without discounting chance effects.
The relative difference between g and the other chance-
adjusted metrics is due to the different model of chance
we conceived for our proposal. As already discussed in
[5], our model of chance employs the confidence scores
reported by the raters: in the decision-theoretic model,
the underlying inter-rater reliability agreements due to
chance are modeled as the probability that each rater
makes a random guess (rather than an informed decision):
in fact, asking raters for their confidence can be seen as a
user-centered approach to estimate these probabilities. By
contrast, & and k metrics do not rely on the raters’ percep-
tions to determine whether these latter ones had proposed

3This is expected: the sampling procedure adopted to generate our sample
had the goal to avoid significant differences with respect to the original
MRNet distribution.
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an informed labelling or just guessed it; thus these met-
rics must resort to estimating the effect of chance from
the observed distribution of annotations, which could be,
in some cases, misleading.

The relationship between ¢ and the actual accuracy
of the Gold Standard obtained by means of the major-
ity reduction (for all possible group sizes) is shown in
Fig. 4. The correlation between the two dimension was
moderate (Pearson r = 0.46) and statistically significant
(p < 0.001): as already discussed in [5], this means that
the value of o for a given Diamond Standard can be used
as a preliminary estimate of the actual accuracy of the
Gold Standard obtained from the former set: this was
expected, as the g, differently from other inter-rater relia-
bility metrics, encompasses the raters’ estimated accuracy
in its formulation.

The degree of fineness and actual accuracy of the Gold
Standard (obtained by means of the different reductions),
for all possible group sizes, is depicted in Fig. 5. We can
observe that the estimates of accuracy provided by the
degree of fineness metric systematically over-estimate the
“actual” accuracy. This rests on the observation that the
assumptions underlying the degree of fineness are seldom
satisfied in real settings: i.e., constant and independent
raters’ accuracy. In our study (and, arguably, in most real-
world situations) these assumptions do not hold, espe-
cially in light of the obvious fact that doctors fail to
correctly label complex and difficult cases more often than
the simple ones (almost by definition).

The relationship between the degree of fineness and
actual accuracy (for all considered reductions and group
sizes) is shown in Fig. 6: for all of the reductions, the cor-
relation was high (r > 0.80) and statistically significant
(confidence level 95%).

As highlighted by this correlation, we note that the
degree of fineness can thus be considered as an adequate
upper bound for, and proxy of, the Gold Standard accu-
racy: the two quantities are significantly correlated for
all the considered reductions. Although this strong cor-
relation may ultimately rest on the availability of precise
accuracy estimates for the raters, the highlighted rela-
tionship shows that the degree of fineness can be seen as
expressing an optimistic upper bound on the true accu-
racy of the Gold Standard labels. This means that, in the
general case, we should expect the actual accuracy of the
Gold Standard to be no higher than its degree of fine-
ness, and presumably lower: suffice it to see that, if the
raters’ errors were strongly correlated, the resulting accu-
racy would be significantly lower than the one obtained by
assuming their independence.

We did not find any statistically significant difference
(confidence level 95%), in terms of actual accuracy, among
the different reductions, for any group size (see the
blue curves in Fig. 5). To this respect, we note that all
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reductions were implemented so as to provide a single-
valued output rather than more complex structures, like
a probability distribution over labels for the probabilistic
reduction. Interestingly, the performance of the accuracy-
weighted and confidence-weighted reductions were very
similar (and also similar to the majority reduction): this
highlights a potential correlation between the raters’ accu-
racy and perceived confidence: indeed, as shown in Fig. 7,
we found the two dimensions to be moderately correlated,
although the correlation was not statistically significant.
This also suggests the fact that, on most cases, confidence

and accuracy levels were not so dispersed to have the
related weighted reductions relevantly change the result
of the majority voting.

Finally, the relationship between the degree of fineness
(for the majority reduction) and the o is depicted in
Fig. 8. The correlation between the two metrics was weak
(Pearson r = 0.13) but statistically significant (p-value
< 0.001). This correlation can find an analytical justifica-
tion through Eq. 10, and therefore it can be generalized:
whenever the involved raters are significantly better than
random raters (as it is practically always the case in pro-

Doctor
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Fig. 3 Joyplot of the perceived confidence levels reported by the 13 radiologists over the considered dataset. Each curve represents the distribution
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fessional domains), a high level of reliability is associated
with a high likelihood that the degree of fineness of their
collective effort is correspondingly high.*

Discussion

In this section, we make some further comments on the
results obtained in our illustrative user study, and we
will discuss how these metrics can be used in practice,
also beyond the applications illustrated in the previous
sections.

In regard to representativeness, and hence the degree
of correspondance W, we note that this score could be used
also beyond the mere assessment of the quality of a train-
ing set (with respect to the reference population). Here
we mention four further possible applications. First, as
hinted above, the value of ¥ could also be used to com-
pute the similarity between a single data point and a given
dataset: for instance, it can be used to assess the com-
patibility between a new instance to be classified by the
ML model, and the model’s training set>. As said in the
“Background” section, we can see this compatibility as a
particular case of representativeness to be measured it in
terms of degree of correspondance: first we substitute the
new case in the training set; and then we compute the
deviation between the original training set and the set
obtained by this substitution to get the corresponding W
score. In general, low W values for some new object to

“However, notice that the vice versa does not hold, as we could still observe
high degree of fineness with low reliability o values, as in the case of raters
who consistently assign the right label to the cases but with low confidence
(see Eq. 1).

5It can be noticed that the most basic approach to consider a case x
compatible with the available data in terms of its closeness to the “center” (or
centroid) of the dataset is inadequate. For instance, x, while being quite distant
from this centroid, could be in a cluster region.

classify would warn the decision maker that any classifi-
cation proposed by the model for that object should be
taken with a grain of salt, as the object is different from
any known object, that is from any object in the experience
of the model.

Second: the W score can be used to select a test set that
is maximally different (i.e., for which the ¥ value is min-
imized) from the training set of the model. In doing so,
the testing procedure would yield an estimate of the lower
bound of the performance of the ML model on unob-
served objects: estimating the prospective performance in
the most conservative way could give the decision makers
a way to assess the generalization capability of the model.

Moreover, a naive but effective measure of the model
robustness, that is reproducibility of performance in dif-
ferent settings from the development one, could be the
ratio between the model accuracy (anyhow computed on
a test set) and W: by looking at Fig. 9, it can be noted that
high accuracy scores are not associated with high robust-
ness (qualitatively), unless the representativeness between
a sample of new cases (from a different setting) and the
original test set is low, at least lower than 0.2 as a rule
of thumb, and very high for values below the traditional
threshold of 5%.

Finally, but related to the previous uses, we propose to
compute the degree of correspondance between the train-
ing set of a ML model and a sufficiently large dataset of
cases that have been treated after putting in operation the
MALI support and for which the involved doctors received
an advice from the computational support. With the same
features considered, if the observed ¥ is lower than a
given threshold (like above), this could be an indication
that either the population of cases is significantly changed
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over time; or, alternatively, that the MAI support is induc-
ing potential confounding medical interventions [44]: these
are interventions that would not be performed (or not so
frequently) without the MAI advice, and that can signifi-
cantly change the outcome of the cases considered [45].°
This could suggest an update of the MAI, by training
its models on more current cases, or even for an update
of the data schema, where at least a Boolean attribute
should be added to take into consideration whether the
patient received a treatment after the MAI advice or not.
This case sheds light on how the assessment of the rep-
resentativeness of the available data with respect to the
reference target population can support DevOps practices
of MAI maintenance, so as to contribute to high quality
performance over time [46].

In regard to the dimension of reliability, an impor-
tant point regards how the relatively low value that we
observed for our Diamond Standard should be inter-
preted: specifically, one could wonder whether a reliability
of just 0.57 for a Diamond Standard, as expressed by the g,
should be considered sufficient to produce a high-quality
Gold Standards. This question is not different from won-
dering whether an « or « 0of 0.63 is a sign of sufficient “true
agreement” (besides the amount due to chance) to con-
sider the resulting Gold Standard reliable. In this paper, we
will not contribute to the long debate that has been con-
ducted for more than 40 years, both in the statistical and
medical literature, on what thresholds should be adopted
to address this aspect in merely quantitative terms

6This could occur frequently in case of prognostic models: these models could
urge doctors choose a specific treatment instead of another, or a more
intensive one that those otherwise applied by indicating a poor prospective
outcome for a given patient, and hence affects the outcome positively. In so
doing, the predictions made on patients admitted after the deployment of the
MAI would be wrong, on the pessimistic side.

[5, 47, 48]. That notwithstanding, a general rule of thumb
would demand that, in critical domains like medicine is,
raters involved in the construction of a reliable Gold Stan-
dard should truly agree in at least two-thirds of cases;
our degree of weighted concordance, since it is a case-wise
average, can allow to check whether the lower bound of
the confidence intervals of such an estimate are above
this minimum requirement. Thus, rather than giving one-
fits-all criteria about reliability, we emphasize the striking
fact that the chance-adjusted reliability of the Gold Stan-
dards (or, better yet, Diamond Standards) used to train
medical Al is usually low, very low [49]. For instance, in
[11], we reported the low agreement that multiple raters
achieved in two settings from different medical special-
ties like cardiology (i.e., ECG reading) and spine surgery
(i.e., operation reporting). In the former case, in read-
ing 3 ECGs of medium complexity the raters involved did
not achieve an « higher than 0.6; the surgeons called to
report the same operation they participated in through a
standardized form achieved an « lower than 0.8! To this
respect yet, it is important to notice that disagreements
do not usually occur because some rater is less skilled
than the others, and hence for interpretation errors (due
to what is called label bias [50]); in fact, this is seldom
the case. More often, it is the intrinsic ambiguity of the
interpretand phenomenon that brings raters to different,
yet equally plausible, interpretations [49]. Other factors
that could undermine the potential agreement between
raters, and hence the reliability of the Diamond Standard
(and then the accuracy of the Gold Standard), are related
to differences in how the raters react to the experimen-
tal conditions in which their opinions and interpretations
are collected (since the process occurs often in controlled
experimental settings); and more generally, to the fact of
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being involved in a session out of their every-day practice.
This latter phenomena is generally known as “Hawthorne
effect” [51], but it is not clear whether the “awareness of
being observed or involved in an experiment” affects the
ratings more in terms of increasing the accuracy (up to
levels that in real-world settings would not be tenable,
mainly for conditions of uninterrupted concentration and
focused commitment); or rather in the opposite terms

of its reduction (an effect known as “laboratory effect”
[52]) mainly due to lack of real motivations, engagement
or just of the fear of consequences in case of errors. For
this reason, the degree of weighted concordance, since it
is defined also at instance level (that is for each single
case), differently from the other metrics, could be prefer-
able: for instance, it could be used to select those cases
for which the agreement is maximum (or above a specific,
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Fig. 7 Scatterplot depicting the relationship between the actual accuracy and the confidence of the 13 raters involved in user study. The red line
represents the linear correlation line between the two dimensions: the correlation was moderate (Pearson r = 0.43) and not statistically significant
(p = 0.15), likely due to the confidence outlier at the bottom of the figure
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conservative threshold, like the one proposed by Krippen-
dorf for medical data of 0.8 [48]), so to train the Medical
Al only on those “high-quality” instances.

In regard to accuracy and the degree of fineness, we
noted that, even if in most cases we expect that this metric
over-estimates the actual accuracy of the Gold Standard,
the degree of fineness can still be considered as an adequate
upper bound estimate for the latter dimension. In order to
further comment on this aspect, in Fig. 10 we provide an
analytical bound for the number of raters needed to obtain
a desired level of degree of fineness in case of the majority

reduction, by relying on Theorem 23: for instance, in our
study, the above mentioned Figure shows how the num-
ber of raters necessary to obtain a “95% accurate” set of
cases, when the raters’ estimated average accuracy is 81%
(not too differently from the diagnostic accuracy observed
in many other studies [53]), is 10. Although this number
of raters to involve in annotation could seem unprac-
tical, the reader should notice that the bound depicted
in Fig. 10 should be interpreted as optimistic, in that
it relies on the same two assumptions underlying the
degree of fineness metric. When these assumptions are not
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satisfied, then the aggregated accuracy of the Gold Stan-
dard is even lower than we can analytically estimate, as
shown in Fig. 5. Figures 5 and 10 also highlight that the
traditional practice of relying on only 1 or, at most, 3 raters
may be deeply flawed: in fact, unless we involve 100% or
so accurate raters (that is, if we involve normal doctors),
at least 7 raters should be involved to get a degree of fine-
ness of 95%. We note that, even though these analytical
bounds can provide an indication of the minimum num-
ber of raters to derive a sufficiently reliable (in the sense
of “true”) Gold Standard from their ratings, nevertheless
one should be wary of the likelihood of systematic errors
by the raters or potential hidden stratifications [54] (e.g.
by case complexity) which would have an impact on the
result of the reductions performed.

With regard to the lack of significant differences
between all the considered reductions, we noted that this
relative similarity may be due to the fact that all reduc-
tions were implemented to provide a single-valued output
while, in general, some of these reductions (e.g. the prob-
abilistic one) can return more structured and informative
output (describing the relative likelihood in favor of the
different possible labels). In this light, the lack of signifi-
cant differences shows that more information-preserving
reductions, when restricted to return a single output,
perform similarly to the majority reduction (in terms of
Gold Standard accuracy), while being able to preserve
more information: this latter feat has been shown to be
beneficial for the training of ML models [55, 56].

For this reason, the practice of sharing not only the Gold
Standard, but also the Diamond Standards, when making
ML datasets available for the reproducibility and external
validation of ML models, should be adopted more widely.

This would allow for the selection of the most appropri-
ate reduction for the task at hand, similarly to how model
selection is usually performed.

With respect to the correlation between the degree
of weighted concordance and the degree of fineness, this
observation allows us to show that the two dimensions
they intend to quantify are correlated (as they both relate
to the quality of the Diamond and Gold Standard) but
orthogonal, in that they focus on different aspects: thus,
we can highlight the importance of properly taking in con-
sideration the reliability of a given Diamond Standard,
as this latter evaluation could also be used as a proxy of
the quality (i.e., accuracy) of the derived (or better yet
“reduced”) Gold Standard, and it hence affects all of the
subsequent analyses and considerations.

Finally, we comment on the fact that, as indicated in
Table 1, to compute the degree of weighted concordance
and the degree of fineness, additional data are necessary,
with respect to other common metrics, like the more com-
mon reliability scores. In particular, for o we need a small
additional effort by the raters involved, who are required
to also express the degree of confidence with which they
associate each case with the intended label. We deem this
effort of small entity with respect to the advantage it yields
from our personal experience: in our study we collected
this information by means of a semantic differential scale,
that is with a 6-value scale where only the extremes were
explicitly stated, from “100% certain’, down to “definitely
not sure” Obviously, many other scales can be adopted
to this aim, as the confidence scores are then to be nor-
malized into a number from 0 to 1. To this respect, the
reporting variability should be properly taken in consider-
ation: in our study we did this by setting up an experiment
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to measure the intra-rater variability, and showed how this
information can be used in the computation of g.

Moreover, for the computation of the degree of fineness
and degree of weighted concordance, we need to estimate
the rater accuracy. As previously anticipated, this can
be done in several ways, among which we mention the
following ones:

1 Through the use of standardized tests, in a sort of
pre-testing certification of the raters’ proficiency: this
is often the optimal choice but it is of difficult
application;

2 Employing a statistical model (like the Rasch model
[22]): while effective, this approach may require
additional information (such as the complexity of the
cases);

3 Equating each rater accuracy to the number of times
they agree with the labeling obtained by the majority

of the other raters[23];
4 Equating the raters’ accuracy to the fraction of times

they are in agreement with an external reference
(such as the result of an existing diagnostic test).

While in this article we employed the fourth method
(as in our case such an external reference was available),
in most real cases such as an external reference would
not be available: one could wonder if the obtained results
would then be significantly different, if one of the other
methods would have been used. For this reason, we tested
the difference, if any, between the estimates of the raters’
accuracy as produced by methods no. 3 and 4 above. The
results for this comparison are reported in Table 2: specifi-
cally, we found that method 3 over-estimates the accuracy
of the raters (this should be expected: if the raters are of
similar expertise and training background, they would be
likely be in agreement between each other) but, in any
case, the difference was not significant (p = 0.68). We
thus believe that, through the application of method 3,
good estimates of the raters’ accuracy can be obtained also
when an external reliable reference is not available, if the
raters are good experts of similar expertise, as in our case.

Implications for the XAl research field
It is common to denote Machine Learning (ML) meth-
ods as data-driven. And rightly so: most supervised ML
models can be seen as but data memorization structures
(or even data compressors) that are ingeniously “biased”
to forget some aspects of the data upon which they have
been trained (i.e., made fitted to) so that they can be con-
veniently applied to instances of new data, and be used
to effectively guess some relevant (target) feature that is
missing from the new data [57, 58].

This stance sheds light on our approach to eXplain-
able Al (XAI). We intend this expression quite literally:
rather than AI systems that are capable to provide human
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decision makers with clear explanations of their “predic-
tions” (a useful feature we purposely don’t cover here), we
intend XAl as Al systems that are “open to interpretation’,
that is “scrutable” to human investigation, also in that
they make elements (i.e., true propositions) available on
their sources or functioning by which the human decision
makers who consult its advice can be helped to account
for their final decision to somebody else (e.g., the “data
subject” mentioned in the General Data Protection Reg-
ulation of the EU - GDPR) and explain why they made
such a decision taking into account the machine’s advice.
In this mould, a XAI system takes an active stance to help
humans understand why they should (or should not) trust
its output.

In this specific study we focused on how to make
the broad class of applications of data-driven MAI, or
ML-based MAI, explainable, from the perspective of the
assessment of the quality of its training data, and in partic-
ular of the Gold Standard upon which the MAI has been
trained to give its users advice for any new input data.

In this sense, we interpret explanations as understand-
ing support [59], and this latter one in the light of the
critique by Kelp to both the “explanationist view” and the
“manipulationist views” of understanding, that is in terms
of supporting (human) understanding build a “wellcon-
nected knowledge” [60]. According to this view, under-
standing how a system works does not only involve know-
ing a set of true propositions about the system behaviors
(like in case of data about predictive accuracy and fea-
ture ranking for a given prediction), but also knowing how
these propositions are interrelated, within a framework of
sense-making. Our contribution is a piece of this overall
framework, regarding a topic that we found to have been
relatively little investigated in the specialist literature and
little discussed in the scholarly communities so far.

Conclusion

We build—and trust—-ML models as if we grounded them
on stone instead of sand. However, this trust is misplaced.
Indeed, potential concerns in the development of ML
models have been highlighted by an increasing number
of research works [61, 62], indicating a troubling lack of
(both theoretical and, more importantly, empirical) rigor
and a potential brittleness of the claimed results (due to a
widespread competition mindset and the consequent risk
of overfitting). The purpose of this paper was to further
explore how these and other concerns about ML relate
to the quality of the information sources that are used to
build such systems.

To this end, consider an ML model that, trained on
a large and representative set of medical cases, achieves
an accuracy of 96% on a hold-out test set. Who would
be disappointed by such a model, which exhibits such a
performance on a complex medical task? The answer is
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almost no one, and rightly so. However, we still neglect to
consider whether the data experience at the basis of the
model is as solid as stone or rather as crumbly as sand.
For instance, if, for our model, the Gold Standard is pro-
duced by three top “board-certified” radiologists, who are
89% accurate in their diagnosis on average,” the ML model
would be at most 93% accurate; if the raters were aver-
age diagnosticians, the model would perform even worse:
87%. Even worse, we would still believe the model had a
96% accuracy.

Should we stop building ML models and the related
MAI as we cannot afford robust foundations, such as
involving at least 9 raters for each and every Gold Stan-
darding task? Not at all: as Borges once wrote (in In Praise
of Darkness, 1974) “nothing is built on stone; all is built
on sand, but we must build as if the sand were stone”
While data scientists use their ground truths as if they
were stone, we should never forget that this is illusory,
and both developers and users should become aware of
the fragile nature of ML applications, and in particular,
of the intrinsic limits of MAIL. When we say intrinsic, we
refer quite literally to the quality of internal data, not to
mention the quality of the algorithm.

The first step to becoming aware of the quality of MAI
requires having “the words to say it” To accomplish this
broad aim, we introduced a number of concepts related to
the ground truthing process: the initial multi-rater repre-
sentation (i.e., Diamond Standard) and the transformation
from this representation to the Gold Standard (i.e., Reduc-
tion, many types of which can be conceived besides major-
ity voting). We also provided intuitive, analytical, and
operational definitions of some new quality constructs
related to the above representations: a new case-wise reli-
ability of the Diamond Standard (i.e., degree of weighted
concordance); the dimension of representativeness of a
training set with respect to its reference population, mea-
sured in terms of the degree of correspondence; and a new
dimension applicable to the Gold Standard, on which ML
models are trained to quantify its quality even when lack-
ing a theoretically true representation (degree of fineness).

The dimensions listed above are intended to facilitate
reflection on the broad aspects of reliability and rep-
resentativeness before focusing on model technicalities
and potentially misleading or partial performance met-
rics, such as accuracy, which only refers to the match
between the Al predictions and the data taken from the
Gold Standard.

Moreover, we instantiated these metrics in a realistic
scenario, applying them to a reference dataset of MRI
images (MRNet), which we had relabeled by 13 board-
certified radiologists. In doing so, we provided proof

7This is but a coarse approximation of their potential performance, as it is
plausible that their error rate could vary for many reasons, among which the
case complexity.
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of the feasibility of these quality scores and prepared
the ground for new research aimed at understanding
how these measures can support and positively inform
human decision-makers in naturalistic real-life practice
for the safe and effective application of MAI in clinical
settings.

More concretely, we should devise interaction proto-
cols that help us minimize the odds that the advice of
MAIs will bias decision-makers. Instead, MAI should be
seen as a peripheral and adjunct [63] component of a col-
lective (mostly human) intelligence, which is not overde-
pendent on its support for interpretative and judgemental
tasks.

More importantly, since we usually assume that our
Gold Standard is perfect, reflecting on its quality necessar-
ily entails developing an informed prudence with regard
to its reliability and adequacy for supporting decision-
making in delicate domains where decisions can have legal
effects on, or affect the health of, data subjects. Thus, our
ultimate aim is to contribute to raising awareness of the
impact of our assumptions, models, and representations
in intensive cognitive tasks like medical diagnostic and
prognostic decision-making.

Appendices

A Appendix: derivation of the degree of concordance
based on the Dempster-Shafer theory

First, we briefly recall the definition of a mass function,
i.e. a function m : 2% [0,1] (where Q is the space of
alternatives) s.t. ) 4 oo m(A) = 1, a mass function is said
to be simple if it is of the form:

S A=X

1—-sA=Q (14)

i (A) = {

The Dempster rule of combination is defined as the
orthogonal sum of two mass functions, that is:

my @ my(X) = m1(A)my(B)

1
>_aB:anB=p M1 (A)ma(B) Z

A,B:ANB=X

(15)

First, we note that the decision-theoretic model under-
lying most inter-rater reliability metrics (see [5, 20]) can be
formulated in terms of simple mass functions (rather than
as 2-tiered probability distribution, as usually assumed): if
rater r expressed label y, by taking an informed decision
(rather than an informed guess) with probability ¢,, then
this is equivalent to assuming that the rater adopts the
simple mass function m;j where s = ¢,(x) and X = r(x). It
is easy to observe that the Dempster rule of combination
is inappropriate if we want to compute the mass attached
to the event that two raters r1, rp agreed genuinely (thus,
not due chance). Indeed, my; @ ) is not equal to 0 when
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the two raters are in disagreement and, further, when the
two raters are in agreement on label y it happens that:

myt @ miP(y) = c1(e2(y) +c1(y) (1 — c2(9)
+ A —a®) e #a@e®),

where the last term in the inequality would be the cor-
rect expression of the genuine agreement between 7y, rs.
Therefore, under the standard interpretation of evidence
theory it is impossible to obtain a measure of agreement
that properly discounts agreement due to chance. Never-
theless, we show that the proposed metrics arises from
the evidence-theoretic perspective when we adopt two
non-standard combination rules previously considered
in the literature [21]. Specifically, show how the degree
of concordance o can be derived from the evidence-
theoretic framework by using, instead of Dempster rule,
the Dubois-Prade [64] and mixing [65] rules of combina-
tion:

(16)

mVmX)= Y m(A)maB) (17)
A,B:AUB=X
1 n
LJ}er;«(X) == ;mm (18)

Denote with [y]f = {r € R: r(x) = y}, then it is easy
to show that Vry,r; € [ri(x) = y]fce it holds GAS (r, ;) =
iy \/m;j : thus, the Dubois-Prade combination of the mass
functions corresponding to r;,7; correctly represents the
probability that the two raters agreed genuinely (not by
chance). Having quantified the degree of genuine agree-
ment among any pair of raters, how can we aggregate
the evidence for genuine agreement allocated to a given
y € Y? It is easy to observe that applying Dubois-Prade
on [ y]fce (for each y € Y) would underestimate the degree
of agreement: indeed, in this way we would compute the
evidence for the event that all observed agreements were
genuine, and not the expected number of such agreements
which is the quantity that we want to compute. It is thus
easy to show that the correct way to aggregate the mass
functions of raters in [ y]¥ (for each y) is through the mix-
ing rule of combination, as this rule is define as computing
the average of multiple mass functions:

GAS ([y1%) = E-J mi v m;/,
(i) (1R ritr;

Therefore, the expression of o can be obtained as the
average of GAS ([y]f) with respecttoy € Y and x € X,
that is:

1 m\ " (1R
o(S,R,C)=|S|2<2> Z( ; )GAS([y]ff)

x€S yeY

(19)

(20)
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Thus, o (and by extension also o, though the cor-
responding derivation is more involved) can be inter-
preted in the evidence-theoretic framework as the average
genuine agreement (which, as shown previously can be
understood as the expected degree of evidence attached
to the event that the agreement between any two non-
conflicting raters is not due to chance) over a set of
completely conflicting information sources.

B Appendix: degree of fineness and PAC learning

In this Appendix we discuss the connection between the
degree of fineness and computational learning theory, by
showing what the degree of fineness of a given reductions
tells us about the generalization capacity) of a Machine
Learning model trained on the result of such a reduction.
The goal of computational learning theory is to establish,
given standard assumptions about the data generation
process (e.g. that instances are sampled ii.d. from an
unknown distribution), resource complexity bounds (usu-
ally, in terms of sample size) sufficient for a given Machine
Learning algorithm to perform well after observing only a
finite sample. One of the central concepts in this theory is
that of PAC (probably approximately correct) learnability:

Definition 1 ([66]) Let H be a class of models, D a dis-
tribution over the sample space X x Y. Then H is PAC
learnable if, for each distribution D, €,8 € (0,1)% there
exists myg = poly(1/€,1/8) and an algorithm A which,
when given a finite sample S of size > myy, returns an
hypothesis h € H s.t. with probability greater than 1 — §
the error of h over D is smaller than €.

While the standard definition of PAC learnability only
applies to the case where the labels provided to the learn-
ing algorithm are correct, the setting that we consider
does not satisfy this assumption as the raters, in general,
are not expected to be perfect. For this purpose, we recall
a well-known theorem characterizing PAC learnability in
the presence of labeling errors (i.e. noisy oracles):

Theorem 1 ([67]) Let D be a dataset labeled by a noisy
oracle with error rate n €[0,0.5), let H be a class of mod-
els with Vapnik-Chervonenkis dimension [68] d. Then H is
PAC-learnable under noise n with sample complexity:

o ( a- log% )

€ (1 —2n)°
Then, it is easy to observe that, for any single-
valued reduction (such as the majority, confidence- and
accuracy-weighted ones) the learning problem of training
a Machine Learning algorithm over the set (G, R(G)) is an

instance of the learning with errors problem. Therefore,
the following corollary of Theorem 1 evidently holds:

(21)
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Theorem 2 Let red be a single-valued reduction with
degree of fineness ®,q(G,R). Let H be a class of mod-
els with Vapnik-Chervonenkis dimension d. Then H is
PAC-learnable under noise n = 1 — ®,,5(G,R) = 1 —

ﬁ > vec(l = Preqlerror)) = ﬁ > ve Prealerror) with
sample complexity:
1
o % (22)
€2 (1—2n)*

Thus, this theorem provides a direct connection
between the degree of fineness metrics and the complex-
ity of the associated learning problem: specifically, as we
know that the degree of fineness of a reduction increases
(approximately at an exponential rate) with the number
of involved raters, this result implies that both the sam-
ple complexity and the generalization error of a learning
algorithm trained on the result of a given reduction can be
bounded in terms of the number of involved raters.

With respect to this latter aspect, we note that the prob-
lem of determining an upper bound on the minimum
number of raters needed to obtain a certain level of degree
of fineness has been studied for the specific case of the
majority reduction: indeed, Heinecke et al. [23] proved the
following result:

Theorem 3 ([23]) When employing the majority reduc-

tion, to obtain a desired level of degree of fineness ®, for
each case x € G one should involve

o log 1S5
(1 —2nr)?

raters, where 1), is the average error rate among R.

(23)

We note that the main limitation of the proposed
approach to compute the degree of fineness lies in the
assumptions of raters’ independence and existence, for
each rater r, of a constant error rate nz. To avoid this
limitation, more expressive techniques based on proba-
bilistic graphical models [69] or Dempster-Shafer theory
[16] could be used to account for potential dependencies
among the raters and variable error rates (though these
approaches may require a computationally complex esti-
mation phase to determine the structure and parameters
of the underlying joint distribution, and for this reason
they may be unsuitable if we only need a rough estimate
of Gold Standard accuracy).

C Appendix: matching method in the computation of the
degree of correspondence

In this Appendix, we provide a description of the formal
method by which to match the instances in two datasets
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and to compute the deviation between the pre- and post-
substitution distributions. In regard to the matching pro-
cedure, for each instance P; in the largest set P and
instance Gj in the smallest one G, let d (i, j) be the distance
(according to any given metric) between i,j. We want to
find a match between P and G such that each object in G
is matched with exactly one object in P and its distance be
minimal, i.e. we want to solve the following optimization
problem:

Vi Zj xij <1
min in,jd (i,j) where § ¥j Y, x; =1 (24)
ij xi; € {0, 1}

which is an instance of the minimum cost assignment
in unbalanced bipartite graphs problem [70]: this prob-
lem can be solved in polynomial (actually, log-linear) time.
Then let P’ be a new dataset which is equivalent to P
except that Vi,jx;; # 0 P; is exchanged with G;. Let
dist(P) be the distribution of distances in P and dist( / )
the distribution of distances in P’

In order to compute the deviation § between dist(P)
and dist (P’ ) any integral probability metric or (symmet-
ric) information-theoretic divergence can be employed:
nonetheless, despite the test for similarity in the proposed
method being uni-variate (as we compare only the distri-
butions of distances), we expect an implementation based
on integral probability metrics to be more effective. In
order to compute the value of W (that is, the p-value
of the computed deviation §), as the test is completely
non-parametric and the distribution of the statistic is not
known, the latter can be approximated through a standard
bootstrap procedure.

As regards the properties of this testing procedure, we
first observe that the total computational cost of comput-
ing W is quadratic: more precisely, the complexity of the
procedure is dominated by the computation of the pair-
wise distances which requires O ((|P| + |G|)2) time. Thus,
the algorithm has good scaling properties with respect
both the dimensionality and dataset size: we further note
that, when the size of the groups is large, approximate
matching algorithms [71] can be used to speed-up the
computation of ¥ (poly-logarithmic time can be achieved
using randomized or online algorithms, with guaranteed
solution quality bounds). Second we note that the follow-
ing desirable property holds:

Theorem4 ¥ =1iffGC P

Proof The implication G C P = V¥ = 1 is obvious.
For the converse, simply note that for ¥ = 1 the devia-
tion between dist(P) and dist (P/ ) must be strictly smaller
than the deviation between any two possible splits of the
merged dataset. O
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