
RESEARCH ARTICLE

ReCiter: An open source, identity-driven,

authorship prediction algorithm optimized for

academic institutions

Paul J. AlbertID
1*, Sarbajit DuttaID

2, Jie Lin3, Zimeng Zhu4, Michael BalesID
5, Stephen

B. Johnson6, Mohammad Mansour2, Drew Wright5, Terrie R. Wheeler5☯, Curtis L. Cole2☯

1 Samuel J. Wood Library and Information Technologies & Services, Weill Cornell Medicine, New York, New

York, United States of America, 2 Information Technologies & Services, Weill Cornell Medicine, New York,

New York, United States of America, 3 Department of Radiology, Weill Cornell Medicine, New York, New

York, United States of America, 4 Connective Media Program, Cornell University, Cornell Tech, New York,

New York, United States of America, 5 Samuel J. Wood Library, Weill Cornell Medicine, New York, New

York, United States of America, 6 New York University Langone Health, New York, New York, United States

of America

☯ These authors contributed equally to this work.

* paa2013@med.cornell.edu

Abstract

Academic institutions need to maintain publication lists for thousands of faculty and other

scholars. Automated tools are essential to minimize the need for direct feedback from the

scholars themselves who are practically unable to commit necessary effort to keep the data

accurate. In relying exclusively on clustering techniques, author disambiguation applications

fail to satisfy key use cases of academic institutions. Algorithms can perfectly group together

a set of publications authored by a common individual, but, for them to be useful to an aca-

demic institution, they need to programmatically and recurrently map articles to thousands

of scholars of interest en masse. Consistent with a savvy librarian’s approach for generating

a scholar’s list of publications, identity-driven authorship prediction is the process of using

information about a scholar to quantify the likelihood that person wrote certain articles.

ReCiter is an application that attempts to do exactly that. ReCiter uses institutionally-main-

tained identity data such as name of department and year of terminal degree to predict

which articles a given scholar has authored. To compute the overall score for a given candi-

date article from PubMed (and, optionally, Scopus), ReCiter uses: up to 12 types of com-

monly available, identity data; whether other members of a cluster have been accepted or

rejected by a user; and the average score of a cluster. In addition, ReCiter provides scoring

and qualitative evidence supporting why particular articles are suggested. This context and

confidence scoring allows curators to more accurately provide feedback on behalf of schol-

ars. To help users to more efficiently curate publication lists, we used a support vector

machine analysis to optimize the scoring of the ReCiter algorithm. In our analysis of a

diverse test group of 500 scholars at an academic private medical center, ReCiter correctly

predicted 98% of their publications in PubMed.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Albert PJ, Dutta S, Lin J, Zhu Z, Bales M,

Johnson SB, et al. (2021) ReCiter: An open source,

identity-driven, authorship prediction algorithm

optimized for academic institutions. PLoS ONE

16(4): e0244641. https://doi.org/10.1371/journal.

pone.0244641

Editor: Cassidy R. Sugimoto, Indiana University

Bloomington, UNITED STATES

Received: December 5, 2019

Accepted: December 14, 2020

Published: April 1, 2021

Copyright: © 2021 Albert et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The ReCiter system

leverages personal information such as email,

names of students mentees, and other information

that we are not liberty to share. For this reason,

Weill Cornell Medicine requires that we cannot

share all of the raw data involved in these analyses.

However, we are able to include the following:

sample output data (see S1 Appendix); sample

output database (see S4 Appendix); and, the

properties file (see S6 Appendix). Additionally, all

software and configuration files are open source

https://orcid.org/0000-0001-8220-272X
https://orcid.org/0000-0002-7843-6803
https://orcid.org/0000-0001-7988-5195
https://doi.org/10.1371/journal.pone.0244641
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244641&domain=pdf&date_stamp=2021-04-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244641&domain=pdf&date_stamp=2021-04-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244641&domain=pdf&date_stamp=2021-04-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244641&domain=pdf&date_stamp=2021-04-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244641&domain=pdf&date_stamp=2021-04-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244641&domain=pdf&date_stamp=2021-04-01
https://doi.org/10.1371/journal.pone.0244641
https://doi.org/10.1371/journal.pone.0244641
http://creativecommons.org/licenses/by/4.0/


1. Introduction

Author name disambiguation is the process of inferring, often using clustering techniques,

whether the same author who wrote one paper wrote another paper. Many software initiatives

have been engineered for the purpose of disambiguating author names in Medline data, and a

subset of these have code that is publicly available for use. Author disambiguation software can

be divided into those that perform unsupervised and supervised approaches. Techniques for

unsupervised approaches generally involve clustering-based algorithms. One paper [1] dis-

cusses a K-way spectral clustering approach using features such as co-author names, paper

titles, and publication venue titles. Another [2] describes an agglomerative clustering algo-

rithm approach with pairwise similarity to disambiguate author names specifically for PubMed

using features such as title, affiliation, journal, co-authors, etc. Techniques for supervised

learning include naive Bayes probability model and support vector machines (SVM) [3]. A

more recent author disambiguation approach uses deep learning [4]. A hybrid approach [5]

using both supervised and unsupervised approach was also developed using a co-authorship

graph and subset selection. Generally speaking, significant progress has been made, with sev-

eral systems having a claimed accuracy in excess of 97% [6, 7].

While there has been marked success in clustering accuracy (bearing in mind that any

quoted accuracy figure depends on context), an entirely different question may be far more

pressing to many academic institutions: which papers did a given person write? Academic

institutions are called upon to regularly update lists of publications for thousands of their

scholars including papers authored at prior institutions or, in the case of alumni, at succeeding

institutions. Some scholars are established principal investigators while others are second-year

graduate students and do not even have a single publication to their name. Often times, insti-

tutions must maintain such lists with limited feedback from the scholars themselves; in other

cases, feedback is provided, but it is not timely. Authorship prediction is non-trivial. For exam-

ple, Weill Cornell Medicine has a father and son duo who share identical first and last names,

and both publish in the field of plastic and reconstructive surgery. While an author disambigu-

ation algorithm could output two perfectly disambiguated clusters for these individuals, these

articles also need to be programmatically tied back to them.

To address this need, institutions may pay vendors, or rely on librarians or administrators

to curate these lists. Most recently, the ORCID author identifier has been widely touted as an

effective solution to the problem of mapping papers to people [12], however, this approach has

several problems. For one, ORCID identifiers are inconsistently input by scholars at the time

of publication: fewer than 6% of Weill Cornell Medicine (WCM) papers in PubMed have an

ORCID asserted. See Fig 1. Of these papers published in 2019, only 22% or 1 in 5 authors has

an ORCID represented. In addition, many scholars have duplicate ORCID identifiers. Also,

scholars can log into ORCID and opt to set all their publications to private, which effectively

renders their profile a “stub record” or record with limited information or utility. See Fig 2.

Profiles RNS [8] is one of the few publicly available authorship prediction algorithms that

uses at least some institutionally-maintained identity data while also having the virtue of being

used by several institutions in a production environment. This service accepts as input and

uses some identity data: name aliases, email addresses, PubMed identifiers (PMIDs) to add

and exclude, and affiliation keywords. With these data, Profiles RNS returns as XML a list of

PMIDs that have a confidence score exceeding a certain value.

Reviewing the literature, we failed to locate publicly available data sets including among

those described by Müller et al. [9] that make scholar identities available at anywhere near the

richness or potential of those maintained by academic institutions.

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 2 / 27

and publicly available through Git Hub. These have

been cited within the paper.

Funding: Research reported in this publication was

supported by the National Center for Advancing

Translational Sciences of the National Institutes of

Health under Award Number UL1TR000457. The

content is solely the responsibility of the authors

and does not necessarily represent the official

views of the National Institutes of Health. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0244641


2. Methods

2.1. Identity-driven authorship prediction

It is surprising that mature software is not more widely available or used to solve institutions’

need to maintain publication lists at scale. A given institution may be responsible for tracking

thousands of publications by thousands of scholars. In addition, scholars frequently adhere to

semi-predictable patterns in their record of scholarship, with some co-authoring a hundred or

more papers with a certain colleague and others publishing almost exclusively in a certain

niche journal or discipline, or on a particular topic.

Any software that predicts article authorships would do well to emulate certain cognitive

subroutines of a savvy librarian who is charged with identifying all of that scholar’s publica-

tions and has access to significant portions of a curriculum vitae to do so. Librarians generally

conclude that a person who received a Bachelor’s degree in 2010 is unlikely to have authored a

scholarly paper in 2008 and even far less likely to have authored one in 1998. They know that

social workers tend not to contribute to bioinformatics journals. They realize that an article

written by an author with a first name of “Terry” is unlikely to be written by a scholar named

“Terrie” despite there being a Levenshtein distance of only two between those names. Our

shrewd librarian also realizes that students are unlikely to have authored a corpus of several

hundred publications while still in medical school, and that the more common a scholar’s

name is, the less likely that person is to have authored any one candidate paper. Further, they

Fig 1. ORCID coverage in PubMed. Fewer than 6% of Weill Cornell papers in PubMed have an ORCID asserted. Of the subset of papers

published in 2019, only 22% or 1 in 5 authors has an ORCID represented in PubMed.

https://doi.org/10.1371/journal.pone.0244641.g001

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 3 / 27

https://doi.org/10.1371/journal.pone.0244641.g001
https://doi.org/10.1371/journal.pone.0244641


know that when even one of a group of closely related articles was (or was not) written by a

scholar of interest, we can more accurately predict whether the other articles were.

The process of using software to predict publication lists for scholars necessarily starts with

a critical mass of information about the scholars themselves. These person metadata include

name aliases, email addresses, names of grants, departmental affiliations, institutional affilia-

tions, and names of colleagues who are potential co-authors. While these data are available in a

curriculum vitae, they are also stored and regularly updated in many academic institutions’

information systems. We define identity-driven authorship prediction as the process of using

information about a scholar, as recorded outside of a bibliographic system, to quantify the like-

lihood that person wrote a set of articles. See Fig 3.

Many human-facing algorithms are opaque, failing to explain, for example, why a particular

book, movie, or restaurant was recommended.

Qian et al. write [10] that human judgment purely on the basis of algorithms is not suitable

because the automatically produced results are not understandable for humans. This is prob-

lematic in the case of authorship prediction systems. Even the most advanced algorithm is not

100% accurate, and, at many institutions, the process of maintaining publication lists is the

responsibility of departments, librarians, and administrative staff. Absent a clear indication

Fig 2. Account settings in ORCID. ORCID users may opt to hide the content of their profiles to ORCID site visitors and data consumers. According to the ORCID

website, 13% choose this option.

https://doi.org/10.1371/journal.pone.0244641.g002

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 4 / 27

https://doi.org/10.1371/journal.pone.0244641.g002
https://doi.org/10.1371/journal.pone.0244641


such as a matching email address or ORCID identifier, both of which are infrequent, third par-

ties may not easily recognize an article as being authored by a given scholar. Therefore, it is

important that an authorship prediction system plainly explain why a candidate article has

been scored as it has as well as provide a notion of relative confidence.

It is likewise practical to track which publications a scholar has not authored both to

improve accuracy and to avoid the inevitable questions as to why a particular candidate article

is not among the accepted articles.

2.2. Approach used by ReCiter

In this article, we describe ReCiter [11], an open source, identity-driven authorship prediction

algorithm. ReCiter retrieves a set of candidate articles from PubMed and, optionally, Scopus

(standard institutional license required); clusters those articles; and uses the wealth of institu-

tionally-maintained identity data available to academic institutions to score candidate articles.

Candidate articles are output with key contextual information, including evidence, which

speak to the probability a given scholar wrote a particular paper and allow a third party like a

librarian to quickly decide if an article was authored by a scholar of interest.

Fig 3. Identity-driven authorship prediction systems. Systems that leverage institutionally available information about a scholar to retrieve candidate articles and

predict which of those articles a scholars has written. Curators provide feedback on those predictions, and data is shared with downstream systems.

https://doi.org/10.1371/journal.pone.0244641.g003

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 5 / 27

https://doi.org/10.1371/journal.pone.0244641.g003
https://doi.org/10.1371/journal.pone.0244641


ReCiter’s approach is distinct from those pursued by many disambiguation algorithms

(e.g., Louppe et al. [12]) in that these applications are largely geared towards creating clusters

of all co-authors. If a scholar has potentially written two papers, and both have five authors

each, these systems will attempt to create groups out of the ten authors. ReCiter does perform

clustering, but that is a relativvely minor subprocess. Also, with ReCiter, the number of poten-

tial matches is the number of articles and no more. This design decision is guided by the needs

of consumers of our data who are ambivalent as to whether those ten co-authors ultimately

represent ten people or five; they only want to know if the scholar in question wrote neither,

one, or both of those articles.

The goal for ReCiter is to fully leverage feedback for whether a scholar wrote an article as

well as the abundance of identity information institutions commonly maintain in various sys-

tems of record. Useful data includes (see Fig 4) a person’s past and present departmental, insti-

tutional, and program affiliations; email addresses; years of bachelor and doctoral degrees;

inferred or preferred gender; grant identifiers; and the names of known relationships such as

mentors, managers, co-investigators listed on grants, mentees, and individuals who share the

Fig 4. Institutionally maintained metadata about a sample WCM scholar that can be used for programmatic authorship prediction. Identity sources at academic

institutions like Weill Cornell Medicine can provide a range of data. These data can be used to programmatically compute the likelihood a given article was written by a

given scholar. For example, any known “relationships” are often the names of potential co-authors.

https://doi.org/10.1371/journal.pone.0244641.g004

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 6 / 27

https://doi.org/10.1371/journal.pone.0244641.g004
https://doi.org/10.1371/journal.pone.0244641


same Human Resources-maintained organizational unit. Because this is an identity-driven

approach, all such information can be employed to predict publications before the system has

any confirmation that a scholar of interest has authored a paper. ReCiter outputs: the full cita-

tion of a candidate, or potential, article; up to 13 scores, only one of which is the average score

of articles in its cluster; and the corresponding evidence for why an article was suggested.

ReCiter’s conclusions are not derivative of any other service including ORCID ID, Scopus

Author Identifier, etc.

2.3. Algorithm

ReCiter identifies, retrieves, and scores candidate records in PubMed for an individual scholar.

This entire process is coordinated by ReCiter’s Feature Generator API. The Feature Generator

API negotiates with other ReCiter APIs including the ones for identity retrieval, PubMed

retrieval, Scopus retrieval (if one so designates), and Gold Standard retrieval. With Gold Stan-

dard API, one can download a list of identifiers of articles that have been accepted and rejected

by a user. While one can interact with these APIs individually, it is a best practice, at least in a

production environment, to allow the Feature Generator API to do this. Feature Generator

API can output article metadata, scoring, and qualitative descriptions providing a rationale for

scoring (e.g., a candidate record is indexed with a grant matching one in the Identity table).

See Fig 5 for an overview of the algorithm’s workflow and S1 Appendix for a sample output of

this API.

Search queries are constructed by using the name(s) recorded in the Identity table in Dyna-

moDB. The standard syntax for a name search consists of a verbose last name and first initial,

e.g., Albert P[au]. ReCiter will also search for additional candidate records in cases where a

scholar has multiple name aliases or a compound surname. For example, the scholar, Gabriel

Garcia Marquez, would be searched as Marquez G[au] OR Garcia G[au]. This approach identi-

fies potential articles where scholars may have a maiden name or their middle name is acciden-

tally comingled with their surname, which sometimes occurs in the case of Arab and Latin

names. If a user has different names in identity source systems (e.g., one captures a maiden

name, another does not), ReCiter will look up each of those names independently.

If the count of candidate records exceeds a set amount–the current default is set to 2,000 –

ReCiter does not retrieve any records and instead goes into its “strict” mode to narrow down

the result pool. In strict mode, the standard last name, first initial search is made in conjunc-

tion with each of six additional search strings. These search strategies are: searching by verbose

first name, first and middle initial, names of relationships, grant identifiers, departments, affili-

ated departments, and affiliated institutions. For example, one of the six strict searches for a

scholar named “Xu Xu”, who is in the department of Radiology would be: Xu X[au] AND

Radiology[affiliation]. ReCiter also uses strict mode against inferred last names. If a scholar’s

last name has a space or dash (e.g., Garcia-Marquez, Garcia Marquez), the system will look up

"Garcia" and "Marquez" independently but paired with the additional search strings. This

mode is known as STRICT_COMPOUND_NAME_LOOKUP.

By default, all candidate articles have a user assertion of null, which reflects the fact that no

human curator has asserted whether the article should in fact be assigned to the scholar of

interest. A user can provide feedback to accept or reject an article suggestion. They can also

revert previously accepted or rejected articles to null. ReCiter records user feedback including

accepted and rejected articles in its GoldStandard table. If the user or agent requesting the

lookup for a scholar selects AS_EVIDENCE for the use-gold-standard parameter, records

from the GoldStandard table are also retrieved. If FOR_TESTING_ONLY is selected, ReCiter

will only retrieve and score articles retrieved by the name lookup.

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 7 / 27

https://doi.org/10.1371/journal.pone.0244641


PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 8 / 27

https://doi.org/10.1371/journal.pone.0244641


Once a pool of candidate articles is retrieved, additional data about a given article are

optionally retrieved from Scopus by doing a DOI search against its API. These data include

Scopus institutional identifiers, verbose author name, and citation count.

ReCiter uses metadata from PubMed and Scopus to output a single canonical publication

type for each article, and also outputs a standardized/sortable date of publication and a display

date. For the purposes of clustering and scoring, ReCiter will standardize all names, removing

suffixes, dashes, and diacritical marks such as accents.

For every retrieved candidate article, ReCiter uses a set of heuristics to identify the author

who is most likely to be the target author. Our approach has some overlap with the heuristic

proposed by Torvik and Smalheiser [13]. According to our analysis, our system is able to iden-

tify the correct target author more than 95% of the time. The correct assignment of target

author, even in cases of a true negative, can be quite helpful for accurately scoring the candidate

articles. Clustering uses target author assignment as do six of the scoring strategies. It is also use-

ful for business reporting. The Office of Research asks these authors to see all the papers in the

prior month appearing in “top” journals where a principal investigator was senior author.

In the clustering stage, ReCiter uses an unsupervised rule-based agglomerative algorithm to

create groups of articles written by the same person. There are two steps to clustering: “tepid

clustering” and “definitive clustering.”

With tepid clustering, we identify features, which are somewhat uncommon (frequency of

around 100,000 records or fewer out of a corpus of 40+ million). The features used in tepid

clustering are: journal name; co-author name excluding cases where an author is identified as

a target author and extremely common co-author names [13, 14]; Medical Subject Headings

(MeSH) major term where count in the MeSHTerm table is < 100,000; and Scopus Affiliation

ID for target author. By themselves, these features are not positively conclusive. But, if a certain

proportion of features between any two articles share these features, we can conclude they

were written by the same person, and they are clustered.

Clusters are merged if the cluster-cluster-similarity-score-threshold, as stored in applica-

tion.properties, is less than the computed value based on raw counts and overlap from those

clusters:
cluster-cluster-similarity-score < (cluster1

T
cluster2)2 / (count-

of-items-in-cluster1 � count-of-items-in-cluster2)
For example, suppose there are two clusters:
{

Cluster Id: 1
Journals: Cell;
MeSH major: Thalassemia, Sunlight, Tamoxifen, Tryptophan, Brain;
Coauthors: Marshall T, Michaels A;
Scopus institutional affiliation identifiers for target author:
6007997;

}
{

Cluster Id: 2;
Journals: Cell;
MeSH major: Thalassemia, Tamoxifen;
Coauthors: Marshall T, Michaels A, Johnson Q;
Scopus institutional affiliation identifiers for target author:
6007997, 342823053;

}

Fig 5. Overview of the ReCiter algorithm. The Feature Generator API coordinates the following key steps in the

ReCiter workflow: retrieve candidate records, identify target author, cluster articles, score articles, and output results.

https://doi.org/10.1371/journal.pone.0244641.g005

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 9 / 27

https://doi.org/10.1371/journal.pone.0244641.g005
https://doi.org/10.1371/journal.pone.0244641


The system would conclude these clusters should be merged as 0.2< (6^2) / (9 � 8). The

clustering is designed to work even if Scopus affiliation identifiers are not available.

With definitive clustering, we look to combine clusters where features generally occur thou-

sands or fewer times in a corpus of 40 million records. Because they occur so infrequently, we

will merge clusters whenever there is a single such piece of evidence. Any article that shares

any of these features with another article should be in the same cluster as that other article:

email; grant identifiers excluding papers that mention more grants than listed in a threshold in

application.properties; cites or cited by papers; MeSH major where global raw count in

MeSHTerm < 4,000.

Then, the candidate articles are individually scored. ReCiter is object-oriented and uses a

strategy design pattern [15] in which each evidence type is modeled as a different strategy and

appears in a separate module within ReCiter. In the first round of scoring, a given candidate

article is scored using 12 criteria, which we hypothesized are correlated with whether an article

would be accepted or rejected.

• target author’s name—similarity of name recorded in the Identity table compared to target

author’s name

• organizational unit—whether any departments, divisions, etc. in Identity appear in the affil-

iation statement of the target author

• email—if the email in Identity appears in a target author’s affiliation statement

• department-journal category—a score that reflects the extent to which a scholar’s organiza-

tional unit (e.g., Orthopedic Surgery) is highly associated with the ScienceMetrix category

[16] (e.g., Orthopedics) of the journal

• target author’s institutional affiliation—if affiliation recorded in Identity is consistent with

affiliation listed in the author affiliation statement for the target author

• non-target author’s institutional affiliation—if affiliation recorded in Identity is consistent

with affiliation listed in the author affiliation statement for any author except the target

author

• relationship—if individuals known to have worked with a scholar, including those who are

listed on a shared grant or have served as a mentor, match any co-author names

• grant—if a candidate article is indexed with an NIH grant identifier recorded in the scholar’s

Identity profile

• education year—effect scholarly age has on the likelihood an article in a given year was writ-

ten by a scholar; especially penalizes candidate articles that are published far earlier than

expected; works on a sliding scale

• person type—factors into account how often different types of scholars (e.g., faculty, post-

doc, medical student, etc.) are likely to author an article

• article count—a score for how many candidate articles were identified for a given author;

score increases when there are fewer candidate articles and decreases when there are more

candidate articles

• gender—a score, which uses Social Security Administration data [17], to infer the likelihood

a name in the Identity table shares the gender with that of the name of the target author

In some cases such as email-match-score, the score is a constant stored in ReCiter’s config-

uration file, application.properties. With the "article count" evidence, consistent with Bayesian

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 10 / 27

https://doi.org/10.1371/journal.pone.0244641


insights about probability, we reward individual candidate articles, in which there are few arti-

cles and penalize cases in which there are a lot. We do this for each article using three values:

• count-articles-retrieved–count of the articles actually retrieved

• article-count-threshold-score–as stored in application.properties, e.g., 800

• article-count-weight, as stored in application.properties, e.g., 200

The value for article-count-score for each article is equal to:
(article-count-threshold-score–count-articles-retrieved) / article-
count-weight

Here is sample output for a scholar’s ("C. Cole"), article count score, where the scholar has

1,151 candidate articles:
"articleCountEvidence": {
"countArticlesRetrieved": 1151,
"articleCountScore": -1.755

},

In other scores, the scoring logic is more complicated. The score for a target author’s name is

the sum of individual subscores for first name, middle name, and last name. In scoring first

name, the algorithm attempts to identify which of the 10 types of match between name meta-

data in the Identity table and the given name of the target author is highest. Matches that are

more tenuous have lower scores. For example, the strongest match would be full verbose name

(“Terrie” vs. “Terrie”). Less strong matches include those based on inferred initials (“Paul J.” vs.

“PJ”), a fuzzy match (“Michael” vs. “Michel”), and a case where initials are present but in an

unexpected order (“JD” vs. “DJ”). The weakest scores correspond to cases where names conflict

partially (“Ximeng” vs. “Xu”) or entirely (“Curtis” vs. “Ronald”). The algorithm also looks for

various other cases where first and middle name may be inverted in the article metadata or mid-

dle name may be combined with last name. S2 Appendix describes this logic in greater detail.

We then compute cluster-score-average, the average score of all articles in a cluster. If the user

requesting the lookup for a scholar selects AS_EVIDENCE for the use-gold-standard parameter,

the presence of accepted articles in a cluster increases the cluster-score-average by a value set in

application.properties while the presence of rejected articles decreases this value. Conversely, when

the FOR_TESTING_ONLY parameter is selected for use-gold-standard, there is no such effect.

If the cluster-score-average is higher than that of the target article (total-article-score-with-

out-clustering), the target article’s total score increases. If it is lower, it decreases. We also com-

pute a cluster-reliability-score, in which ReCiter gauges the extent to which a target author’s

verbose first name, where it exists, is consistent within a given cluster. If it is inconsistent (e.g.,

a given cluster contains articles with target authors that have the first name of RockBum,

RaeKwon, RulBin, and RyoonHo), we downweight this effect. The sum of all the different evi-

dence subscores is total-article-score-nonstandardized, a value which is mapped to a standard-

ized score (total-article-score-standardized) between 1 and 10.

The Feature Generator API allows users to choose whether to restrict article retrieval to

those added since the last time ReCiter retrieved articles for a scholar. Also, administrators can

elect whether to return articles of a particular status (e.g., “accepted”, “rejected”, “null” in

which any feedback has yet to be provided, or some combination thereof) and which have a

minimum score.

For each article, ReCiter outputs one of four designations as seen in Table 1.

The following scholar-level measurements of accuracy are computed and output:
precision = TP / (TP + FP)
recall = TP / (TP + FN)
accuracy = (TP + TN) / (TP + TN + FP + FN)

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 11 / 27

https://doi.org/10.1371/journal.pone.0244641


Measurements of accuracy can depend on several factors. Name origin is widely discussed

in the literature, but academic age is especially important for algorithms that perform author-

ship prediction. We could test ReCiter’s accuracy only by using longstanding faculty at Weill

Cornell in cases where we have a rich set of identity data and a lot of publications to show rela-

tionships. In such cases, ReCiter may perform relatively well. For those scholars early in their

careers, the algorithm is generally less forgiving.

2.4. Evaluation

2.4.1 Creating and using a support vector machine-based training model. The original

set of weights used to compute the 13 scores for any given candidate article were no more

than the product of developer intuition, and trial and error. To improve the accuracy and

overall performance of ReCiter we sought to optimize these constants. To do so, we ran-

domly selected a group of 500 Weill Cornell-affiliated scholars, which consisted of full-

time WCM-employed faculty (n = 310), affiliated faculty (n = 82), postdocs (n = 68), and

third- or fourth-year M.D. students (n = 40). We purposefully targeted a heterogeneous

group including types of scholars such as M.D. students who are unlikely to have authored

any more than several publications. If our goal was to maximize accuracy for this analysis,

we could have limited ourselves to only principal investigators and other well-established

senior scholars. Our approach at least partially guards against the possibility that ReCiter

could be overly aggressive in suggesting publications. It also tests the accuracy of an

authorship prediction system in cases when there is sparse identity data for a scholar, and

there are fewer signals to leverage. We subdivided candidate articles for our 500 individuals

of interest into a training group and a test group. The training group represented 80% of all

candidate articles, and test group represented 20% of all candidate articles. For privacy

concerns, we are not able to share the identifying details of the 500 selected scholars with-

out securing permission from each of them. However, we do want to inspire some confi-

dence that these names have not been selected in a self-serving way. S3 Appendix includes

the surnames and first initials of the 86 scholars who have the most common names as

defined by anyone who had 2,000 or more candidate articles.

ReCiter estimates the likelihood a given scholar authored a given article by using personally

identifiable information including personal email, names of mentees, etc. As such, it is not

possible for us to share the raw data.

To create our gold standard of known publications, we started with any assertions about

author identity for our 500 individuals available in our legacy system. Starting in 2014 to

the present, the publications authored by full-time WCM-employed faculty, affiliated fac-

ulty, and postdocs, have been recorded and updated in an institutionally maintained

MySQL database containing approximately 185,000 publications. Data from this system is

repurposed in a variety of forums and has received feedback through a number of touch-

points. Publication data are published on users’ public-facing VIVO scholarly profiles.

They appear in T32 training grants applications [18] and in reports for the Dean, Office of

Table 1. Significance of accuracy designations in Feature Generator API output.

Computed total standardized article score (1–10) is greater

than or equal to threshold (1–10) supplied by user

Computed total standardized article score (1–10) is

less than threshold (1–10) supplied by user

User feedback as recorded in GoldStandard

table is ACCEPTED

True Positive (TP) False Negative (FN)

User feedback as recorded in GoldStandard

table is REJECTED or NULL

False Positive (FP) True Negative (TN)

https://doi.org/10.1371/journal.pone.0244641.t001

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 12 / 27

https://doi.org/10.1371/journal.pone.0244641.t001
https://doi.org/10.1371/journal.pone.0244641


Research, department chairs, Office of External Affairs, Institutional Reporting, and vari-

ous educational program offices. When full-time faculty start at Weill Cornell Medicine,

librarians manually curate lists of all these individuals’ publications. Missing or incorrectly

assigned articles frequently elicit feedback sent to the Library and are manually corrected

in that database. All full-time WCM-employed faculty are required to review their publica-

tions on an annual basis. This feedback may include group authorships (e.g., “HI-TECH

Investigators”) in which there is no indication other than an individual scholar’s assertion

that a given scholar contributed to a paper. Publications authored by MD students were

reviewed by the Office of Medical Education.

All assertions were manually reviewed by two librarians who updated publications lists for

all individuals between October 28 and November 21, 2019. A second librarian identified 45

articles that were incorrect. Of these, four were reverted. Any candidate articles that were not

accepted were implicitly asserted to be rejected.

Of the 16,330 publications ultimately judged to be authored by our 500 scholars of interest,

79.8% were originally recorded as such in the legacy reporting database. This figure increases

to 88.1% when only considering the 310 in scope full-time faculty. We attribute this higher fig-

ure due to the greater level of scrutiny in maintaining publication lists for full-time faculty. By

comparison, publications authored by affiliated faculty are typically added only by explicit

request. While some of the discrepancies between the two systems are the result of curation

errors, especially errors of omission, a non-trivial portion of the differences are the result of

Scopus incorrectly crosswalking records from PubMed to Scopus. This is particularly common

in the case of comments and other types of publications that refer to another publication.

For all in-scope individuals, we used a Bash script (see S4 Appendix) to query ReCiter’s

Feature Generator API and output the result including article metadata, evidence, and scoring

to a series of JSON files. For the use-gold-standard option, we selected the FOR_TESTIN-

G_ONLY parameter. Typically, the Feature Generator API is set to only store articles of a min-

imum score (this cuts down on storage costs by approximately 85%), so we could not export

data directly from our Analysis table. We then used the ML_Model_Test_upload.py (see S5

Appendix) Python script to transform the JSON files into individual flat comma-separated

values (CSV) files, which can be loaded into a database (see S6 Appendix).

We considered and experimented with several possible machine learning approaches to

optimize the weights of the constants in the application.properties configuration file: random

forest, linear regression, and support vector machine. Because our data set has far more

rejected articles than accepted articles, we opted to use a support vector machine (SVM) analy-

sis [19], which has a reputation for being more robust in the presence of unbalanced data.

SVM can produce results that are explained when using a linear kernel, and we can incorpo-

rate the model results into the original linear regression system. Also, it is reputed to be a

strong choice for performing binary classification [20]. All the following operations are

included in a Jupyter notebook, available in S7 Appendix.

In order to use weights calculated by the model, we used Linear SVM [21]. This library fits

the dataset and generates a hyperplane for dividing the data into two groups: those articles the

algorithm concludes were written by the scholar of interest and those the system concludes

were not. Using Linear SVM, we can also identify the weight and intercept of this hyperplane

in the model output, and infer the importance of each feature. By using a decision function,

which is calculated based on weight and intercept, we are able to predict confidence scores for

samples. The confidence score for a sample is the signed distance of that sample to the hyper-

plane. With a higher absolute value of confidence score, we are more certain with the predic-

tion of the sample.

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 13 / 27

https://doi.org/10.1371/journal.pone.0244641


Confidence score was computed using the below equation, in which X_test1[i] is candidate

articles’ feature score, clf.coef_[0] are the weights generated by the model, and clf.intercept_[0]

is the intercept generated by the model. The np.matmul function is the sum of the features

multiplied by their respective weights.

confidenceScore ¼ np:matmulðX test1½i�; clf :coef ½0�Þ þ clf :intercept ½0�

It is generally preferable to first normalize data and then feed it into an SVM model. But in

our case, we did have an a priori assumption of the importance of features, so we concluded

that it would be acceptable to preserve the original scale. Also, we experimented with tuning

the regularization parameter of the SVM model, with values from 0.0001 to 100, increasing by

a multiple of 10. We determined that the regularization parameter of 1 provides the optimal

value.

In order to test the robustness of the parameter weights output by SVM, we used cross-vali-

dation. Additionally, we tried the Pearson Correlation and Random Forest feature selection

methods. With Pearson Correlation, we computed and output the correlation between each

feature to determine if any features were so highly correlated we could conclude they may be

redundant. With Recursive Feature Elimination, we used SVM as a model. Finally, we experi-

mented using Random Forest and looked at the embedded feature importance. We tried to

adjust the weight generated from SVM manually by incorporating the feature ranking from all

of these three models, but these changes did not improve the system performance, so we only

used the weight generated by Linear SVM.

We updated the weights in the application.properties file (see S8 Appendix), multiplying

the existing values by the values output in this exercise. We then re-ran ReCiter for all candi-

date articles in our test set. We then sampled the test set and compared the new system’s per-

formance with the old one.

We produced two different approaches to evaluate the system’s ability to predict scholars’

publications. The first was to calculate performance of all candidate articles for all 500 scholars.

In this method, articles are pooled prior to analysis. With the second approach, performance is

first computed by individual person and results are then averaged. In both cases, we choose a

threshold value for total-article-score- nonstandardized that would yield the highest overall

accuracy. Going forward, except where otherwise indicated, we will use the term, "article

score" synonymously with total-article-score-nonstandardized.

2.4.2. Optimization of standardized score intervals. ReCiter outputs two overall scores

for a given candidate article: a raw score and a standardized score. The standardized score is

the result of mapping the raw score to a set of ten intervals on a scale of 1–10. So long as these

intervals are updated appropriately, we are free to update the weights that comprise a given

article’s raw score while still maintaining a relatively consistent and expected distribution of

scores. Our goal is that an end user would be able to develop over time a reliable instinct for

what it means for an article to have a standardized score of, say, 8.

After completing the SVM-based optimization of evidence weights, we took the raw scores

for all candidate articles for all our in-scope scholars and computed the percentile for each arti-

cle. For each percentile, we computed the percentage of articles that have been accepted. Over

this graph, we computed a trendline, which was a simple moving average. This allowed us to

graph the relationship between article score and likelihood that a given article has been

accepted.

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 14 / 27

https://doi.org/10.1371/journal.pone.0244641


3. Materials

The first version of ReCiter was developed by two of us (S.J. and M.B.) in 2010 in object-ori-

ented Perl and output results in a text file [22]. Also, it focused on author name disambigua-

tion, as we rigorously define it above, as opposed to authorship prediction. For that prototype

version, we evaluated ReCiter and found its disambiguation accuracy to be around 89%, which

was comparable at the time to the accuracy in Scopus. Since then, the original code has been

completely re-written in Java, migrated to Amazon Web Services, and reoriented towards the

authorship prediction problem. Through a number of changes to the code and its scope,

ReCiter has been modified to facilitate adoption by academic institutions.

ReCiter is a suite of four applications, each of which can be used as a standalone service:

ReCiter, the ReCiter PubMed Retrieval Tool, the ReCiter Scopus Retrieval Tool, and ReCiter

Publication Manager. (See Fig 6) These applications communicate with each other using a

growing list of 23 application programming interfaces (APIs) with the data format in Java-

Script Object Notation (JSON). These systems also use Swagger [23] as a toolset that provides

a self-documenting user interface, offering helpful cues for how to interact with a given API.

The main ReCiter application, including its computation logic, is written in Java and

employs Spring, a framework which manages web services and service requests. ReCiter stores

all data about researchers and publications in DynamoDB, a NoSQL database. In cases where

data objects exceed 400 KB, data are stored in the S3 file storage system. Identity data is loaded

at application start via a JSON file or can be added via one of several APIs for loading identity

data for a single user or multiple users. All data objects are described by several separate code

Fig 6. ReCiter architectural diagram. ReCiter contains several components including ReCiter itself, the PubMed Retrieval Tool, the Scopus Retrieval Tool, and ReCiter

Publication Manager. Each of these components can be used independently. Identity data is fed from institutional sources. Articles are retrieved from the PubMed API

and, optionally, the Scopus API. The ReCiter application computes scores and shares suggestions through a set of web services.

https://doi.org/10.1371/journal.pone.0244641.g006

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 15 / 27

https://doi.org/10.1371/journal.pone.0244641.g006
https://doi.org/10.1371/journal.pone.0244641


repositories [24–28] and conform to models controlled in Maven Central [29]. Most institu-

tion-specific configuration occurs within the application.properties file [30]. This file, which

contains a great deal of inline documentation, is set as a default to several settings that are spe-

cific to Weill Cornell Medicine including synonyms for home institution, names of collaborat-

ing institutions, and various other configuration settings.

Both the National Library of Medicine’s eFetch API and Elsevier’s Scopus API return data

in XML. The PubMed Retrieval Tool and Scopus Retrieval Tool take these outputs and trans-

form them into the more developer-friendly JSON format. The Scopus Retrieval Tool removes

duplicate authors from the Elsevier feed. The PubMed Retrieval Tool uses a multi-threading

strategy known as a work stealing pool [31] to allow for up to ten retrieval requests at a time.

In cases where the PubMed Retrieval Tool fails to return a record because of downtime or a

bug, it will try again up to nine times, with a delay that increases as per a Fibonacci sequence

delay. Both PubMed and any matching Scopus article data are stored in separate DynamoDB

tables.

ReCiter has been designed to be easily installed on Amazon Web Services (AWS). A freely

available CloudFormation template coordinates the installation of all its dependencies and

configuration values, allowing a developer to install a fully working version of ReCiter, with all

the above systems on AWS along with continuous integration and deployment, in around 20

minutes. Alternatively, ReCiter can also be run on a local machine or independently-con-

trolled server. Of course, institutions must supply identity information about their scholars.

This can be done via a file load imported at runtime or using an API.

4. Results

In curating the gold standard, we concluded that our randomly selected set of Weill Cornell-

based full-time faculty authored a median of 15 articles, affiliated faculty a median of 5 articles,

postdocs a median of 5 articles, and MD students a median of 2 articles. The maximum num-

ber of articles authored by an individual scholar was 853. The mode for all person types is 0.

Some 60 scholars, or 12%, had no articles in the gold standard. This includes six scholars who

had no articles in the gold standard and no candidate articles of any kind. For the 60 scholars

who had no accepted articles, ReCiter incorrectly suggested a total of 54 articles or 0.9 articles

per scholar. See Fig 7.

We described above how ReCiter uses “strict mode” to significantly limit the number of

candidate records under consideration when a scholar has a common name (e.g., Y. Wang) or

a compound name (e.g., G. Garcia-Marquez). For our 500 scholars, ReCiter used “lenient

mode” for 397 scholars, a strict compound name lookup for 17 individuals, and strict mode

due to exceeding our results threshold on 86 occasions. S3 Appendix provides a list of the sur-

names, first initials, and count of results of the 86 cases where the count of initial search results

exceeded the lenient lookup threshold.

The use of strict mode allows the system, for example, to limit the count of candidate rec-

ords to be scored for a scholar named Yi Wang from 151,000 to 293 and for Ajay Gupta from

12,340 to 1,340. The overall accuracy for all individuals looked up in lenient mode without

first aggregating by individual was 98.18% and in strict mode was 98.49%.

0.76% of candidate articles accepted for a scholar were not retrieved. The reasons for why a

given article for a given scholar was not retrieved for consideration include: the name of

scholar on publication was inconsistent with name recorded in the identity source system

(e.g., scholar uses maiden name); scholar was part of a group authorship; or, the search was

done in strict mode. For example, the latter can become problematic when the institution has

no record of a scholar’s prior affiliations.

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 16 / 27

https://github.com/wcmc-its/ReCiter/blob/master/src/main/resources/application.properties
https://doi.org/10.1371/journal.pone.0244641


Fig 8 shows how the different scores are computed and how common certain scores in our

training set are not 0. The system’s ability to output a score based on these data for any given

article is variable, so it helps to have a rich profile for each scholar. A more detailed explanation

of the weights used to create these scores are included in S2 Appendix.

We assessed ReCiter’s accuracy according to the equation provided above. We also com-

puted balanced accuracy owing to the fact that this metric is suited for assessing performance

of imbalanced datasets [32]. The formula for balanced accuracy is as follows:

balanced accuracy
¼ ðtrue positives=ðtrue positives þ false negativesÞ þ true negatives=ðtrue negatives
þ false positivesÞÞ=2

We define a true positive or true negative as an article in which the ReCiter algorithm and

the judges agreed that the article was, respectively, written or not written, by a scholar of inter-

est. A false positive is an article in which the ReCiter algorithm concluded that the article was

written by the scholar of interest, but the judges disagreed. A false negative is an article in

which the ReCiter algorithm concluded that the article was not written by the scholar of inter-

est, but the judges disagreed.

There are two approaches for computing the various measures of accuracy. We can either

first combine all candidate articles by all scholars into a single pool and then compute accuracy

independent of scholar, or compute the accuracy of each individual scholar and then take an

average of all the scholars’ scores. Of these two methods for computing accuracy, we prioritize

Fig 7. Count of accepted articles by a scholar’s type. Depending on the type of person, between 8% and 21% of individuals in the training set have not

authored a single article in PubMed. The presence of such individuals cautions against the practice of being too aggressive in assigning articles to scholars.

Only affiliated faculty and full-time faculty have individuals who have authored more than a hundred articles.

https://doi.org/10.1371/journal.pone.0244641.g007

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 17 / 27

https://doi.org/10.1371/journal.pone.0244641.g007
https://doi.org/10.1371/journal.pone.0244641


the former as it is a better reflection of the number of times a librarian or administrator will

have to provide feedback on erroneous false positives and negatives. In the case of the pooled

analysis and where both PubMed and Scopus were used, the accuracy was 98.3%; in the case

where accuracy was first computed for individuals, the accuracy was 93.6%. (See Table 2.)

Fig 8. Frequency a score is not zero in the training set. The overall score for a given candidate article is the sum of multiple individual scores (e.g., email score, grant

score, etc.). Each of these scores may themselves be the sum of certain subscores, many but not all of which are listed here. For example, to compute name score, we take

the name listed in a candidate article and individually evaluate it against any available first, middle, and last name available in the Identity table.

https://doi.org/10.1371/journal.pone.0244641.g008

Table 2. Weights were optimized to maximize accuracy when all articles are first pooled and then accuracy was computed. Accuracy of ReCiter.

Pool all articles, then compute

accuracy

Pool all articles, then compute

accuracy

Compute accuracy for individuals,

then average

Compute accuracy for individuals,

then average

Data source PubMed + Scopus PubMed only PubMed + Scopus PubMed only

Accuracy 0.9826 0.9795 0.9363 0.9231

Balanced

accuracy

0.9487 0.9658 0.8505 0.8424

Precision 0.8706 0.8539 0.8299 0.7913

Recall 0.9040 0.9489 0.8824 0.8786

https://doi.org/10.1371/journal.pone.0244641.t002

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 18 / 27

https://doi.org/10.1371/journal.pone.0244641.g008
https://doi.org/10.1371/journal.pone.0244641.t002
https://doi.org/10.1371/journal.pone.0244641


When the only data source used is PubMed, these figures show only a modest drop in accu-

racy to 98.0% and 92.3%, respectively.

Even so, using Scopus in conjunction with PubMed as opposed to PubMed alone does

seem to have a more pronounced effect on the median score of accepted and rejected articles.

When using PubMed and Scopus, the median score of accepted articles is 13.91 and rejected

articles is -2.23. When using PubMed alone, the median score of accepted articles is 13.01 and

rejected articles is -1.87. The gap in scores between accepted and rejected articles is 1.32 greater

when using Scopus and PubMed compared to PubMed alone. In some cases, this can be mean-

ingful to the reviewer, changing the standardized score from a 4 out of 10 to a 7. Potentially, a

subset of publications would be displayed with Scopus as opposed to without.

Fig 9 visualizes how common the scores of candidate articles are when all articles are pooled

ahead of time using PubMed alone versus PubMed and Scopus combined.

The process by which scores are computed for different types of evidence does not lend

itself perfectly to SVM analysis. For example, name score is a subtotal of first-name-score, mid-

dle-name-score, last-name-score, as well as odd cases (e.g., middle name is conflated with last

name). Nonetheless, the SVM analysis did show us the extent to which certain scores are

underweighted or overweighted. One useful insight that emerged from this analysis was how

useful it is to match a known relationship to a co-author and to have that co-author match the

full verbose first name of that colleague as opposed to just the first initial. Indeed, compared to

3,974 records where such a match occurred in accepted articles, this match was only present in

14 rejected articles.

Over 88% of candidate articles had a total-article-score-standardized of the lowest value of

1, meaning these articles are highly unlikely to be written by our scholar of interest. Almost

69.4% had a standardized score of 10, suggesting it is highly likely they were written by the

scholar. See Fig 10.

Another goal of our analyses was to identify a set of intervals we could use for mapping a

non-standardized score to a score on a scale between 1 and 10. As described in 2.5, we wanted

to display a standardized score that corresponds to a percent likelihood that an article will be

accepted. In Fig 11, we map percentile of non-standardized score (x-axis) against the

Fig 9. Density graph using PubMed and Scopus versus PubMed alone. Here, the x-axis is the raw score and y-axis is the frequency or density of the total-article-

score-nonstandardized. The intersection between the accepted and rejected curves indicates ambiguity. This intersection is largely consistent with or without using

complimentary data from Scopus. However, the median difference between accepted and rejected curves is noticeably different in these two scenarios.

https://doi.org/10.1371/journal.pone.0244641.g009

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 19 / 27

https://doi.org/10.1371/journal.pone.0244641.g009
https://doi.org/10.1371/journal.pone.0244641


likelihood the article was accepted (y-axis). This allows us to conclude that a percentile score

of, say, 0.892 corresponds to a 70% likelihood that our scholar authored a publication. Using

this logic, articles with this percentile score are assigned a standardized score of 7.

In Fig 12, we computed the correlations between different evidence subscores and user

assertion. Cases where correlation is high are shaded in a dark red; low correlations are in a

lighter color. For example, relationship-matching-score and relationship-verbose-matching-

score have a correlation of 0.91. The value of this graph is that it shows, among other things,

which attributes are independently associated with user assertion. Generally speaking, those

that are highly and independently correlated with user assertion are most valuable to the over-

all performance of the algorithm. Conversely, if an attribute is highly correlated with another

attribute, it does not offer much additional benefit.

One positive outcome of the SVM analysis was that we discovered there were a couple types

of evidence subscores that were not meaningfully contributing to overall performance. An

example of this is person-type-score. With our set of randomly selected scholars and their cor-

responding institutional identity data, person type evidence was determined to be largely

redundant and less nuanced than education-year-score. Nonetheless, person type evidence

could be used by other institutions which may have different needs. In Fig 13, we display how

Fig 10. Frequency of total standardized article scores. Candidate articles with scores of 3 or below are generally not displayed in the user interface to the

end user. This threshold is controlled in the application.properties file. The score displayed here is for total standardized score as opposed to total article

score without clustering, which is analyzed in Fig 11.

https://doi.org/10.1371/journal.pone.0244641.g010

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 20 / 27

https://doi.org/10.1371/journal.pone.0244641.g010
https://doi.org/10.1371/journal.pone.0244641


the year of a publication relative to a person’s scholarly age is associated with the likelihood

that a candidate article will be accepted. According to our analysis, the likelihood a candidate

article is authored by a person peaks and then plateaus between 10 and 40 years after an indi-

vidual receives a terminal degree.

5. Discussion

5.1. Key findings

With the latest version of ReCiter, we have successfully created a publication management sys-

tem, which is capable of predicting the publications authored by a diverse group of scholars at

Weill Cornell Medicine with approximately 98% accuracy. Our system can lessen the workload

for both administrators and scholars, providing publication metadata that can be used across

public-facing profiles, reports, biosketches, and MyNCBI profiles.

ReCiter is a highly accurate, open source publication management algorithm designed for

academic institutions with limited need for custom development. It innovatively uses a range

of institutionally-maintained identity data to suggest which publications in PubMed a scholar

has authored. Each of its components are needed for adoption by institutions. Additionally,

because the key components are available as individual services, one could swap out one for

another.

Fig 11. Optimization of standardized score thresholds. We have mapped all non-standardized scores of candidate article to a percentile. Each percentile corresponds to

the percent likelihood an article with that score will be accepted by the user. Each 10% incremental increase in the likelihood of a percentile score increases the

standardized score by 1. The likelihood an article will be accepted increases from 10% to 90% (y-axis) when the percentile score grows from 0.85 to 0.9.

https://doi.org/10.1371/journal.pone.0244641.g011

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 21 / 27

https://doi.org/10.1371/journal.pone.0244641.g011
https://doi.org/10.1371/journal.pone.0244641


Fig 12. Correlation plot of features. This graph illustrates the extent to which any two attributes are correlated with each another, and with user assertion. Attributes

that are correlated with the latter can be used to contribute to an article’s score. S9 Appendix contains descriptions of these values.

https://doi.org/10.1371/journal.pone.0244641.g012

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 22 / 27

https://doi.org/10.1371/journal.pone.0244641.g012
https://doi.org/10.1371/journal.pone.0244641


ReCiter retrieves and scores candidate articles for a given scholar, including those with

unexpected or missing affiliations, as well as cases where article metadata is missing or highly

misleading. ReCiter effectively uses the weights of a support vector machine analysis to score

the available evidence.

ReCiter uses a wealth of institutionally-maintained identity data to suggest and score arti-

cles; provides an evidence-based probability for each of the candidate articles; offers a human-

readable explanation for why a given article was suggested; and, reliably identifies a target

author’s rank or position.

5.2. Weaknesses

While a significant subset of records in the Gold Standard had been validated by administra-

tors and the scholars themselves including during the College’s annual review cycle, this analy-

sis relies on a gold standard reviewed and updated by third parties. Ideally, all of the

publication assertions would be validated by the scholars themselves. Scholars’ reluctance to

curate their publications in a consistent and timely manner is ironically the very driver for the

creation of this software.

Fig 13. Association between a target author’s scholarly age and likelihood any given candidate article will be accepted. Candidate articles

appearing 10 or more years after a scholar’s terminal degree are far more likely to have been written by the scholar of interest compared to those

appearing within a year of receiving the degree.

https://doi.org/10.1371/journal.pone.0244641.g013

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 23 / 27

https://doi.org/10.1371/journal.pone.0244641.g013
https://doi.org/10.1371/journal.pone.0244641


ReCiter uses a variety of institutionally-maintained identity information to score its sugges-

tions. We have attempted to construct a data model generic enough to accommodate the

range of identity data maintained by a diverse array of institutions. For example, the relation-

ships attribute could be populated with any variety of cases where a known association is likely

to appear as a co-author. Yet, the most valid test of the durability of this model can be proven

when this algorithm is used more widely.

One potential shortcoming is that many institutions may not have access to much of the

identity data available in its identity data model. As a result, the accuracy of their system’s sug-

gestions could suffer. One idea we contemplated is programmatically identifying and propos-

ing candidate features such as email addresses, ORCID identifiers, name aliases, names of co-

authors, etc. and then soliciting feedback from users. As Weill Cornell Medicine assists our

Clinical Translational and Science Center in identifying publications for thousands of individ-

uals about whom we have little data, this measure may significantly help.

Another challenge relates to what a fair method should be for computing precision for indi-

viduals with very common names. Yi Wang is a faculty at Weill Cornell. As of July 2020, a

PubMed search for Wang Y[au] returns approximately 157,000 candidate records, with 3.7%

of PubMed articles [33] having a “Y. Wang” as an author. Suppose a Yi Wang has authored

only two papers, and we correctly identify those two and erroneously recommend 40 addi-

tional publications for this scholar. If ReCiter made a practice of counting those 157,030 rec-

ords as true negatives, the recall would be 100%, the precision almost 5%, and the overall

accuracy would be over 50%. For many, that figure may seem misleading. There may be no

ideal approach for reporting ReCiter’s precision for common names. For now, ReCiter only

counts publications from articles that are actually retrieved and scored–unless they are false

negatives. Such articles are factored into the overall accuracy score even if they are not

retrieved.

We note that a subset of publications that we judged to be correctly identified by ReCiter

were not recorded in the legacy reporting database. However, this was relatively uncommon,

as we discuss in the Methods, occurring for 20.2% of papers that were ultimately accepted.

Less than 1% of papers were asserted to be authored by a scholar in our legacy database, but

upon review by a librarian, were judged not to be. Ideally, the authority for which scholars

wrote which papers would be curated entirely outside of the system being evaluated. We con-

sidered excluding all such papers from the analysis, but, we decided against that. We reasoned

that we would never have access to both rich identity data and perfectly assigned publication

metadata for the more than 16,000 papers authored by 500 scholars.

We recognize that ReCiter could more effectively use machine learning technologies when

it comes to institutional disambiguation, assignment of publication type, and citation dedupli-

cation (i.e., Article A in PubMed refers to the same object as Article B in Scopus), among oth-

ers. In particular though, we believe that ReCiter’s accuracy could be greatly improved by

using a machine learning approach for clustering. At present, ReCiter does not use keywords

from article title, journal title, or abstract. This absence represents a significant opportunity for

improvement, especially for clustering.

5.3 Future work

Going forward, our team intends to deploy integrations with additional bibliographic sources.

These integrations will also insulate developers from the complexity and the quirks of

unwieldy source systems, and return data in a predictable, easy-to-parse format.

We have heard from a number of parties who are interested in generating suggested lists of

scholarly articles from bibliographic sources that offer coverage of the social sciences and

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 24 / 27

https://doi.org/10.1371/journal.pone.0244641


humanities. At present, ReCiter is optimized for PubMed, so this would require some dedi-

cated effort. A source that had more complete cites and cited by data would be particularly

attractive as ReCiter only uses cited by data recorded in PubMed Central, which contains less

than 20% of PubMed.

For this analysis, we did not analyze how accepted and rejected publications affect the over-

all score of other candidate articles. These data are used in the average-clustering-score,

described above, but they did not figure in our analyses. Anecdotally, we have noticed this

feedback definitely improves the accuracy of scores of articles that were not accepted or

rejected. The net effect is that fewer candidate articles have ambiguous authorship.

We realize that the validity of the approach we describe here would be more compelling if

we could demonstrate that ReCiter can produce accurate lists of publications at other academic

institutions, and show that implementing ReCiter saves administrators’ and scholars’ time,

and results in more accurate outcomes. We intend to study these questions in future efforts.

Supporting information

S1 Appendix. Sample output file using Feature Generator API. This file represents the out-

put of ReCiter’s Feature Generator API. With Feature Generator, both article and evidence

metadata are included. Note that we set the total-article-score-standardized was set to the min-

imum of 1. This means all articles were included in the output. If this value was higher, the cal-

culated precision would be higher as well.

(JSON)

S2 Appendix. Weights used by ReCiter following SVM-based weight optimization.

(CSV)

S3 Appendix. Candidate record count for common names. 86 records had name lookups

that exceeded the threshold for a "lenient" mode lookup and were looked up using "strict"

mode.

(TXT)

S4 Appendix. Bash script for downloading records using Feature Generator API. This

script allows users to output the result of multiple calls to the Feature Generator API.

(SH)

S5 Appendix. ML_Model_Test_upload.py. A Python script which transforms JSON output

from ReCiter’s Feature Generator API into a set of flat CSV files.

(PY)

S6 Appendix. ReCiterAnalysis.sql. Database model for storing output of Feature Generator

API. Includes some sample data.

(SQL)

S7 Appendix. Jupyter Lab notebook. Notebook accepts CSV files as inputs and, given user

assertions, can be used to compute optimized weights for scores.

(IPYNB)

S8 Appendix. Application.properties file with SVM-optimized weights.

(TXT)

S9 Appendix. Descriptions of scores used in Fig 12.

(CSV)

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 25 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244641.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244641.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244641.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244641.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244641.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244641.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244641.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244641.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244641.s009
https://doi.org/10.1371/journal.pone.0244641


Acknowledgments

Thanks to Peter Oxley who suggested machine learning approaches for optimizing weights of

the scores and offered feedback on the structure of the manuscript.

Author Contributions

Conceptualization: Paul J. Albert.

Data curation: Paul J. Albert, Sarbajit Dutta, Zimeng Zhu, Drew Wright.

Funding acquisition: Terrie R. Wheeler.

Investigation: Paul J. Albert, Zimeng Zhu.

Methodology: Paul J. Albert, Zimeng Zhu.

Project administration: Paul J. Albert.

Software: Paul J. Albert, Sarbajit Dutta, Jie Lin, Zimeng Zhu, Stephen B. Johnson.

Supervision: Paul J. Albert, Mohammad Mansour, Terrie R. Wheeler, Curtis L. Cole.

Visualization: Paul J. Albert, Zimeng Zhu.

Writing – original draft: Paul J. Albert, Jie Lin, Michael Bales.

Writing – review & editing: Paul J. Albert, Michael Bales, Terrie R. Wheeler.

References
1. Giles CL, Zha H, Han H. Name disambiguation in author citations using a k-way spectral clustering

method. Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ‘05). 2005;

2. Liu W, Islamaj Doğan R, Kim S, Comeau DC, Kim W, Yeganova L, et al. Author name disambiguation

for pubmed. J Assoc Inf Sci Technol. 2014; 65: 765–781. https://doi.org/10.1002/asi.23063 PMID:

28758138

3. Han H, Giles L, Zha H, Li C, Tsioutsiouliklis K. Two supervised learning approaches for name disambig-

uation in author citations. Proceedings of the 2004 joint ACM/IEEE conference on Digital libraries—

JCDL ‘04. New York, New York, USA: ACM Press; 2004. p. 296. https://doi.org/10.1145/996350.

996419

4. Tran HN, Huynh T, Do T. Author name disambiguation by using deep neural network. In: Nguyen NT,

Attachoo B, Trawiński B, Somboonviwat K, editors. Intelligent information and database systems.

Cham: Springer International Publishing; 2014. pp. 123–132. https://doi.org/10.1007/978-3-319-

05476-6_13

5. Ferreira AA, Veloso A, Gonçalves MA, Laender AHF. Effective self-training author name disambigua-

tion in scholarly digital libraries. Proceedings of the 10th annual joint conference on Digital libraries—

JCDL ‘10. New York, New York, USA: ACM Press; 2010. p. 39. https://doi.org/10.1145/1816123.

1816130

6. Lerchenmueller MJ, Sorenson O. Author Disambiguation in PubMed: Evidence on the Precision and

Recall of Author-ity among NIH-Funded Scientists. PLoS One. 2016; 11: e0158731. https://doi.org/10.

1371/journal.pone.0158731 PMID: 27367860

7. Song M, Kim EH-J, Kim HJ. Exploring author name disambiguation on PubMed-scale. Journal of Infor-

metrics. 2015; 9: 924–941. https://doi.org/10.1016/j.joi.2015.08.004

8. Harvard Clinical and Translational Science Center. Profiles Research Networking Software [Internet].

[cited 9 May 2020]. Available: http://profiles.catalyst.harvard.edu/?pg=software

9. Müller M-C, Reitz F, Roy N. Data sets for author name disambiguation: an empirical analysis and a new

resource. Scientometrics. 2017; 111: 1467–1500. https://doi.org/10.1007/s11192-017-2363-5 PMID:

28596627

10. Qian Y, Hu Y, Cui J, Zheng Q, Nie Z. Combining machine learning and human judgment in author dis-

ambiguation. Proceedings of the 20th ACM international conference on Information and knowledge

management—CIKM ‘11. New York, New York, USA: ACM Press; 2011. p. 1241. https://doi.org/10.

1145/2063576.2063756

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 26 / 27

https://doi.org/10.1002/asi.23063
http://www.ncbi.nlm.nih.gov/pubmed/28758138
https://doi.org/10.1145/996350.996419
https://doi.org/10.1145/996350.996419
https://doi.org/10.1007/978-3-319-05476-6%5F13
https://doi.org/10.1007/978-3-319-05476-6%5F13
https://doi.org/10.1145/1816123.1816130
https://doi.org/10.1145/1816123.1816130
https://doi.org/10.1371/journal.pone.0158731
https://doi.org/10.1371/journal.pone.0158731
http://www.ncbi.nlm.nih.gov/pubmed/27367860
https://doi.org/10.1016/j.joi.2015.08.004
http://profiles.catalyst.harvard.edu/?pg=software
https://doi.org/10.1007/s11192-017-2363-5
http://www.ncbi.nlm.nih.gov/pubmed/28596627
https://doi.org/10.1145/2063576.2063756
https://doi.org/10.1145/2063576.2063756
https://doi.org/10.1371/journal.pone.0244641


11. GitHub. ReCiter: an enterprise open source authordisambiguation system for academic institutions

[Internet]. [cited 30 Jul 2020]. Available: https://github.com/wcmc-its/reciter/

12. Louppe G, Al-Natsheh HT, Susik M, Maguire EJ. Ethnicity Sensitive Author Disambiguation Using

Semi-supervised Learning. In: Ngonga Ngomo A-C, Křemen P, editors. Knowledge engineering and

semantic web. Cham: Springer International Publishing; 2016. pp. 272–287. https://doi.org/10.1007/

978-3-319-45880-9_21

13. Torvik VI, Smalheiser NR. Author Name Disambiguation in MEDLINE. ACM Trans Knowl Discov Data.

2009; 3. https://doi.org/10.1145/1552303.1552304 PMID: 20072710

14. Vishnyakova D, Rodriguez-Esteban R, Rinaldi F. A new approach and gold standard toward author dis-

ambiguation in MEDLINE. J Am Med Inform Assoc. 2019; 26: 1037–1045. https://doi.org/10.1093/

jamia/ocz028 PMID: 30958542

15. Gamma E, Helm R, Johnson R, Vlissides JM, Booch G. Design Patterns: Elements of Reusable Object-

Oriented Software.

16. Archambault É, Beauchesne OH, Caruso J. Towards a multilingual, comprehensive and open scientific

journal ontology. 2011;

17. Howard D. Gender by Name [Internet]. [cited 7 May 2020]. Available: https://data.world/howarder/

gender-by-name

18. Albert PJ, Joshi A. Dynamically generating T32 training documents using structured data. J Med Libr

Assoc. 2019; 107: 420–424. https://doi.org/10.5195/jmla.2019.401 PMID: 31258448

19. Farquad MAH, Bose I. Preprocessing unbalanced data using support vector machine. Decis Support

Syst. 2012; 53: 226–233. https://doi.org/10.1016/j.dss.2012.01.016

20. Bhattacharya I, Getoor L. A Latent Dirichlet Model for Unsupervised Entity Resolution. In: Ghosh J,

Lambert D, Skillicorn D, Srivastava J, editors. Proceedings of the 2006 SIAM International Conference

on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2006. pp. 47–58.

https://doi.org/10.1137/1.9781611972764.5

21. Pedregosa F, Varoquaux G, Gramfort A. Scikit-learn: Machine learning in Python. J Mach Learn Res.

2011; 12: 2825–2830.

22. Johnson SB, Bales ME, Dine D, Bakken S, Albert PJ, Weng C. Automatic generation of investigator bib-

liographies for institutional research networking systems. J Biomed Inform. 2014; 51: 8–14. https://doi.

org/10.1016/j.jbi.2014.03.013 PMID: 24694772

23. SmartBear Software. Swagger. SmartBear Software; 2020.

24. GitHub. ReCiter DynamoDB Model [Internet]. [cited 30 Jul 2020]. Available: https://github.com/wcmc-

its/ReCiter-Dynamodb-Model

25. GitHub. ReCiter Identity Model [Internet]. [cited 30 Jul 2020]. Available: https://github.com/wcmc-its/

ReCiter-Identity-Model

26. GitHub. ReCiter Article Model [Internet]. [cited 30 Jul 2020]. Available: https://github.com/wcmc-its/

ReCiter-Article-Model

27. GitHub. ReCiter Scopus Model [Internet]. [cited 30 Jul 2020]. Available: https://github.com/wcmc-its/

ReCiter-Scopus-Model

28. GitHub. ReCiter PubMed Model [Internet]. [cited 30 Jul 2020]. Available: https://github.com/wcmc-its/

ReCiter-PubMed-Model

29. Sonatype. Maven Central [Internet]. [cited 9 May 2020]. Available: https://search.maven.org/search?q=

edu.cornell.weill.reciter

30. GitHub. application.properties [Internet]. [cited 30 Jul 2020]. Available: https://github.com/wcmc-its/

ReCiter/blob/master/src/main/resources/application.properties

31. Chen S, Mowry TC, Wilkerson C, Gibbons PB, Kozuch M, Liaskovitis V, et al. Scheduling threads for

constructive cache sharing on CMPs. Proceedings of the nineteenth annual ACM symposium on Paral-

lel algorithms and architectures—SPAA ‘07. New York, New York, USA: ACM Press; 2007. p. 105.

https://doi.org/10.1145/1248377.1248396

32. Kelleher JD, Namee BM, D’arcy A. Fundamentals of machine learning for predictive data analytics:

algorithms, worked examples, and case studies. books.google.com; 2015.

33. PubMed. PubMed Search [Internet]. [cited 30 Jul 2020]. Available: https://www.ncbi.nlm.nih.gov/

pubmed/?term=wang+y%5Bau%5D

PLOS ONE ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

PLOS ONE | https://doi.org/10.1371/journal.pone.0244641 April 1, 2021 27 / 27

https://github.com/wcmc-its/reciter/
https://doi.org/10.1007/978-3-319-45880-9%5F21
https://doi.org/10.1007/978-3-319-45880-9%5F21
https://doi.org/10.1145/1552303.1552304
http://www.ncbi.nlm.nih.gov/pubmed/20072710
https://doi.org/10.1093/jamia/ocz028
https://doi.org/10.1093/jamia/ocz028
http://www.ncbi.nlm.nih.gov/pubmed/30958542
https://data.world/howarder/gender-by-name
https://data.world/howarder/gender-by-name
https://doi.org/10.5195/jmla.2019.401
http://www.ncbi.nlm.nih.gov/pubmed/31258448
https://doi.org/10.1016/j.dss.2012.01.016
https://doi.org/10.1137/1.9781611972764.5
https://doi.org/10.1016/j.jbi.2014.03.013
https://doi.org/10.1016/j.jbi.2014.03.013
http://www.ncbi.nlm.nih.gov/pubmed/24694772
https://github.com/wcmc-its/ReCiter-Dynamodb-Model
https://github.com/wcmc-its/ReCiter-Dynamodb-Model
https://github.com/wcmc-its/ReCiter-Identity-Model
https://github.com/wcmc-its/ReCiter-Identity-Model
https://github.com/wcmc-its/ReCiter-Article-Model
https://github.com/wcmc-its/ReCiter-Article-Model
https://github.com/wcmc-its/ReCiter-Scopus-Model
https://github.com/wcmc-its/ReCiter-Scopus-Model
https://github.com/wcmc-its/ReCiter-PubMed-Model
https://github.com/wcmc-its/ReCiter-PubMed-Model
https://search.maven.org/search?q=edu.cornell.weill.reciter
https://search.maven.org/search?q=edu.cornell.weill.reciter
https://github.com/wcmc-its/ReCiter/blob/master/src/main/resources/application.properties
https://github.com/wcmc-its/ReCiter/blob/master/src/main/resources/application.properties
https://doi.org/10.1145/1248377.1248396
http://books.google.com
https://www.ncbi.nlm.nih.gov/pubmed/?term=wang+y%5Bau%5D
https://www.ncbi.nlm.nih.gov/pubmed/?term=wang+y%5Bau%5D
https://doi.org/10.1371/journal.pone.0244641

