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Abstract: We investigate the hypothesis that protein folding is a kinetic, non-equilibrium process,
in which the structure of the nascent chain is crucial. We compare actual amino acid frequencies in
loops, α-helices and β-sheets with the frequencies that would arise in the absence of any amino acid
bias for those secondary structures. The novel analysis suggests that while specific amino acids exist
to drive the formation of loops and sheets, none stand out as drivers for α-helices. This favours the
idea that the α-helix is the initial structure of most proteins before the folding process begins.

Keywords: protein folding; single amino acid distributions; secondary structure prediction; fold-
ing pathway

1. Introduction

The protein folding problem consists of trying to obtain the three dimensional native
structures of proteins from their amino acid sequences. This can be pursued in essentially
two ways. One way is to devise a set of rules or an algorithm to obtain the native structure
from the amino acid sequence, and a second way is to determine the physical forces that
take the nascent chain to the native state. The first way has been pursued since 1974 [1] and
has recently lead to very remarkable protein structure predictions (see predictioncenter.org
(accessed on 15 December 2020) and especially the results from CASP14) and to claims
that the protein folding problem is solved. However, even very sophisticated black box
approaches cannot enlighten us about the physical forces that drive protein folding. On the
other hand, such forces, once identified, constitute the complete answer and should allow
us to predict native structures as well. The ultimate aim of the work in this present paper
is to understand the physical process of protein folding.

Since the thermodynamic hypothesis was first proposed [2,3], the guiding idea behind
most protein folding studies has been that the native state is uniquely specified by the
amino acid sequence. More than five decades of studies of protein re-folding have lead
to the idea that proteins can fold to their native state, spontaneously, from any initial
structure, including fully extended and disordered conformations, via a process of free
energy minimization (see, e.g., [4–11]). On the other hand, a growing body of evidence
from studies of protein folding in the cell shows that nascent chains acquire structure while
still inside the ribosome [12–20]. Yet, most algorithms for secondary structure prediction
continue to apply the thermodynamic hypothesis according to which some amino acids
(or, in a finer analysis, some amino acid sequences) do, for some reason, lead to the
formation of helices, while others lead to the formation of sheets and loops. Accordingly,
the aim of statistical analyses of the correlations between sequence and structure has been
to find such structure-defining amino acids (or amino acid sequences).

One difficulty with the quest of getting three dimensional structures from sequences is
the variety of sequences that lead to very similar structures. Indeed two proteins with only
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30% sequence similarity have a strong probability of sharing very similar three dimensional
structures [21]. Thus, instead of just a few amino acid patterns we can have many amino
acid patterns that, in cells, lead to the same structural result (and the reverse can also
happen, similar sequences can lead to different structures [22]). Another difficulty is
that protein native structure may be one of the many kinetic traps into which the same
polypeptide can find itself in, as shown in [23–25] and proposed in [26–30]. In this case,
reproducibility in always reaching the same native structure can be achieved if the initial
structure and the pathway followed from it are always the same, as explained in detail
in [28]. Thus, the purpose of our statistical analyses is to infer the structure of the nascent
chain and of the generic features of the pathway.

In Section 3, we probe the sequence-structure variety by calculating the distributions
of amino acid frequencies in the three main secondary structures over a population of
13,413 proteins. Furthermore, in order to extract the real bias that each amino acid may
have for or against a given secondary structure, we compare the existing protein secondary
structures to ideally unbiased ones. Although this kind of analysis was already made in
the pioneering statistical analysis of protein structures by Chou and Fasman [1], here we
revisit it in a different spirit. Indeed, whereas usual structure-sequence analyses aim at
determining the final native structure, here, guided by the kinetic hypothesis, we use them
to try to determine the initial structure, that is, the structure of the nascent chain. While the
experimental evidence suggests that the nascent chain can be either α-helical [12–17,20] or
a more extended conformation [12,17–19], we propose that the simplest interpretation of
the results we obtain is that the nascent chain of most proteins is α-helical. We also propose
that a more fruitful way of solving the protein folding problem is to determine the pathway
that proteins follow in going from the initial helix to the native state. To that end, a generic
pathway that can be inferred from our results, is also presented.

2. Materials and Methods

An ss.txt file with the sequences of 444,520 proteins with known structure was
obtained from the protein data bank [31]. For each protein included in the ss.txt file we
have its sequence followed by the corresponding secondary structure type of each amino
acid, as assigned by the DSSP (Define Secondary Structure of Proteins) program [32,33].
In order to reduce redundancy, a list of 14346 proteins with less than 25% sequence identity
(file cullpdb_pc25_res3.0_R1.0_d190321_chains14346) was obtained from the PISCES
site [34] and the proteins common to both of the two files were selected. This led to the 13,413
proteins listed in the file list-of-13413-proteins.dat. This is the set of proteins used in
the analyses described in Section 3. In the file Suppl-information-Figures-S1–S11.pdf
in supplemental information, Figures S1–S6 and S8 show the results that are obtained when
the set of all the 444,520 proteins, listed in the file list-of-444520-proteins.dat, is used.

3. Results

We start by determining the average amino acid composition of the proteins in our
protein set. Let nasp be the number of amino acids a found in secondary structures s, in a
given protein p, (here p = 1, · · · , M, with M = 13,413 being the total number of proteins in
the set). This set includes only proteins with the twenty most common amino acids so that
a = (A (Alanine), C (Cysteine) , D (Aspartic Acid), E (Glutamic Acid), F (Phenylalanine),
G (Glycine), H (Histidine), I (Isoleucine), K (Lysine), L (Leucine), M (Methionine), N (As-
paragine), P (Proline), Q (Glutamine), R (Arginine), S (Serine), T (Threonine), V (Valine),
W (Tryptophan), Y (Tyrosine)). From the number, nasp, we get the sequence size of protein
p, np, by:

np = ∑
a,s

nasp, (1)

and the number, na(p), of amino acids a in protein p:

na(p) = ∑
s

nasp. (2)
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The average abundance of each amino acid in protein set, f̄a, can be calculated as:

f̄a(a) =
1
M ∑

p

na(p)
np

(3)

In many studies (see, e.g., [1,35,36]), all proteins are mixed together into one single
enormous protein and the statistics are calculated for this single protein. However, such a
single protein does not exist and it is impossible to know what its structure would be. This
is one reason why, in Equation (3) as well as in all averages over the protein set that are
mentioned below, we consider the statistics for each protein separately, and then average
over all the proteins in the set. A second reason is that, as found in [36] and as illustrated
in Figure 2 below, those separate statistics can vary significantly from protein to protein.

Figure 1 displays the average abundance f̄a of each amino acid in our protein set as
percentages so that summing them over all amino acids leads to 100.
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Figure 1. Average abundance, f̄a(a) (cf. Equation (3)), of amino acid a, in the protein set used.
The values are given in percentage of the total number of amino acids (see text).

It shows that some amino acids appear more abundantly than others. Thus, W, C,
M and H appear less frequently, while L, A, E, G, V, S, D and T are more frequent, as is
usually found [36]. However, it is also known that the average amino acid abundance
depends on protein size [36]. The protein set used here includes proteins with sizes from 20
to 1859 amino acids, with a broad peak at 157. Comparing with values obtained in [36] for
proteins with an average size of 200 amino acids, the abundances are similar. Furthermore,
using the larger data set mentioned in Section 2, the results are virtually indistinguishable
(compare Figure 1 above with Figure S1 in file Suppl-information-Figures-S1–S11.pdf
of supplemental information). This validates our protein set from the point of view of
average amino acid composition.

In the absence of any bias, the abundances of the amino acids in each secondary
structure should be very similar to those displayed in Figure 1 (and they would be exactly
equal if all proteins had the same amino acid composition and the same percentages of
secondary structures). Thus, a first measure of the bias of an amino acid for a particular
secondary structure can be obtained by comparing the average abundance of that amino
acid, as shown in Figure 1, with the correspondent abundance in that secondary structure.

To that end we calculate the frequency, f (a, s, p), of finding amino acid a in secondary
structure s in protein p as:

f (a, s, p) =
nasp

np
. (4)
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The DSSP program [32,33] considers eight different types of secondary structures,
namely, H (α-helix), E (β-sheet), G (3/10 helix), I (π-helix), B (β-bridge), T (turn), S (bend)
and C or space (random coil). Here we concentrate on the most ubiquitous secondary
structures and s will comprise just four types, namely s = H, E, L, (G+I), where L stands
for loops (which include the secondary structure types B, T, S, C or space in DSSP [32,33]).
In this way, we separate the helices and sheets from the less structured regions that connect
them. Furthermore, our calculations showed that helices G plus I contribute only up to 3%
of the total in each protein and thus results for them are omitted in the figures below.

From the frequencies, f (a, s, p) in Equation (4), we can determine the average abun-
dance of each amino acid a in each secondary structure s, f̄ (a, s), by making the average
over the protein set:

f̄ (a, s) =
1
M ∑

p
f (a, s, p). (5)

However, as the frequencies f (a, s, p) vary considerably from protein to protein,
their average values, f̄ (a, s), just by themselves, are a poor representation of their full
distribution. To demonstrate the variety of values that the frequencies f (a, s, p) can assume
in the proteins of our set, a few selected distributions are displayed in Figure 2, where
red is for s = α-helices, blue is for β-sheets and green is for loops, and the amino acid a
selected is specified at the top of each plot.

ALA ASP LEU PRO VAL

ALA ASP LEU PRO VAL

 0  5  10  15  20  25
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 0  5  10  15  20  25
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 0  5  10  15  20  25

LEU
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Figure 2. Distributions/histograms for a few of the frequencies f (a, s, p), where the amino acid a is
specified at the top of each plot and where red is for s = α-helix, blue is for s = β-sheets and green is
for s = loops. In this figure, the variable f (a, s, p) (the x-coordinate) runs from zero (which means
that none of the amino acids a are found in s) to 30 (which means that 30% of the amino acids in
the protein are a’s found in s). The y-coordinate is proportional to the number of proteins with a
given value of f (a, s, p). The scale of the y-coordinate is the same for all plots and all distributions
are normalised. The horizontal dotted lines are the FWHM of the distributions (see text).

This figure shows, for example, that in the case of a = P (Pro) and s = α-helix or
β-sheet, the maximum of the distribution is at f (a, s, p) = 2. The maximum corresponds to
the most probable event and the number two means that the most probable event is that
of proteins with sequences in which 2% of the amino acids are P’s located in helices or in
sheets. On the other hand, we expect to find more P’s in loops and Figure 2 does indeed
show that, in the case of a = P and s = loops, the maximum is at 6, which means that the
most probable event is that of proteins in which 6% of the all their amino acids are P’s
located in loops.

Figure 2 also shows that, for each of the amino acids a and of the secondary structures
s, the frequencies f (a, s, p) can have different values in different proteins, i.e., the fact that
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the ordinate for f (a, s, p) = 6 is not zero for a = P and s = β-sheets means that there
is a small number of proteins in which 6% of the all their amino acids are P’s located in
β-sheets (and the same for α-helices). This variety can be measured by the full width at
half maximum (FWHM) of each distribution. The FWHM is determined by going down
from the maximum, in each direction, until we reach a value of y-coordinate (i.e., a value
of the distribution) that is half the value of the maximum. The FWHM is a measure of the
uncertainty around the most probable value and in Figure 2 it is marked by the horizontal
dotted lines. For example, in the case of a = P and s = loops, the FWHM is 7.4, and we
can calculate that the “area” under the green curve, comprehended between the lower
and the higher extremities of that dotted line, is 77.6, which means that, for 77.6% of the
proteins in the set, between 3.3% and 10.7% of their amino acids are P’s in loops. Therefore,
although the most probable event is constituted by proteins in which 6% of the all their
amino acids are P’s located in loops, there is a non-negligible number of proteins for which
this percentage can be as low as 3.3% or as high as 10.7%. The broader a distribution
(the greater FWHM), the greater the variety of values of the frequencies f (a, s, p) found in
the different proteins.

Furthermore, Figure 2 shows that the distributions for f (a, s, p) are skewed, with longer
tails towards the larger numbers, for all amino acids in all secondary structures. Thus,
in Figure 3, instead of the first moment of the distribution (the average defined by
Equation (5)), we plot the most probable value (the position of maximum of the corre-
sponding distribution, signalled by a marker), and instead of the square root of the second
moment (the standard deviation), we plot the FWHM to quantify the uncertainty around
the most probable value. Note that while we have found that the average values f̄ (a, s)
(not shown, see Equation (5)) are very similar to the most probable values displayed in
Figure 3, so that the positions of the markers can also be interpreted as average values,
the standard deviations are different from the FWHM, with the latter providing a more
accurate representation of the uncertainty above and below the average. Indeed, while the
standard deviations are more meaningful for symmetric distributions and would lead to
equal intervals above and below the average, the FWHM reproduces the skewness of the
distributions, with values larger than the average being more probable than values below,
as was already apparent in Figure 2.

Inspection of Figure 3 shows that none of the three curves in it is similar to that in
Figure 1, which means that the amino acid distributions in each secondary structure are
biased, as expected [1,35]. The most similar is arguably that for α-helices, which, if it had
higher values for G and P, and a lower value for R, would have a shape close to the curve
in Figure 1. On the other hand, with the exception of the low abundant amino acids W,
C, M and H, the absolute values, even for the α-helix curve, are different. Indeed, the
average values in Figure 3 suggest that α-helices are characterized by larger amounts of
L, A and E, while β-sheets are characterized by larger amounts of V, L, and I, and loops
have more G, S, and D. It is tempting to equate a greater number of amino acid a in a given
secondary structure s with a propensity for that a to induce the formation of s. However,
variables like the average frequency f̄ (a, s) can be inappropriate for at least two reasons.
One reason is that the average abundance, f̄a, (cf. Equation (3)) is not the same for all
amino acids, as shown in Figure 1. A second reason which will skew average amino acid
frequencies is that the three secondary structures do not appear in the same amounts in
every protein. The average abundance of the each secondary structure s in the set, f̄n(s),
can be determined by:

f̄n(s) =
1
M ∑

p

ns(p)
np

(6)

with ns(p), the number of sites with secondary structure s in protein p, being

ns(p) = ∑
a

nasp. (7)
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Figure 3. Average frequency of finding an amino acid a in α-helices (top plot), β-strands (middle
plot) and loops (bottom plot). The values are given in percentage for each secondary structure,
i.e., summing all the values in each line leads to 100. The amino acids are specified by their one
letter codes.

We calculate that in our protein set loops are the most frequent secondary structures
(44% on average), followed by α-helices (33%), which in turn are followed by β-sheets
(20%). Again, all things being equal, these different percentages will tend to lead to greater
probabilities for all amino acids to appear in loops. However, even more important than
those two reasons for the skewing of the abundance of each amino acid in the different
secondary structures is the fact that, when measuring the bias of one amino acid for a
specific secondary structure, the control should be what would happen in the complete
absence of that bias. Here, this is done by comparing the actual number of amino acids a in
secondary structures s in protein p, nasp, with the number, Easp, that would be expected to
arise if the same amount of amino acid a and the same amount of secondary structure s
were distributed in a completely random fashion in that protein. i.e., the bias of an amino
acid a to a secondary structure s in a protein p is estimated by the ratio, R(a, s, p), given by:

R(a, s, p) =
nasp

Easp
(8)

This estimate involves not only a proper control for the bias but has also the advan-
tage of eliminating the skewness in the different abundances of amino acids or secondary
structures because, for each protein p, these abundances appear in equal measure in the nu-
merator and denominator of the ratios R(a, s, p) (see Equation (8) and the equations below).

With this definition, a ratio R(a, s, p) of approximately 1 for a given protein means
that the distribution of amino acid a among the secondary structure s is approximately
random, that is, unbiased. A ratio greater than 1, on the other hand, means that that amino
acid appears more often than would be expected and therefore has a positive bias for
the secondary structure s, and a ratio lower than 1 means that that amino acid appears
less often than would be expected and therefore has a negative bias for that secondary
structure s.

Let us then calculate the ratio R(a, s, p) (cf. Equation (8)). Designating the random
uniform (unbiased) distribution for finding amino acids a in secondary structure sites s by
r(a, s, p), the estimated number, Easp, of a in s, in the absence of bias, is:

Easp = np r(a, s, p) (9)
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Substituting Equation (9) in Equation (8) we get:

R(a, s, p) =
f (a, s, p)
r(a, s, p)

(10)

In the absence of any correlation between amino acids and secondary structures,
that is, in the absence of any bias, the probability, r(a, s, p), of finding amino acid a in
secondary structure s in a given protein p, is the product of the probability, ra, of finding
that amino acid in any site of the protein, with the probability, rs, of finding structure s in
any site of the protein:

r(a, s, p) = ra rs (11)

In an unbiased distribution, all amino acids a have equal probability of appearing
everywhere and all secondary structure sites s have also equal probability of appearing
everywhere. Thus, ra is the number, na(p), of amino acids a in protein p (see Equation (2)),
divided by the total number of sites in the protein:

ra =
na(p)

np
(12)

and rs is the number, ns(p), of secondary structure s sites in protein p (see Equation (7)),
divided by the total number of sites in the protein:

rs =
ns(p)

np
. (13)

Substituting Equations (12) and (13) in Equation (11), the random probability
r(a, s, p) becomes:

r(a, s, p) =
na(p)

np

ns(p)
np

. (14)

Using Equations (2), (7) and (14) it is easy to show that ∑a,s r(a, s, p) = 1, as must be
for r(a, s, p) to be a probability.

Equations (10), together with Equations (14) and (4), allows us to determine the
ratios R(a, s, p) for each protein, except when a protein lacks amino acid a (in which
case na(p) = 0) and/or secondary structure s, (in which case ns(p) = 0), leading to that
both f (a, s, p) and r(a, s, p) are equal to zero. Then, the ratio R(a, s, p) (Equation (10)) is
undetermined and is thus not included in the calculations.

As happens for the frequencies f (a, s, p), also the ratios R(a, s, p) (Equation (10)) can
vary much from protein to protein. Figure 4 displays a few of the distributions of the ratios.
The vertical dotted lines mark the R(a, s, p) = 1 values, which, as explained above, indicate
an absence of bias of a towards s in the corresponding proteins. On the other hand, when
R(a, s, p) > 1, i.e., for proteins that contribute to the points above the vertical line, amino
acid a appears in the secondary structure s in greater numbers than would be predicted in
the absence of bias and, from those proteins, we would conclude that a is structure-forming
for that secondary structure s. Similarly, when R(a, s, p) < 1, i.e., for proteins that contribute
to the points below the vertical line, amino acid a appears in secondary structure s in smaller
numbers than would be predicted in the absence of bias and, from those proteins, we would
conclude that a is structure-breaking for that secondary structure s. Figure 4 shows that
these assignments are fuzzy because for any given amino acid a and any given secondary
structure s we can find proteins in which a is structure-neutral for s, namely, those for which
R(a, s, p) = 1, as well as other proteins in which the same a is structure-forming for the
same s and yet other proteins in which it is structure-breaking. For instance, according to
the definition above, for a = Ala and s = α-helix, in the proteins that contribute to the part
of the histogram to the right of the vertical line, Ala is structure-forming, in the proteins that
contribute to the point where the vertical line intersects the histogram Ala is neutral, and in
the proteins that contribute to the part of the histogram to the left of the vertical line, Ala is
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structure-breaking. A more balanced definition, that reflects better the variety of behaviour
in the different proteins, is to consider structure-forming the amino acids for which the
greater part of the corresponding histogram lies above the vertical line (as happens for
a = Ala, Glu, Leu in s = α-helix, and for a = ILE, Leu and Val in s = β-sheet and for
a = Asp, Gly, Pro and Ser in loops, considering the histograms in Figure 4, as well as those
in Figures S9–S11 in the file Suppl-information-Figures-S1–S11.pdf of supplemental
information). Furthermore, we should also distinguish between strong structure-formers,
like Ile and Val in β-sheets, in which not only the most probable value of R(a, s, p) is clearly
above 1, but also all points along the FWHM are above that value and cases like Ala and
Leu, which, although being structure-formers for α-helices, are more weakly so.

ALA ASP LEU PRO VAL

ALA ASP LEU PRO VAL

 0  1  2  3

ALA

 0  1  2  3

ASP

 0  1  2  3

LEU

 0  1  2  3

PRO

 0  1  2  3

VAL

Figure 4. Distributions/histograms for a few of the ratios R(a, s, p) (cf. Equation (10)), where the
amino acid a is specified at the top of each plot and where red is for s = α-helix, blue is for s = β-
sheets and green is for s = loops. The variable R(a, s, p) (the x-coordinate) runs from zero to four,
the scale of the ordinates is the same in all plots and all histograms are normalised. The vertical dotted
line marks the value R(a, s, p) = 1, when the actual number of amino acids a in secondary structure s
is equal to what is expected in the absence of any correlation between a and s. The horizontal dotted
lines are the FWHM of the distributions (see text).

One difference between the distributions in Figure 2 and those in Figure 4 is that
the latter are bimodal, with an extra peak at R(a, s, p) = 0. R(a, s, p) = 0 means that the
corresponding protein possesses amino acid a and also possesses secondary structure s,
but it does not possess amino acid a in secondary structure s, in spite of a non-zero random
probability for that to happen (see Equation (14))). Although only a few distributions
are displayed in Figure 4, we have verified that such peaks at zero are present in all
60 distributions that can be obtained for the 20 amino acids in s = α-helix, β-sheet and
loop. In many cases, as for P (Pro) in α-helices and for A (Ala) and P (Pro) in β-sheets,
the peak at zero is the mode of the distribution, i.e., R(a, s, p) = 0 for those amino acids
in those secondary structures is the most probable event. In these cases, the FWHM is
effectively zero.

In Figure 5, we apply the same criteria as before, and plot the most probable values of
the ratios R(a, s, p) (see Equation (10)), and take the FWHM as an estimate of the uncertainty
around those values.

The cases in which the distribution of the ratios R(a, s, p) has a peak at zero that is
higher than the one in the middle are very clearly identifiable in Figure 5: they are those for
which the most probable value is zero. The secondary structure with the greater number of
amino acids in that category is β-sheets, with 17 such amino acids, followed by α-helices
with 15 such amino acids, followed by loops with only such seven amino acids. The amino
acids and secondary structures with non-zero values are those for which the peak in the
middle is higher than the one at zero.
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Figure 5. Most probable values for the ratios R(a, s, p) (cf. Equation (10)) for α-helices (top plot,
red), β-sheets (middle plot, blue) and loops (bottom plot, green). The most probable value is taken
from the full distributions for each ratio R(a, s, p) and the uncertainty around that value is given by
the FWHM.

In a bimodal distribution, the criterion of using the most probable value may overem-
phasise values that are not very frequent, if the “area” under the respective peak is small
when compared with the area under the other peak. Although in the case a = Pro and
s = α-helix, the peak at zero has a height 0.32, meaning that R(a, s, p) = 0 in 32% of the
proteins in the set, and for s = β-sheet it is 40%, for the majority of the amino acids a
and secondary structures s, the peak at zero accounts for less than 20% of the proteins in
the set. Furthermore, it is noticeable that the importance of the peaks at zero is greater
for the secondary structures that are less common, being most pronounced for β-sheets
and decreasing for α-helices and loops. This indicates that in a larger set these peaks may
decrease in size. Thus, in Figure 6 the most probable values and the FWHM have been
calculated using only the middle peaks in the histograms, which, for most a and s, represent
80% or more of the proteins in the set.

We have already explained above how we can identify structure-forming amino acids,
and distinguish between strong and weak structure-formers. In Figure 6, a strong structure
former is an amino acid whose most probable value of the ratio R(a, s, p) ( Equation (10)) is
clearly above 1 and for which the uncertainty (FWHM) is also clearly above 1. This happens
for V (Val) and I (Ile) in β-sheets, as has already been pointed out before, and also for G
(Gly) and P (Pro) in loops. Similarly, a strong structure-breaker is an amino acid whose
most probable value of the ratio R(a, s, p) ( Equation (10)) is clearly below 1 and for which
the uncertainty is also clearly below 1. In Figure 6, for s = α-helix we identify two such
amino acids namely, G (Gly) and P (Pro), for s = β-sheet P (Pro) and D (Asp), and more
tangentially, G (Gly), and for s =loops, also tangentially, I (Ile), V (Val) and L (Leu).

Figure 6 also shows that the majority of the amino acids have most probable values
either above or below the R(a, s, p) = 1 line, together with uncertainties that cross that line.
In cases like A (Ala) and L (Leu) and less obviously so for E (Glu) in α-helices, in which
not only the most probable value but also the greater part of the FWHM are above 1,
such amino acids should be considered structure-formers, albeit weak ones. Furthermore,
similarly, in cases like N (Asn) and E (Glu) in β-helices, in which not only the most probable
value but also the greater part of the FWHM are below 1, such amino acids should be
considered weak structure-breakers. On the other hand, when the FWHM is approximately
equally spread above and below the R(a, s, p) = 1 line, and the most probable value is close
to it, either above or below, such amino acids should more properly be considered neutral
with respect to the formation of the corresponding secondary structure s. Inspection of
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Figure 6 shows that the majority of the amino acids are of the latter type, with the α-helix
possessing 12 neutral amino acids, and loops and β-sheets possessing 10 each.

 1

 2 helices

 1

 2 sheets

 1

 2

A C D E F G H I K L M N P Q R S T V W Y

loops

Figure 6. Most probable values for the ratios R(a, s, p) (cf. Equation (10)) for α-helices (top plot, red),
β-sheets (middle plot, blue) and loops (bottom plot, green). The most probable value is taken from
the middle peak in the distributions for each ratio R(a, s, p) and the uncertainty around that value is
given by the FWHM of that middle peak.

Keeping the previous definitions in mind when comparing Figure 6 with Figure 3
we notice several differences. First, L, which according to Figure 3 might be considered
a strong structure-forming amino acid for both α-helices and β-sheets and neutral for
loops, is revealed as only weakly structure-forming for α-helices, neutral for β-sheets and
structure-breaking for loops. Similarly, A, which according to Figure 3 might be considered
a strong structure-forming amino acid for α-helices is revealed as only weakly structure-
forming. Finally, E, which according to Figure 3 might be considered a strong-structure
former for α-helices is revealed as a neutral one.

Inspection of Figure 6 shows that β-sheets possess two strong structure-formers,
namely, V and I, three weak structure-formers, namely, F, C and W, three strong structure-
breakers, P, D and G, and two weak structure-breakers, N and E. Loops have two strong
structure-formers, namely, G and P, four weak structure-formers, namely, N, D, and S and,
to a lesser extent, H, three strong structure-breakers, I, V and L and one weak structure-
breaker, F. Furthermore, α-helices have three weak structure-formers, namely, A, L and to
lesser extent, E, two clearly strong structure-breakers, namely, G and P, and three weak
structure-breakers, namely, N, D and S. From this point of view, α-helices stand out as the
secondary structure with the least number of structure-forming amino acids. Indeed, while
loops have six structure-forming amino acids, two of which are strong, and β-sheets have
five, two of which are strong, α-helices have three structure-formers, all of which are weak.
How is it that the second most ubiquitous secondary structure does not possess strong
structure-forming amino acids? It may be argued that it is because single amino acids are
not sufficient to determine the secondary structure and that amino acid sequences must be
considered. This is certainly true, but this applies equally to β-sheets and loops. We expect
that a secondary structure in which we can identify single amino acids as important for
structure formation should arise more readily than a secondary structure in which this does
not happen. This expectation is fulfilled in the case of loops which are the most populated
secondary structures in proteins and are also those which possess the greater number of
structure-forming amino acids. However, the fact is also that, in spite of its greater number
of structure-forming amino acids, β-sheets are less populated than α-helices, with which
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they share three of their structure-breakers (P, D and G). In the next section, we propose
one explanation for these findings.

4. Discussion

For more than four decades, the experimental knowledge about protein folding
came from experiments in which re-folding (or its absence) is followed after the action of
chaotropes. To many researchers these experiments have suggested that the initial structure
is immaterial and that proteins are able to return to their native state even from completely
unstructured states [2–11]. In contrast, more recently, folding studies have suggested that
the nascent chain is structured [12–20], and that, in many cases, it is α-helical [12–17,20].
It is also curious that the membrane regions of membrane proteins tend overwhelmingly
to be made of helices. Since they are protected as soon as they emerge from the ribosome
and until they are inserted in the membrane, and since they denature when taken out of
the membrane, it does seem that they are synthesized in the shape of helices to start with.
Furthermore, a specific mechanism for the formation of α-helices has been demonstrated for
5 different polypeptides in molecular dynamics simulations [30], namely, a forced rotation
on the C-terminal, originating within the ribosome, lead to the formation of α-helices when
the N-terminal outside is restrained [30]. Although the folding conditions are different
and, the system undergoing folding, the protein, is the same, and the physical principles
that rule its equilibrium dynamics and stability must be the same in both cases. Thus,
understanding how folding takes place in the cell must necessarily be relevant to all the
other forms of folding.

In cells, all proteins, whatever their sequence, are synthesized by the same machine,
the ribosome, and it is very probable that this machine follows the same mechanism for all
sequences so that all nascent chains start with the same structural constraints. Only two
secondary structures fit within the ribosomal exit tunnel: linear or helical. Let us consider
each of these possibilities separately.

First, let us consider that all proteins are synthesized as linear, unstructured, polymers
and that α-helices and β-sheets form later. To evolve from such initial long loops to other
secondary structures, proteins would need strong structure-breakers for loops that would
be at the same time strong structure-formers, some for α-helices, and others for β-sheets.
Furthermore, since α-helices would be competing with β-sheets, the structure-formers of
the former should also be structure-breakers of the latter, and vice versa. Figure 6 shows
that two of the strong structure-breakers for loops, V and I, are also strong structure-formers
for β-sheets, and that the one weak breaker for loops, F, is a weak former for β-sheets. Thus,
if the initial structure were disordered, we would predict that regions with extra amounts
of V and/or I and/or F would have a reasonable probability of turning into β-sheets.

What about α-helices? Loops have another strong structure-breaker, namely, L, but this
amino acid is only a weak structure-former for α-helices. Moreover, the other (weak)
formers for α-helices, namely, A and E, are structure-neutral for loops. Thus, regions rich
in A and/or L and/or E might evolve into α-helices but they might just as probably remain
disordered. Furthermore, because four of the structure-breakers of β-sheets (P,D,G and
N) are also structure-breakers of α-helices, it is very unlikely that β-sheets would evolve
into α-helices. Therefore, if the initial structure were disordered it would be difficult to
understand why α-helices are more prevalent than β-sheets. In fact, we should expect
protein structure to be essentially disordered, interspersed with β-sheets in regions with
greater amounts of V and I, and with the occasional loose α-helix in regions with substantial
amounts of A and/or L and/or E.

Let us now consider the alternative case in which the nascent chain is α-helical. In this
case, to evolve into loops and β-sheets, proteins would need strong structure-breakers
for α-helices that would be at the same time strong structure-formers, some for loops,
and others for β-sheets. Furthermore, since loops would be competing with β-sheets, the
structure-formers of the former should also be structure-breakers of the latter, and vice
versa. Figure 6 shows that the two (strong) structure-breakers for α-helices, G and P, are
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also strong structure-formers for loops, and that the three weak breakers for α-helices, N,
D and S, are also weak formers for loops. Thus, if the initial structure were α-helical, we
would predict that regions with sufficient amounts of G and/or P and/or N and/or D
and/or S would have a very reasonable probability of turning into loops.

On the other hand, because strong and weak structure-breakers of α-helices are also
structure-breakers of β-sheets in equal amount, it is very unlikely that the regions of the
initial α-helix that are rich in helix-breakers would evolve directly into β-sheets. However,
regions rich in D and/or N and/or S might evolve first from α-helices into loops and, if that
region were also rich in V and/or I, then from loops into β-sheets. However, because D, N
and S are only weak α-helix breakers and weak loop-formers, and a double condition must
be verified, namely, to create the loop intermediate first and later the β-sheet, we would
expect such transformations not too occur very often.

From the two previous paragraphs we conclude that, if the nascent chain is α-helical
we can explain that loops are still the most prevalent secondary structures from the fact that
the five helical structure breakers are all loop formers. We can also explain why β-sheets are
the least prevalent because they would not evolve directly from the helix and would require
the loop as an intermediate, and would only evolve from that intermediate in regions with
sufficient amounts of V and/or I. Furthermore, finally, we would also explain why the
helix, in spite of its lack of strong formers, is still the second most abundant secondary
structure. Indeed, if the α-helix is there from the start, it needs only to be stable enough to
survive. In this case, having 12 structure-neutral amino acids, which would be a negative
factor when a structure needs to be formed, becomes a positive factor when the structure is
already there. The proposal in [27] is that the helix forms while still inside the ribosome
but another possibility is that it forms right outside as a result of constraining the nascent
chain while rotating it inside the ribosome [30].

When we consider only the single amino acid distributions, as is done in this study,
we conclude that the possibility that fits better with the results obtained is that the protein
nascent chain is helical. Indeed, some recent discussions of ribosome evolution suggest that
the exit tunnel has evolved to favour formation of helical segments [37]. The dimensions
of this tunnel place restrictions on the secondary structural elements that can form in
nascent chains during translation [38], particularly in the first 50 Å or so from the peptidyl
transfer complex where the diameter is tightly constrained [39–41]. In recent years a
range of sophisticated biochemical and biophysical tools have been developed to study
the structure of nascent chains complexed inside the exit tunnel, largely driven by the
availability of cell-free translation preparations and by our ability to pause translation
in controlled manners. Analytical tools that have been applied include cryo-electron
microscopy, protein labelling and crosslinking approaches, nuclear nagnetic resonance
(NMR) and mass spectrometry (MS) analysis, and data have also been complemented
by molecular dynamics. Do the recent studies support our hypotheses? There now exist
many studies on the co-translational folding of peptide nascent chains and of the structure
of those peptides within the exit tunnel (some excellent recent reviews are, e.g., [42–45]).
A considerable body of experimental evidence suggests that formation of α-helices within
the ribosomal exit tunnel can occur for some proteins, in a manner that may be protein
sequence, size and charge dependant [12–17,20,42,46–48]. In some other cases, there is
evidence for compact, non-native structures that may represent nascent chains with discrete
secondary structures that are not as coiled as full α-helices (e.g., [49]). In still other studies,
there are suggestions that peptides remain in extended conformations (see, e.g., [19]).
However, it must be cautioned that many studies carried out to date use (i) peptide chains
that are unnaturally truncated, (ii) ribosomal expression that has been prematurely stalled,
(iii) solution conditions that favour analytical methodology over bio-activity. Furthermore,
in many studies, the structure of the peptides in the exit tunnel is not measured directly,
but inferred by measuring the number of amino acids that need to be added to extend the
nascent chain to a particular reporter group, leading to results that are open to debate.
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Of course, the caveats mentioned at the end of the previous paragraph apply equally
to work that is supportive and less supportive of our hypotheses. However, on balance,
present experimental findings are supportive of our hypotheses—for example, there are
few, if any, examples of β-sheet-like structures in the exit tunnel—and for more accurate
structural data, more sophisticated experimental techniques should be developed that
allow imaging of peptide chains in the exit tunnel in real time and in a cellular environment.
Until now, there is a growing recognition of the key role that the ribosome plays in co-
translational folding and that this may involve states that are either partly structured or
else do not resemble the classic solution-state secondary structures [50], and evidence is
beginning to emerge for helical starting conformations in peptides that ultimately will fold
to β-structures [51].

From the possibility that the nascent chain is helical follows also a generic pathway
for the early steps of folding. Namely, since β-sheets cannot form directly from the helix,
in regions where the helix is not stable, the helix will evolve first into loops. I.e., the first
step in folding is one in which the regions that are rich in G and/or P and/or N and/or
D and/or S (the helix destabilizers) evolve into loops. Furthermore, β-sheets only arise
with high probability if those regions happen to have V, and/or I, and/or F, and/or C,
and/or W, in sufficient amounts. In this picture, the important factors in the folding
process are the initial structure and the pathway. If/when we know both with sufficient
accuracy we will be able to determine the native state from the amino acid sequence.
I.e., we propose that determining the pathway is a more fruitful direction to follow than
free energy minimization if you want to understand the protein folding process from a
physical point of view.

It may be argued that single amino acid distributions are too limited and that longer
sequences are needed for the definition of secondary structure. While this is true, it is
nevertheless likely that such sequences will be composed of the structure-forming amino
acids that have been identified in this study which, in turn, makes it unlikely that they will
overturn the broad conclusions made here. Furthermore, as mentioned in the introduction,
the variety of sequences with similar structures and the variety of structures with similar
sequences makes the identification of such sequence-inducing structures very difficult.
Thus, instead of trying to determine the sequence(s) capable of inducing a given secondary
structure in the native state, we propose to look for pathway-defining sequences. More
specifically, starting with the first step in folding mentioned in the previous paragraph, we
should look for the regions where the nascent helix changes into loops. A previous study
suggests that these regions should be bounded, on the N-side, by positively charged amino
acids like K and H, and on the C-side by negatively charged amino acids like D [52].

Let us finish with two predictions which arise if the nascent chain is helical, and the
pathway influences the native structure. One is that we expect that ribosome synthesis
and chemical synthesis by a solid phase method [53,54] of the same proteins may lead to
different structural outcomes. Namely, we predict that chemical synthesis will on average
have a greater probability of leading to structures with more loops and sheets where
ribosome synthesis of the same proteins leads to structures with a greater percentage of
helices. A second prediction is that, if it is possible to make a hybrid ribosome in which
the modern day decoding unit is coupled to the ancient synthesizing region that led to
β-hairpins [37], then proteins that are largely composed of helices when synthesized by
modern ribosomes will be mainly composed of sheets when synthesized by that hybrid
ribosome. Both of these predictions challenge the thermodynamic hypothesis [2,3].

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-2
73X/11/3/357/. The files list-of-13413-proteins.dat and list-of-444520-proteins.dat men-
tioned in Section 2. Figures S1–S11: Figures obtained with the large set of 444520 proteins, listed in
the list-of-444520-proteins.dat.
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The following abbreviations are used in this manuscript:

A Alanine (ALA)
C Cysteine (CYS)
D Aspartic Acid (ASP)
E Glutamic Acid (GLU)
F Phenylalanine (PHE)
G Glycine (GLY)
H Histidine (HIS)
I Isoleucine (ILE)
K Lysine (LYS)
L Leucine (LEU)
M Methionine (MET)
N Asparagine (ASN)
P Proline (PRO)
Q Glutamine (GLN)
R Arginine (ARG)
S Serine (SER)
T Threonine (THR)
V Valine (VAL)
W Tryptophan (Trp)
Y Tyrosine (TYR)
DSSP Define Secondary Structure of Proteins
NMR Nuclear Magnetic Resonance
MS Mass Spectrometry
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