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Abstract 

Differential proteomics, which has been widely used in studying of traditional Chinese medicines (TCMs) during the 
past 10 years, is a powerful tool to visualize differentially expressed proteins and analyzes their functions. In this paper, 
the applications of differential proteomics in exploring the action mechanisms of TCMs on various diseases including 
cancers, cardiovascular diseases, diabetes, liver diseases, kidney disorders and obesity, etc. were reviewed. Further‑
more, differential proteomics in studying of TCMs identification, toxicity, processing and compatibility mechanisms 
were also included. This review will provide information for the further applications of differential proteomics in TCMs 
studies.
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Background
Differential proteomics, which is also known as com-
parative proteomics or functional proteomics, stud-
ies the changes of proteome in different physiological 
or pathological states between two or more samples for 
the analysis of important life processes or major diseases 
in order to find out the key different proteins that are 
regarded as markers for qualitative and functional analy-
sis [1, 2]. The classic process for differential proteomics 
in studying of traditional Chinese medicines (TCMs) is 
separation–comparison-identification (Fig.  1). To begin 
with, proteins are extracted from cells or animal mod-
els with/without TCM treatment. For separating these 
proteins, two-dimensional gel electrophoresis (2-DE) or 
two-dimension difference gel electrophoresis (2D-DIGE) 
are generally employed. After that the protein spots on 
the gel are compared and partly selected to be identified 
with mass spectrometry (MS). Alternatively, several new 
technologies in quantitative proteomics not only iden-
tify an enormous amount of proteins expressed in differ-
ent states, but also accurately quantify their abundance. 
Isobaric tags for relative and absolute quantification 

(iTRAQ), which is the most widely used high-through-
put technology integrating identification and quantifica-
tion, makes the analysis of differential proteome easier 
and more efficient. In addition, labelling technologies 
such as stable isotope labeling with amino acids in cell 
culture (SILAC) and isotope coded affinity tag (ICAT), 
as well as label-free sequential window acquisition of all 
theoretical mass spectra (SWATH) are also used. Finally, 
differential expressed proteins can be found, following 
by bioinformatics analysis to find the connotation from 
their differences that can be indexed to potential targets 
or pathways.

Differential proteomics has been used to study TCMs 
for over a decade, and recently was developed rapidly. 
Most studies were mainly focused on the mechanisms 
of TCMs in treating diseases at the protein level, and 
looked for possible therapeutic targets of drug action. In 
the past, Liu and Guo [3] summarized the applications of 
proteomics in the mechanistic study of TCMs from 2004 
(the first paper published) to 2011. In 2014, Lao et al. [4] 
summed up the mechanistic studies of TCMs in treat-
ing neurological disorders, cancers, cardiovascular dis-
eases, diabetes and inflammation by using proteomics. 
And Ji et  al. [5] reviewed the proteomic studies on the 
therapeutic mechanisms of TCMs (~ 2015) based on the 
perspectives of clinical researches, and in vitro or in vivo 
experimental animal models.
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In this paper, the applications of differential proteomics 
in studying of TCMs, including the mechanistic studies of 
TCMs in treating diseases, TCMs identification, as well 
as the toxicity, processing and compatibility mechanisms 
studies of TCMs that can further broaden the under-
standings of TCMs, were summarized and discussed.

Differential proteomics for exploring the action 
mechanisms of traditional Chinese medicines
As a complex system of chemical components, TCMs 
involve multiple processes through regulating mul-
tiple targets. Studying on their action mechanisms 
has been a difficulty for researchers. Notably, the 

regulation of TCMs at protein level can be visualized 
by using proteomic technologies, through the analysis 
of the functions of significantly differential expressed 
proteins or further studying the pathways involved. 
Differential proteomics provides a practical and effec-
tive strategy for searching the action targets of TCMs, 
and improves understanding the therapeutic effects of 
TCMs at molecular level. As summarized in Table  1, 
differential proteomics approach had been applied 
in exploring the action mechanisms of TCMs for the 
treatment of cancers, cardiovascular diseases, diabe-
tes, liver and kidney diseases, wound and obesity, etc. 
TCM monomers involved in these experiments are 
shown in Fig. 2.
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Fig. 1  Schematic diagram of the experimental procedure for differential proteomics in studying of TCMs
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Table 1  Differential proteomics in exploring the action mechanisms of TCMs

Diseases Drugs Potential key targets or signaling pathways Proteomics 
methods

Ref.

Cancers

 Osteosarcomas Bufalin Heat shock 27 kDa protein 2-DE and MALDI-
TOF/TOF–MS

[6]

 T-cell acute 
lymphocytic 
leukemia

2-β-d-Glucopyranosyloxy-
1-hydroxytrideca-5,7,9,11-
tetrayne

Mitochondrial function (Parkinson disease protein 7, voltage-depend‑
ent anion-selective channel protein 2 and peroxiredoxin 3) and 
cell death (BH3 interacting domain death agonist and Lamin-B1 
protein)

2-DE, MALDI-MS/
MS and LC–ESI–
MS/MS

[7]

 Thyroid cancer Honokiol Glyceraldehyde-3-phosphate dehydrogenase, tubulin alpha-1A chain, 
alpha-enolase, 78 kDa glucose-regulated protein, proliferating cell 
nuclear antigen

2D-DIGE and 
MALDI-TOF–MS

[8]

 Hepatocarci‑
noma

Oridonin Heat shock 70 kDa protein 1, serine-threonine kinase receptor-
associated protein, translationally-controlled tumor protein, 
stress-induced phosphoprotein 1, inorganic pyrophosphatase, 
trifunctional purine, chromobox protein homolog 1, glycyl-tRNA 
synthetase, poly(rC)-binding protein 1

2-DE and MALDI-
TOF–MS/MS

[9]

 Multiple 
myeloma

Oridonin Stathmin, dihydrofolate reductase, pyruvate dehydrogenase E1β 2-DE and MALDI-
TOF–MS/MS

[10]

 Gastric cancer β-Elemene Bcl-2-associated transcription factor 1, Bcl-rambo, p21-activated 
protein kinase-interacting protein 1, S100 calcium binding protein 
A10, etc.

iTRAQ and LC–MS/
MS

[11]

 Glioblastoma β-Asarone Heterogeneous nuclear ribonucleoprotein H1 (H) isoform CRA b, 
heterogeneous nuclear ribonucleo-protein A2/B1 isoform CRA a, 
ubiquitin carboxyl-terminal hydrolase isozyme L1, cathepsin D

2-DE and MALDI-
TOF/TOF–MS/MS

[12]

 Lung cancer Triptolide Ribosome biogenesis in eukaryotes, spliceosome, mRNA surveillance 
pathway

iTRAQ and Nano 
LC–MS/MS

[13]

β-Elemene Peroxiredoxin-1 2D-DIGE and 
MALDI-TOF–MS

[14]

Cardiocerebrovascular diseases

 Cardiovascular 
disorders 
(antiplatelet)

Notoginsengnosides Growth factor receptor-bound protein 2, thrombospondin 1, thiore‑
doxin, Cu–Zn superoxide dismutase, Parkinson disease protein 7, 
peroxiredoxin 3, thioredoxin-like protein 2, ribonuclease inhibitor, 
myosin regulatory light chain 9, tubulin alpha 6, laminin receptor 1, 
potassium channel subfamily V member 2

2-DE and MALDI-
TOF–MS/MS

[15]

Salvianolic acids LIM domain protein CLP-36, copine I, myosin regulatory light chain 9, 
coronin-1B, heat shock 70 kDa protein 2, heat shock 70 kDa protein 
8, heat shock 70 kDa protein 9, peroxiredoxin 3, 3-mercaptopyru‑
vate sulfurtransferase, fibrinogen gamma polypeptide, cytoplasmic 
dynein intermediate chain 2C, aminopeptidase P 1

2-DE and MALDI-
TOF–MS/MS

[16]

Salvianolic acid B Integrin α2β1 2-DE and MALDI-
TOF–MS/MS

[17]

Olive oil γ-Actin, Rho GDP-dissociation inhibitor 1, annexin A5, integrin αIIb, 
protein disulphide isomerase-related protein 5, fibrinogen gamma 
chain precursor, syntaxin-7, serine/threonine protein phosphatase

2-DE and LC–ESI–
MS

[18]

Rhizoma Corydalis P2Y purinoceptor 12, Gαi signalling pathways 2-DE and MALDI-
TOF–MS/MS

[19]

Dehydrocorydaline, canadine P2Y purinoceptor 1, 12 (dehydrocorydaline); G protein-coupled recep‑
tor protease-activated receptor 1 (canadine)

2-DE and MALDI-
TOF–MS/MS

[20]

 Cerebral IR injury Tetrandrine 78 kDa glucose-regulated protein, Parkinson disease protein 7 and 
hypoxia up-regulated protein 1

2-D DIGE, MALDI-
TOF/TOF–MS

[21]

Bu-Yang Huan-Wu Decoction Albumin, fibrinogen alpha chain, transferrin, calcium/calmodulin-
dependent protein kinase type II alpha chain, glycogen synthase 
kinase 3, microtubule-associated protein tau, metabotropic glu‑
tamate receptor 5, guanine nucleotide-binding protein G (i), GDP 
dissociation inhibitor and 3-hydroxybutyrate dehydrogenase

iTRAQ and LC–MS/
MS

[22]

Tao-Hong Si-Wu Decoction Superoxide dismutase [Cu–Zn], sulfiredoxin, glutathione S-transferase 
alpha-2, glutamate-cysteine ligase regulatory subunit, NAD(P)H 
dehydrogenase [quinone] 1, heme oxygenase 1

2-DE and MALDI-
TOF/TOF–MS

[23]
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Table 1  (continued)

Diseases Drugs Potential key targets or signaling pathways Proteomics 
methods

Ref.

 Cardiac IR injury Salvianolic acids, notoginseng‑
nosides

Protein disulfide-isomerase, myosin light polypeptide 3, eukaryotic 
translation elongation factor 2 (SAs); apolipoprotein A-I, ubiquinol-
cytochrome c reductase core protein, 60 kDa heat shock protein, 
prohibitin (NG)

2-DE and MALDI-
TOF/TOF–MS

[24]

Liver diseases

 Liver injury Yin-Chen-Hao-Tang Zinc finger protein 407, haptoglobin, macroglobulin, alpha-1-antit‑
rypsin, transthyretin, vitamin D-binding protein, prothrombin

2-DE and MALDI-
TOF/TOF–MS

[25]

 Liver fibrosis Fu-Zheng Hua-Yu Recipe Aldehyde dehydrogenase 1 family member A1, vimentin isoform 
CRA b, gamma-actin, vimentin, fructose-bisphosphate aldolase B, 
Aldo–keto reductase family 1 member D1, S-adenosylhomocysteine 
hydrolase isoform, Heat shock protein 90

2-DE and MALDI-
TOF–MS

[26]

Fu-Zheng Hua-Yu Recipe Uridine diphosphate-glucuronosyltransferase 2A3, cytochrome P450 
2B1 and cytochrome P450 3A18 in retinol metabolism pathway

iTRAQ and LC–MS/
MS

[27]

Bupleurum marginatum Wall.
ex DC

Uridine diphosphate-glucuronosyltransferase, adenylate kinase 
isoenzyme 1, thioredoxin 1, acyl-CoA oxidase 2, glycogenin 1, alpha 
serine/threonine kinase, acyl-CoA synthetase medium-chain family 
member 1, carbonyl reductase family member 4

iTRAQ and LC–MS/
MS

[28]

Wound healing

 Skin trauma Radix Angelicae Sinensis Triosephosphate isomerase, microtubule-associated protein RP/EB 
family member1, nucleoside diphosphate kinase B, glutathione 
S-transferase P, translationally-controlled tumor protein, peroxire‑
doxin, Parkinson disease protein 7, annexin A2

2-DE and LC–MS/
MS

[29]

Radix Lithospermi Microtubule-associated protein RP/EB family member1, chloride 
intracellular channel protein 1, nucleoside diphosphate kinase A, 
phosphorylated signal protein P38, eukaryotic translation initiation 
factor 5A-1

2-DE and LC–MS/
MS

[30]

Agrimonia pilosa, Nelumbo 
nucifera, Boswellia carteri, 
pollen typhae (ANBP)

β-2-Glycoprotein 1, histidinerich glycoprotein, myosin family, keratin, 
extracellular matrix proteins

iTRAQ, HPLC and 
LC–MS/MS

[31]

Radix Astragali, Radix 
Rehmanniae

Annexin A1, annexin A2, plasminogen activator inhibitor 1 2-DE and MALDI-
TOF/TOF–MS

[32]

Diabetes

 T2DM Yi-Qi-Yang-Yin-Hua-Tan-Qu-Yu 
Recipe

Cell division control protein 42 homolog, Ras homolog gene family 
member A

iTRAQ, 2D LC–MS/
MS

[33]

Xiaoke Pill Angiotensinogen, alpha-1-antitrypsin, paraoxonase and fibulin iTRAQ, MRM, 2D-LC, 
MALDI TOF/
TOF–MS

[34]

Kaempferitrin Insulin-like growth factor-binding protein 2 and insulin-like growth 
factor-binding protein 4, low-density lipoprotein receptor, C-type 
mannose receptor 2, adipocyte enhancer-binding protein 1, 
Mannan-binding lectin serine protease 1

Dimethyl peptide 
labeling,

LC–MS/MS

[35]

TCM deficiency syndrome

 Kidney-yin 
deficiency 
syndrome

Liu-Wei Di-Huang Granule Retinol binding protein 4, transthyretin, apolipoprotein, Complement 
C4-B

2-DE and MALDI-
TOF–MS

[36]

 Kidney-yang 
deficiency 
syndrome

Jin-Kui Shen-qi Pill Wnt signaling pathway, adherens junction, neurotrophin signaling 
pathway, B cell receptor signaling pathway, chemokine signaling 
pathway, PPAR signaling pathway, Fc gamma R-mediated phagocy‑
tosis, mitogen-activated protein kinase signaling pathway

iTRAQ-LC–MS/MS 
and UPLC-Q-TOF-
HDMS

[37]

 Yin-deficiency-
heat syndrome

Zhi-Bai Di-Huang Granule Zinc-alpha-2-glycoprotein, C-reactive protein, complement C1q sub‑
component, mannose-binding protein C, l-selectin, plasminogen 
and kininogen-1

iTRAQ and 2D LC–
MS/MS

[38]

Other diseases

 Hyperlipidemia Yin-Chen Wu-Ling Powder Apolipoprotein E, serum albumin, transthyretin and vitamin D-bind‑
ing protein; T-kininogen, complement C3, C4, C4b-binding protein 
alpha chain, Igλ-2 chainC, mannose-binding protein C, hemopexin 
and fibrinogen-like protein 1

2-DE and MALDI-
TOF–MS

[39]
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Table 1  (continued)

Diseases Drugs Potential key targets or signaling pathways Proteomics 
methods

Ref.

 Obesity Taeumjowi-tang Fatty acid synthetase, adenosine monophosphate-activated protein 
kinase/acetyl CoA carboxylase pathway

2-DE and MALDI-
TOF–MS

[40]

 Depression Shen-Zhi-Ling tablet Von Willebrand factor, protein Z-dependent protease inhibitor, alpha-
2-macroglobulin, apolipoprotein C-III

label-free and LC–
MS/MS

[41]

 Chronic obstruc‑
tive pulmonary 
disease

Bu-Fei Yi-Shen formula Oxidative stress and focal adhesion pathway iTRAQ and Nano 
LC–MS/MS

[42]

 Fever Bai-Hu-Tang F-actin, coronin, nicotinamide adenine dinucleotide phosphate 
oxidase, major histocompatibility complex class I

iTRAQ and LC–MS [43]

 Aging Red ginseng Ubiquitin carboxyl-terminal hydrolase isozyme L1, heat shock 70 kDa 
protein, fructose-bisphosphate aldolase

2-DE and MALDI-
TOF–MS

[44]

2-DE, two-dimensional electrophoresis; MALDI-TOF–MS, matrix-assisted laser desorption ionization time-of-flight mass spectrometry; iTRAQ, isobaric tags for 
relative and absolute quantification; LC–ESI–MS, liquid chromatography electrospray ionisation tandem mass spectrometry; 2D-DIGE, two-dimension difference gel 
electrophoresis; HPLC, high performance liquid chromatography; UPLC-Q-TOF-HDMS, ultra-performance liquid chromatography combined with quadrupole time of 
fight high definition mass spectrometry; IR, ischemic–reperfusion

Fig. 2  Chemical structures of main monomers involved in this paper
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Cancer
As the exponentially rise in the global cancer burden, it 
already becomes an extremely urgent problem to control 
the development of cancers [45]. As TCMs have a long 
history in the treatment of various cancers, many studies 
have confirmed the therapeutic effects of Chinese herbal 
medicine (CHM) and Chinese herbal formula (CHF) on 
cancer in entire stages with the guidelines of TCM the-
ories [46]. In recent years, many studies on differential 
proteomics analysis of monomers from anticancer TCMs 
have been carried out, towards hepatocarcinoma, bone 
tumor and gastric cancer, etc. Differential proteins pro-
vided clues that related mechanisms had connections 
with directly and/or indirectly affecting the multiple hall-
mark capabilities of cancer cells, such as tenacious vital-
ity, unlimitedly proliferation, invasion and metastasis, 
etc.

Inducing apoptosis is an effective way to kill cancer 
cells thus against their vitality. Bufalin, the active ingredi-
ent of Chansu, was found to inhibit human osteosarcoma 
cell growth and induced G2/M arrest and apoptosis. 
Twenty-four differentially expressed proteins after bufa-
lin treatment were identified by a comparative proteom-
ics approach. And the heat shock 27 kDa protein, which 
plays a vital role in oncotherapy for its anti-apoptotic and 
tumorigenic properties, was most dramatically down-
regulated [6]. Therefore, inhibition of heat shock 27 kDa 
protein expression played a key role in bufalin-induced 
apoptosis in osteosarcoma cells. In another study, 
effects of 2-β-d-glucopyranosyloxy-1-hydroxytrideca-
5,7,9,11-tetrayne (GHTT), isolated from Bidens pilosa, 
on proteins expression in Jurkat T cells was investigated 
by 2-DE coupled with MS analysis. Results indicated 
that GHTT treatment can upregulate thirteen proteins 
involved in signal transduction, detoxification, metabo-
lism, energy pathways and channel transport, as well as 
downregulate nine proteins, including thioredoxinlike 
proteins, BH3 interacting domain death agonist (BID 
protein involving apoptosis), methylcrotonoyl-CoA car-
boxylase beta chain and NADH-ubiquinone oxidoreduc-
tase. Furthermore, two pathways in Jurkat cells including 
mitochondrial dysfunction and apoptosis were predicted 
by bioinformatics analysis based on the data obtained 
from the differential proteomics approach [7]. Suppress-
ing proliferation of cancer cells is another way for inhibi-
tory effect of active compound. Honokiol from Magnolia 
officinalis was found to inhibit tumor cell growth, and 
its possible mechanism on thyroid cancer cell line was 
investigated by differential proteomics analysis [8]. 
Results indicated that honokiol altered the expression of 
178 proteins, most of which showed as down-regulation 
and involved in cellular metabolic process, such as dys-
regulation of cytoskeleton, protein folding, transcription 

control and glycolysis. Combined with network analy-
sis, glyceraldehyde-3-phosphate dehydrogenase, tubulin 
alpha-1A chain, alpha-enolase, 78 kDa glucose-regulated 
protein and proliferating cell nuclear antigen might be 
the potential targets in thyroid cancer therapy. In reality, 
some TCM monomers were found to play both prolifer-
ation-inhibiting and death-promoting roles in different 
pathways in tumor cells. Rabdosia rubescens is a repre-
sentative anticancer eat-clearing and detoxicating herb, 
and its main bioactive compound oridonin was found to 
be able to fight various types of cancers [47]. The action 
mechanism in treating hepatocarcinoma of oridonin was 
investigated by proteomic tools [9]. Proliferative inhibi-
tion effect of oridonin was related with inhibiting telom-
erase and tyrosine kinase (chromobox protein homolog 1 
and glycyl-tRNA synthetase), and arresting cells in G2/M 
phase (serine-threonine kinase receptor-associated pro-
tein, translationally-controlled tumor protein, stress-
induced phosphoprotein 1, inorganic pyrophosphatase, 
poly(rC)-binding protein 1). While serine-threonine 
kinase receptor-associated protein, heat shock 70  kDa 
protein 1, trifunctional purine may responsible for cell 
apoptosis. Furthermore, oridonin was also found to mod-
ulate the expression of seven proteins in human multiple 
myeloma cell line [10]. Especially, there were three target 
proteins were found for the potential treatment of mul-
tiple myeloma. Dihydrofolate reductase was positively 
involved in folate metabolism, which indirectly inhibited 
DNA replication and induced tumor cell apoptosis. And 
stathmin was overexpressed in malignancy contributed 
to tumor angiogenesis and progression, pyruvate dehy-
drogenase E1β might reverse the Warburg effect.

TCM monomers can also inhibit tumor cell invasion 
and metastasis. Based on the differential proteomics 
study, underlying anticancer mechanisms of β-elemene 
that extracted from Curcuma wenyujin on gastric cancer 
cells were pro-apoptosis and metastasis-resistant effects 
[11]. The remarkably overexpressed protein p21-acti-
vated protein kinase-interacting protein 1 inhibited 
tumorigenesis and metastasis by targeting cancer-related 
protein P21-activated protein kinase 1, while significantly 
under-expressed protein S100 calcium binding protein 
A10 contributed to the weakening of tumor invasion and 
metastasis by influencing on the intracellular calcium 
signal. Moreover, two  altered  proteins (Bcl-2-associated 
transcription factor 1 and Bcl-2-like protein 13) both 
have pro-apoptosis activities.

In reality, the discovered mechanisms are greatly com-
plex, since TCM-regulated proteins are involved in a vari-
ety of cellular process. β-asarone, as likely as the active 
compound contributes to the effect of Rhizoma Acori 
Graminei on central nervous system disorders, may has 
the possibility as therapeutic strategies on glioblastoma 
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with quite high degree of malignity. To compare the pro-
teomic difference associated with anti-tumor effects of 
β-asarone, human glioblastoma cell was used as model 
[12]. Four evidently altered proteins, heterogeneous 
nuclear ribonucleoprotein H1 (H), isoform CRA b, het-
erogeneous nuclear ribonucleo-protein A2/B1, isoform 
CRA a, ubiquitin carboxyl-terminal hydrolase isozyme 
L1 and cathepsin D were considered to be key protein 
targets, which fell into diverse molecular functions and 
could lead to cytotoxicity. On the other hand, there were 
evidences about how triptolide (from Tripterygium wil-
fordii) exerts its broad-spectrum antitumor activity on 
lung adenocarcinoma cells by engaging to iTRAQ [13]. 
Results indicated that 312 dysregulation proteins par-
ticipated in action mechanisms of triptolide. The down-
regulated proteins were  involved in most significant 
pathways including ribosome biogenesis in eukaryotes, 
spliceosome and mRNA surveillance pathway, which all 
take part in the core process of gene expression and pro-
tein synthesis. While most of up-regulated proteins sup-
ported energy needs for the apoptosis process.

It is worth mentioned that TCM also can play a sup-
porting role during radiotherapy of cancer. For exam-
ple, β-elemene decreased reactive oxygen species (ROS) 
clearance in A549 cells through inhibiting the expression 
levels of radiation-induced peroxiredoxin-1, suggesting 
that it could enhance the radio-sensitivity of lung cancer 
cells [14].

Cardiocerebrovascular diseases
Antiplatelet and anticoagulant therapies play a crucial 
role in the prevention and treatment of cardiocerebral 
vascular diseases, which are tightly associated with blood 
stasis syndromes. And a variety of TCMs for promoting 
blood circulation and removing blood stasis have sig-
nificant anti-platelet aggregation effects [48]. Therefore, 
differential proteins based on platelet proteomics were 
usually investigated to explore the action mechanisms 
for this kind of TCMs. For example, notoginsengnosides 
(NG) (derived from Panax notoginseng), changed 12 pro-
teins expression in rat washed platelet, which indicated 
that its anti-platelet aggregative activity was attributed 
to scavenging ROS and modulating platelet activation, 
as well as reorganizing cytoskeleton structure [15]. Sal-
vianolic acids (SAs) showed similar mechanism with NG, 
and SAs-modulated proteins also implicated in platelet 
adhesion, signal transduction and other functions [16]. 
In reality, there existed significant relationship between 
integrin and platelet function. As an important protein 
target of salvianolic acid B (SB), integrin α2β1 could bind 
with SB directly and SB triggered signal cascades was 
changed [17]. While after treated by olive oil extract, 
integrin aIIb/b3 could regulate platelet structure and 

aggregation, coagulation and apoptosis, and signaling 
[18]. In our previous study, ethanol extract of Rhizoma 
Corydalis (RC) has been investigated for its anti-platelet 
aggregation mechanism by differential proteomic analy-
sis [19]. And 52 altered proteins (Fig.  3) were involved 
in platelet activation, oxidation stress and cytoskeleton 
structure. The potential direct target protein P2Y puri-
noceptor 1, as a crucial player, participated in signaling 
cascades network of RC during platelet aggregation. And 
the binding between RC extract and P2Y purinoceptor 
1, followed with mediating Gαi signaling pathways, may 
contribute to the anti-platelet effect of RC. Furthermore, 
Tan et al. [20] had carried out further studies to elucidate 
the mechanisms underlying actions of dehydrocorydaline 
and canadine, which are the main anti-platelet aggrega-
tion active ingredients in RC. The key direct target pro-
teins of dehydrocorydaline were two ADP receptors: 
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P2Y purinoceptor 1 and P2Y purinoceptor 12. Dehydro-
corydaline might exerted its impact mainly by acting on 
cytoskeleton-related proteins and RhoA/Myosin light 
chain 2 signaling pathway. For canadine, it may inter-
acts with the G protein-coupled receptor protease-acti-
vated receptor 1, and modulate the phosphatidylinositol 
3-kinases signaling pathway.

In common ischemic diseases, cerebral and cardiac 
ischemic–reperfusion (IR) injury are resulted from blood 
circulation disorder. Some of TCM monomers, CHM 
and CHF, such as tetrandrine, Salvia miltiorrhiza, Panax 
notoginseng, Bu-Yang Huan-Wu Decoration (BHD), Tao-
Hong Si-Wu Decoction (THSWD) have been shown 
to have protective effects on ischemic diseases. Since 
series of biological activities of tetrandrine represents 
the potential application future in stroke therapy, Lin 
et  al. [21] established middle cerebral artery occlusion 
mice model, from which thirty tetrandrine-modulated 
proteins were identified by using 2D-DIGE and MALDI-
TOF-MS. Three key proteins including 78 kDa glucose-
regulated protein, Parkinson disease protein 7 and 
hypoxia up-regulated protein 1 might be linked to neu-
roprotection effect, wherein 78  kDa glucose-regulated 
protein and Parkinson disease protein 7 treat stroke by 
preventing cell damage during ischemic brain injury, but 
the relationship between hypoxia up-regulated protein 1 
and tetrandrine was not clear. The TCM Salvia miltior-
rhiza and Panax notoginseng were usually employed for 
the treatment of ischemic cardiovascular diseases. To 
investigate their molecular mechanisms, Yue et  al. [24] 
tentatively examined the effects of SAs, NG and their 
combination in rat models of IR injury, and 15 IR-related 
differentially regulated proteins were found. These results 
showed that SAs and NG had distinct regulatory effects 
on proteins involved in lipid metabolism, muscle con-
traction, heat shock stress, while their combination 
showed better effects for regulating both targets of SAs 
and NG. Chen et al. [22] studied a CHF used in treating 
qi deficiency and blood stasis syndrome caused by stroke, 
BHD. By analyzing brain tissue proteome from cerebral 
IR-induced stroke mouse model, it was depicted that 
BHD can decrease the expression of albumin, fibrinogen 
alpha chain, transferrin to reduce the blood–brain bar-
rier breakdown, and the effects of modulated calcium/
calmodulin-dependent protein kinase type II alpha chain, 
glycogen synthase kinase 3 and microtubule-associated 
protein tau embodied in neuroprotection, and sup-
pressed excitotoxicity were ascribed to metabotropic glu-
tamate receptor 5, nucleotide-binding protein G (i) and 
GDP dissociation inhibitor. In addition, uniquely BHD-
regulated protein 3-hydroxybutyrate dehydrogenase indi-
cated an involvement of enhancing energy metabolism. 
Compared to BHD, THSWD was also used for treating 

cerebrovascular diseases with different molecular mech-
anism. Qi et  al. [23] found that THSWD could change 
the proteome of rat pheochromocytoma cells, hence it 
mediated protective effect on cerebral IR injury. They 
speculated that the protection effect of THSWD might 
regulated partly by six of Nrf2-driven phase II enzymes, 
which were validated in transcription level by real-time 
PCR.

Liver diseases
Yin-Chen-Hao-Tang (YCHT) has often been used to 
treat liver diseases clinically. Using 2-DE and MALDI-
TOF/TOF–MS analysis, Sun et al. [25] investigated the 
effects of YCHT on liver proteins in bile duct ligated 
rats and found that the expressions of fifteen proteins 
were modulated by YCHT, including zinc finger protein 
407, haptoglobin, macroglobulin, alpha-1-antitrypsin, 
transthyretin, vitamin D-binding protein, and pro-
thrombin. These proteins might be the most possible 
direct targets of YCHT, which involved in metabolism, 
energy generation, chaperone, etc. On the other hand, 
various liver injuries can lead to hepatic fibrosis dur-
ing the process of sustained wound healing [49]. Chi-
nese herbal formula Fu-Zheng Hua-Yu Recipe (FZHY) 
has been shown the effect of anti-hepatic fibrosis. 
To investigate its action mechanisms, Xie et  al. [26] 
employed 2-DE and MALDI-TOF–MS on the analysis 
of proteome of normal, dimethylnitrosamine- induced 
fibrogenesis and FZHY-treated rats. Eight differen-
tial proteins in normal and FZHY-treated rats both 
showed reverse trends with model group, among which 
vimentin and gamma-actin had a link with inhibit-
ing activation of hepatic stellate cell or epithelial-to-
mesenchymal transition in liver cells, and the other 
six proteins were associated with stress response and 
metabolisms of retinoic acid, carbohydrate and bile 
acid. In a recent study, Dong et al. [27] discovered 255 
genes and 499 proteins that all differently expressed by 
using microarray and iTRAQ. The three potential key 
proteins (uridine diphosphate-glucuronosyltransferase 
2A3, cytochrome P450 2B1 and cytochrome P450 
3A18) and three important pathways (retinol metabo-
lism, metabolism of xenobiotics by cytochrome P450, 
and drug metabolism) were found via bioinformat-
ics methods, which further elucidated the therapeu-
tic mechanisms and pharmacological effects of FZHY. 
Effects of another anti-liver fibrosis TCM Bupleurum 
marginatum Wall.ex DC (BM) on protein expression in 
liver fibrosis rat was also investigated by iTRAQ [28]. 
The identified proteins were classified and involved in 
embracing drug metabolism, oxidative stress, biomo-
lecular synthesis and metabolism, etc. Besides, based 
on compound-target network analysis, eight key targets 
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(uridine diphosphate-glucuronosyltransferase 2A3, 
adenylate kinase isoenzyme 1, thioredoxin 1, acyl-CoA 
oxidase 2, glycogenin 1, alpha serine/threonine kinase, 
acyl-CoA synthetase medium-chain family member 1, 
carbonyl reductase family member 4) were excavated, 
as well as key active compounds (triterpenoid saponins 
and lignans) were identified.

Wound healing
Chinese herbal medicine for wound healing has a long 
history and a relatively comprehensive theoretical system 
in China. Rising attention has been paid to the mecha-
nisms of wound healing on molecular level. Shiunko, 
which is an effective CHF for external application to 
promote granulation and get rid of putrid necrosis, com-
poses of two major components Radix Angelicae Sinen-
sis (RAS) and Radix Lithospermi (RL) in promoting the 
wound healing process. Respectively, their mechanisms 
of action were studied by Hsiao et al. [29] through pro-
teomics analysis. By using 2-DE, the proteins expression 
of human embryonic skin fibroblast treated with RAS 
were examined, and fifty-one remarkably up/down-reg-
ulated proteins were found, of which the functions were 
ascribed to promotion of glycolysis, enhancement of cell 
mobility and increase of antiapoptosis, etc. Functions of 
these proteins revealed that action mechanisms of RAS 
might be related to increasing the viability of cells dur-
ing the wound healing process. Subsequently, as to RL, 
there were some similar effects brought by same or dif-
ferent regulated proteins contribute to molecular basis 
compared to RAS, but there had differences to a certain 
extent [30]. They embodied in cell mobility (down-regu-
lation of chloride intracellular channel protein 1) and cell 
viability (up-regulation of nucleoside diphosphate kinase 
A, eukaryotic translation initiation factor 5A-1 and 
phosphorylated signal protein P38). Additionally, Chen 
et  al. [31] found that herbal mixture ANBP (Agrimonia 
pilosa, Nelumbo nucifera, Boswellia carteri, and Pollen 
Typhae) aided the wound recovery at different healing 
stages by observing changes of skin proteome in trauma 
model rats. At length, ANBP-modulated proteins took 
part in immune and defense response, vascular system 
restoration, hemostasis and coagulation regulation and 
other processes at the early stages, while the formation 
of muscle tissue, hair, epidermis and extracellular matrix 
were promoted at the later stages. A modified formula 
(named NF3) composed of Radix Astragali and Radix 
Rehmanniae, exerted significant effects of wound heal-
ing and proangiogenesis separately in  vivo and in  vitro. 
Tam et al. [32] found that the treatment with NF3 modu-
lated the expression of cytoskeleton regulatory proteins 
at the proteome level, such as annexin A1, annexin A2 

and plasminogen activator inhibitor 1 in relation to 
proangiogenesis.

Diabetes
TCMs also have potential clinical applications for the 
treatment of type 2 diabetes mellitus (T2DM). Yi-Qi-
Yang-Yin-Hua-Tan-Qu-Yu Recipe (YQYYHTQY), 
which composes of eight CHMs, is an antidiabetic CHF. 
Study indicated that four of YQYYHTQY-regulated 
serum proteins had connections with diabetes, blood 
and behavior based on STRING analysis, of which 
two significantly decreased proteins (cell division con-
trol protein 42 homolog and Ras homolog gene family 
member A) belonged to small GTPase, were the crucial 
nodes involved in positive regulation of cytokinesis and 
response to glucose. Therefore, these two proteins might 
be the targets of YQYYHTQY on T2DM therapy [33]. 
However, diabetes treatments are often accompanied 
with adverse reactions, such as hypoglycemia. As Xia-
oke Pill is beneficial in treating diabetic hypoglycemia, 
Zhang et  al. [34] employed a modified iTRAQ strat-
egy to study its mechanism. According to the variation 
patterns of protein abundance, the way of Xiaoke Pill 
affecting serum proteome was of difference to com-
mon anti-diabetic drug glyburide. And angiotensino-
gen, alpha-1-antitrypsin, paraoxonase and fibulin were 
presumed to be linked with its  anti-diabetic effect. In 
addition, kaempferitrin extracted from the leaves of Cin-
namomum osmophloeum and Bauhinia forficata also 
has potential antidiabetic effects. In distinct secretomes 
of kaempferitrin-treated astrocytic cell line, 32 regulated 
proteins were associated with insulin-related signaling, 
inflammation process, cholesterol metabolism. Among 
them, insulin-like growth factor-binding protein 2, insu-
lin-like growth factor-binding protein 4 and low-density 
lipoprotein receptor were most likely to be antidiabetic-
related proteins. And C-type mannose receptor 2, adi-
pocyte enhancer-binding protein 1 and mannan-binding 
lectin serine protease 1 might inhibit the inflammatory 
response by keeping pro-inflammatory cytokines as nor-
mal [35].

TCM deficiency syndrome
Studies have also been carried out to find the underlying 
mechanism of TCM on deficiency syndrome. By evalu-
ating Liu-Wei Di-Huang Granule treatment in vitro fer-
tilization pre-embryo transfer in infertility women with 
kidney-yin deficiency syndrome, Lian et al. [36] explored 
four possible underlying targets involved were retinol 
binding protein 4, transthyretin, apolipoprotein, as well 
as complement C4-B. The Jin-Kui Shen-Qi Pill (JSP), 
also called Ba-Wei Di-Huang Granule, exerts remarkable 



Page 10 of 15Yang et al. Chin Med            (2019) 14:1 

therapeutic efficacy in protecting against kidney-yang 
deficiency syndrome (KYDS) clinically. Zhang et al. [37] 
demonstrated proteomics and metabolomics methods 
to detect the differentially expressed serum proteins 
between JSP-treated and controlled rat models. It was 
therefore revealed that JSP had influence on KYDS by 
the regulation of metabolism-related proteins involved 
in wnt signaling pathway, adherens junction, as well as 
neurotrophin signaling pathway, etc. And about the dif-
ferential proteomic studies of yin-deficiency-heat (YDH) 
syndrome treatments using CHF Zhi-Bai Di-Huang 
Granule (ZDG), which is equivalent to Liu-Wei Di-
Huang Granule combined with Cortex Phellodendri and 
Rhizoma Anemarrhenae. Liu et  al. [38] investigated the 
molecular mechanism of ZDG’s efficacy in nourishing 
yin and decreasing internal heat. ZDG-regulated pro-
teins were found to be involved in antigen processing and 
presentation (zinc-alpha-2-glycoprotein), complement 
activation (C-reactive protein, complement C1q subcom-
ponent, and mannose-binding protein C) and regulating 
the inflammatory response (L-selectin, plasminogen, and 
kininogen-1). Therefore, regulating the immune response 
to strengthen immunity might be the way of ZDG ame-
liorating YDH syndrome.

Obesity is a chronic metabolic disease caused by a 
variety of factors. People with obesity have fat metabolic 
disorder, which can lead to hyperlipidemia. The ways for 
researchers observing therapeutic effects of TCMs on 
obesity or hyperlipidemia are usually through measur-
ing adipose tissue weight [50], serum parameters (such 
as leptin, cholesterol and triglyceride content) [51], etc. 
And differential proteomic provides a reference at the 
protein level. Li et al. [39] utilized comparative proteomic 
approach for the molecular mechanism research of Yin-
Chen Wu-Ling Powder on hyperlipidemic model rats. 
Serum proteome was analyzed and twelve significantly 
altered plasma proteins were identified. The finding sug-
gested that efficacy of positively modulating lipid levels 
had affinity with the functions of differently expressed 
proteins, that includes regulating lipid metabolism, 
improving coagulation functional disturbance, regulat-
ing immune and inflammatory responses, and mediating 
substance transport. Another anti-obesity herbal medi-
cine Taeumjowi-tang (TH) consisting of eight herbs has 
traditionally been used in Korea. Kim et  al. [40] identi-
fied the proteins differentially expressed in hepar of 
TH-treated obesity model rats utilizing proteomic and 
western blot analysis, and deduced that TH improved 
lipid metabolism through modulating fatty acid metabo-
lizing proteins involved in obesity and hepatic injury, 
with the involvement of adenosine monophosphate-acti-
vated protein kinase, acetyl CoA carboxylase and fatty 
acid synthetase.

The proteomics was also employed for uncovering the 
molecular mechanisms of TCM treatments on other 
diseases. For example, von Willebrand factor, protein 
Z-dependent protease inhibitor, alpha-2-macroglobulin, 
and apolipoprotein C-III were considered as potential 
targets for Shen-Zhi-Ling in treating depression [41]; Bu-
Fei Yi-Shen formula might alter the expression of proteins 
involved in oxidative stress and focal adhesion to treat 
chronic obstructive pulmonary disease [42]; Bai-Hu-Tang 
might fight against lipopolysaccharide fever syndrome 
by up-regulating F-actin, coronin, nicotinamide adenine 
dinucleotide phosphate oxidase and major histocompat-
ibility complex class I [43]; Red ginseng could modulate 
antioxidant-related proteins ubiquitin carboxyl-terminal 
hydrolase isozyme L1, heat shock 70  kDa protein, fruc-
tose-bisphosphate aldolase against aging [44], etc.

Identifications of traditional Chinese medicines 
by differential proteomics approach
Nowadays, there were many methods used to charac-
terize and identify of TCMs, such as UPLC-QTOF/MS 
combined with chemometrics to find out unique markers 
for Radix Polygoni Multiflori from different geographical 
areas [52], quality control of Lycium chinense and Lycium 
barbarum cortex by HPLC using kukoamines as markers 
[53]. Although small molecules were usually been used 
as quality control markers for TCMs, plant origin pro-
teins, which have various kinds of bioactivities [54], also 
facilitate the identification of TCM. Differential proteom-
ics can be used to find characteristic proteins in Chinese 
herbal samples that differ in origins, species, medicinal 
parts, as well as wild types and artificial cultivation types, 
thus it provides information of material basis and plays 
the role of identification.

To this day, there have been a number of studies on the 
different proteins of fungi TCMs for identification and 
quality control, due to its biological activities and abun-
dance. A representative and valuable fungal Chinese herb 
is Cordyceps (Ophiocordyceps sinensis). In the study of O. 
sinensis, Zhang et al. [55] used 2-DE and MALDI-TOF/
TOF–MS to compare proteins of O. sinensis samples 
that five  were collected from different habitats (three 
from China, two respectively from Nepal and Bhutan) 
and other four were different fungal specimens with 
similar shape; They found that distribution of O. sinen-
sis protein spots among the five regions has no striking 
differences, and two specific proteins OCS_04585 and 
b-lactamase domain-containing protein were identified, 
while the comparison results between four fungal speci-
mens showed that there was only one common protein 
(protein-eliciting plant response-like protein) existed. 
A more extensive research about habitats was carried 
out by Li [56] to find differentially expressed protein of 
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O. sinensis. The abundance and number of proteins var-
ied greatly among 26 habitats from Sichuan, Tibet and 
Qinghai provinces. To find out the correlation between 
natural O. sinensis protein and its origin, by using cluster 
analysis towards protein spots, the samples were divided 
into two categories: those from Tibet and from Qinghai. 
This study provided a meaningful reference for finding 
protein markers of O. sinensis from different habitats. On 
the basis of previous studies on protein markers, Tong 
et  al. [57] conducted deeper research towards O. sinen-
sis samples collected from four production regions and 
other four counterfeit samples. The differences in protein 
of O. sinensis from Yunnan, Sichuan, Tibet and Qinghai 
provinces were reflected in the distribution and concen-
tration, and the proteome of authentic O. sinensis and its 
counterfeits existed great differences. Total 22 character-
istic proteins were identified, of which IP4 can be used 
as a putative target in the indirect ELISA developed by 
them. In addition, Zhang et  al. [58] found 165 proteins 
differed significantly between the samples of natural and 
artificial cultivation. As the supply of natural O. sinen-
sis cannot meet the market demand, it is of importance 
to investigate quality formation of artificially-cultivated 
O. sinensis and supply valuable references and guidance 
for its artificial cultivation. About other fungi TCMs, Li 
et  al. [56, 59] analyzed proteins in Ganoderma lucidum 
and Morchella vulgaris by gel electrophoresis, wherein 
fourteen samples of G. lucidum from different habitats 
or seven samples of M. volgaris from three habitats with 
different processing methods all showed that the number 
and abundance of proteins were distinct.

There were also some proteomic researches on other 
herbal medicines. The difference proteins among four 
medicinal aloe (Aloe barbadensis Miller, A. vera L. var 
chinensis (Haw.) Berger, A. ferox Miller and A. arbores-
cens Miller) were investigated in Fan’s study [60]. There 
was a certain amount (about 51% to 62%) of differen-
tial proteins between the four medicinal aloes. Among 
them, the ran-binding protein 1 homolog c-like, actin, 
NAD-dependent malate dehydrogenase and cinnamyl 
alcohol dehydrogenase existed in A. barbadensis; the 
alpha tubulin subunit, isoflavone reductase-like pro-
teins presented in A. vera var chinensis; and the auxin-
induced protein PCNT115-like isoform 1 was found in 
A. arborescens. In another study, by using proteomic 
methods, proteins from Oriental ginseng and Ameri-
can ginseng, different parts of Oriental ginseng, cul-
tured cells of Oriental ginseng were compared to find 
out marker proteins [61]. Nine common protein spots 
existed in all parts of two species, while the protein 
spots AM1 and KM1 were found only in main roots of 
Oriental ginseng and American ginseng, respectively. 
Cultured cells contained much more alkaline proteins 

than Oriental ginseng. In other herbal medicines, Hua 
et al. [62] established a omic-based strategy to compre-
hensively reveal and accurately measure gene and pro-
tein expression in naturally- and artificially-cultivated 
Pseudostellaria heterophylla. And 71 of 332 proteins 
were remarkably altered. The differences could be the 
cause that artificially-cultivated P. heterophylla was 
more capable in the ability to respond to stress and the 
catabolism of oxidoreductasesm, but weak in carbohy-
drate metabolism of hydrolases, carbohydrate and cel-
lular amino acid metabolisms of transferases.

Moreover, as one of the important resources of 
TCMs, animal medicines are particularly rich in pro-
teins and peptides which enables differential proteomics 
to become a very potential tool for their quality identi-
fication. Sodium dodecyl sulphate–polyacrylamide gel 
electrophoresis and 2-DE were conducted to distinguish 
three gelatinous Chinese medicines: Asini Corii Colla 
(ACC), Testudinis Carapacis ET Plastri Colla (TCPC), 
Cervi Cornus Colla [63]. The range of protein molecu-
lar weight was as varied as Colla species, but the spots 
were dispersed in the gel which brought about difficulty 
in protein identification. Therefore, these protein spots 
were treated with trypsinase. With the identification 
of characteristic polypeptide fragments using MALDI-
TOF/TOF–MS and Nano-LC Orbitrap MS, nineteen 
characteristic proteins were found in ACC while seven 
in TCPC. Furthermore, Xue et  al. [64] developed shot-
gun proteomics and bioinformatics strategy that can 
identify differential collagen in ACC made from the 
skin of donkey, horse, pig or cattle. Six specific peptides 
from the collagen of four kinds of ACC as skin markers 
were found, such as 497GPTGEPGKPGDK508 for don-
key, 422GASGPAGVR430 and 497GPSGEPGKPGDK508 for 
horse, 422GPTGPAGVR430 for pig, 781GEAGPSGPAGPT-
GAR​795 and 352GEGGPQGPR360 for cattle. The strategy 
can be applied to detect the adulteration of non-donkey 
species sensitively.

Miscellaneous
Studies on TCM toxicity are beneficial to establish a sci-
entific assessment system to guarantee the safety in clini-
cal TCM medication. Differential proteomics can be used 
to dig the toxicity mechanisms of TCMs by comparing 
TCM-treated and control groups to find abnormally reg-
ulated proteins. Xu et al. [65] observed changes in abun-
dances of embryo proteins in model rats treated with 
Pinellia ternata (Thunb.) Breit. They used proteomic 
analysis and identified 153 differential expressed proteins 
that enriched in pathways of oxidative phosphorylation 
metabolism and neurodegenerative diseases. Among 
them, 37 specific proteins mainly inhibited the process 
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of nervous system development, including brain devel-
opment and neuron development, which associated with 
fetal nervous system abnormalities. Li et  al. [66] tested 
the liver toxicity of saikosaponins isolated from Radix 
Bupleuri in mice and established a relationship among 
dose, time course and hepatotoxicity. In addition, 487 
proteins, which involved in pathways of lipid metabolism, 
protein metabolism, macro molecular transportation, 
cytoskeleton structure and response to stress, showed 
distinct differential expression patterns before and after 
saikosaponins treatment and might induce liver injury.

Processing is a characteristic pharmaceutical technol-
ogy in TCMs, which has positive effects such as increas-
ing effect, reducing toxicity and alleviating drug property, 
etc. But the principle of processing is still unclear, and 
there are lacks of effective quality control standards dur-
ing processing [67]. Differential proteomics provides 
a new idea for it, and starts from two aspects: changes 
in the proteins of TCMs before and after processing; 
changes in the molecular mechanism after its actions 
on cells or animals. To study the mechanism of reducing 
toxic effects on intestines between Semen Euphorbiae 
and its processed product-Semen Euphorbiae Pulveratum 
(SEP) in KM mice, Zhang et  al. [68] performed iTRAQ 
and LC–MS/MS analysis and uncovered two differen-
tial expressed proteins as key inflammatory biomarkers, 
of which angiopoietin-4, signal transducer and activator 
of transcription 1 attenuate inflammatory response via 
affecting Janus kinase 2/signal transducer and activator 
of transcription 3 signaling pathway, and angiopoietin/
angiopoietin-1 receptor signaling pathway respectively, 
after treated with SEP. Traditional fried process on Pilose 
antler has the function of removing blood residue and 
antisepsis, but it is likely to cause loss of active ingredi-
ents. Jin [69] found that 37 of the differential Pilose ant-
ler proteins involved in anti-fatigue and metabolism were 
destroyed, and author recommended that freeze drying 
process with protective agent was a better choice. Xu 
[70] discovered that proteins of the processed Bombyx 
batryticatus were obviously less than that of crude drug, 
which indicated stir-baking with bran may degrade the 
protein. And thirteen different proteins were identified. 
Fu et al. [71] carried out comparative proteomic analysis 
on Eisenia fetida processed by sun- and freeze-drying. 
Five fibrinolytic proteases that possibly related to throm-
bolytic activity were identified, and their total abundance 
of freeze-dried earthworms was dramatically higher than 
that of sun-dried.

Compatibility is another feature of the theoretical sys-
tem of TCM, which embodies the concept of wholism 
and differentiation criteria. The interaction between 
compatible medicines includes mutual reinforcement 
and opposite, mutual restraint and detoxication, mutual 

assistance and inhibition according to ‘Shen Nong’s 
Herbal Classic’. Recently, the study on the compatibil-
ity by using differential proteomics has received certain 
attention. The proteomic study on Qi-Shen-Yi-Qi formula 
(QSYQ) has been well explained its compatibility mecha-
nism [72]. QSYQ constituted by Panax notoginseng, 
Salvia miltiorrhiza, Astragalus membranaceus and Dal-
bergia odorifera, which are individually classified as mon-
arch herb, minister herb, assistant herb and guide herb. 
The CHF exerts treating effects for ‘Qi-deficiency, blood 
stasis’ coronary heart disease. Studies were carried out 
on rats divided into the control, each medical herb alone, 
combined treatment groups, and myocardial infarction 
model group. The number of differentially regulated pro-
teins of the four drugs was 17, 16, 15 and 15, respectively. 
These results indicated that effects of each drug had dif-
ferent emphasis in angiogenesis and reduced energy con-
sumption, anti-oxidation and anti-adhesion, promotion 
of angiogenesis, promotion of microangiogenesis. Miao 
et al. [73] explored the effects of single herb Radix Scutel-
lariae, Rhizoma Coptidis and their herbal pair in the liver 
tissue of rats. Total 78 proteins expressed differently were 
associated with drug metabolism, energy metabolism, 
signal transduction and cytoskeleton. These toxicity-
related proteins showed a certain degree of difference 
among three groups, which provided a useful reference 
for future research. Differential proteomic analysis pro-
vides a fresh look at compatibility study of herbal pair. As 
to studies on TCM incompatibility, Yu [74] discovered 
the possible mechanism of the effects of glycyrrhizic acid 
and genkwanin on reducing or increasing toxicity, both 
of which are the active representative compounds of the 
incompatible herbal pair, Radix Glycyrrhiza and Flos 
Genkw, respectively. Two treatment groups had forty-six 
overlaps up-regulated proteins and seventy-nine down-
regulated proteins, and these proteins regulated the path-
ways related to glycerophospholipid metabolism, virus 
infection, pathogenic bacteria infection and cell tight 
junctions.

Conclusion
Protein is the specific practitioner of life activities, the 
dynamic change shows the characteristic life activity 
in real time, which close to life phenomena and essence 
[3]. The differential proteome focuses on the different 
proteins with a certain implication under the changes 
caused by different states, and extracts distinction from 
the whole, and produces the aggressive propulsion effects 
in the exploration of various mechanisms behind the 
TCM theory. In recent years, several reports have applied 
differential proteomics in TCMs researches. Among 
them, studies on therapeutic mechanism of TCMs take 
the majority, understanding the role of TCMs in the 



Page 13 of 15Yang et al. Chin Med            (2019) 14:1 

treatment of cancer, cardiovascular diseases, diabetes 
and so on has been growing. Not only that, differential 
proteomics has other applications in the TCMs identifi-
cation, mechanism study of toxicity, processing and com-
patibility theory.

Although proteomic techniques have been rapidly 
developed, the promotion of technologies have been lim-
ited by high cost. For its high separation efficiency, 2-DE 
remains the mainstream technique for protein separa-
tion. However, 2-DE has characteristics of low sensitiv-
ity, time-consuming and complex operation, unable to be 
directly combined with MS, likewise incomplete identi-
fication of protein species, etc. Furthermore, even with 
advanced quantitative proteomics techniques, research-
ers still face challenges. iTRAQ as an example, the diffi-
culty lies in complex preparations processes of samples 
(A, protein extraction; B, preliminary quantitative analy-
sis; C, enzyme digestion; D, labelling; E, balanced mix), 
dealing with a great deal of MS information of labelled 
digested peptide. In addition, as a good partner of differ-
ential proteomics, bioinformatics methods can mine use-
ful information from the mass of data (protein location, 
function, enriched pathway, and interaction network) for 
predicting the signaling pathways.

Up to now, as the existing researches were preliminary 
and partial, and the information obtained through prot-
eomics techniques was still limited, which could suggest 
potential mechanisms but in-depth theoretical study 
was not enough. Conjunction with other omics tech-
nologies to collect multi-level information of molecules 
(e.g. genes, metabolites, etc.) has become an inevitable 
trend. Besides those top-down approaches, bottom-up 
approaches help TCM studies become more accurate 
and concentrated [75]. For example, hypotheses can be 
proposed on the basis of data analysis through network 
pharmacology [76], and then it could be used for comple-
menting, testing and verifying mutually with the results 
of differential proteomic to find out TCM mechanisms 
effectively.
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time-of-flight mass spectrometry; MS: mass spectrometry; NF3: a modified 
formula composed of Radix Astragali and Radix Rehmanniae; NG: notogin‑
sengnosides; QSYQ: Qi-Shen-Yi-Qi formula; RAS: Radix Angelicae Sinensis; RC: 
Rhizoma Corydalis; RL: Radix Lithospermi; ROS: reactive oxygen species; SAs: 
salvianolic acids; SB: salvianolic acid B; SEP: Semen Euphorbiae Pulveratum; 

SILAC: stable isotope labeling with amino acids in cell culture; SWATH: sequen‑
tial window acquisition of all theoretical mass spectra; T2DM: type 2 diabetes 
mellitus; TCMs: traditional Chinese medicines; TCPC: Testudinis Carapacis ET 
Plastri Colla; TH: Taeumjowi-tang; THSWD: Tao-Hong Si-Wu Decoction; YCHT: 
Yin-Chen-Hao-Tang; YDH: Yin-deficiency-heat; YQYYHTQY: Yi-Qi-Yang-Yin-Hua-
Tan-Qu-Yu Recipe; ZDG: Zhi-Bai Di-Huang Granule.
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