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Connectomics is the study of the full connection matrix of the brain. Recent advances
in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of
whole small animal brains at a sub-micrometer resolution, potentially opening the road
to full-blown connectomics research. One of the first such instruments to achieve whole-
brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope
(KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma
distribution), and India ink (vascular networks). KESM data can contribute greatly to con-
nectomics research, since they fill the gap between lower resolution, large volume imaging
methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial
sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale,
ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a
huge challenge, before we even start worrying about quantitative connectivity analysis. To
solve this issue, we developed a web-based neuroinformatics framework for efficient visu-
alization and analysis of the multiscale KESM data sets. In this paper, we will first provide
an overview of KESM, then discuss in detail the KESM data sets and the web-based neu-
roinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will
discuss the relevance of the KESMBA to connectomics research, and identify challenges
and future directions.

Keywords: mouse brain; Golgi; web-based brain atlas; multiscale; connectomics; Knife-Edge Scanning Microscopy

1. INTRODUCTION
Connectomics aims to map the full connection matrix of the brain
(Sporns et al., 2005; Sporns, 2011). The fundamental assumption
in connectomics is that structure defines function. To evaluate
this assumption, we can consider the fact that the functional evo-
lution of the brain has been mainly driven by that of the brain
architecture and not by individual neurons (Swanson, 2003). Also,
“basic circuits” of the brain have been identified as an important
abstraction of brain function at the system-level (Shepherd, 2003).
Furthermore, structure (connectivity) has been shown to greatly
affect the dynamics of the network (Sporns and Tononi, 2002).
Varying the delay distribution in a network was also found to
alter its dynamics (Thiel et al., 2003), where structural analogs of
delay, e.g., connection length, could also contribute to the same
effect. These, taken together, indicate that obtaining the connec-
tome can lead to a major breakthrough in understanding brain
function.

Recent advances in high-throughput, high-resolution 3D
microscopy methods have enabled the imaging of whole small
animal brains at a sub-micrometer resolution, potentially open-
ing the road to full-blown connectomics research. One of the first

such instruments to achieve whole-brain-scale imaging at sub-
micrometer resolution is the Knife-Edge Scanning Microscope
(KESM; McCormick, 2003, 2004; Kwon et al., 2008; Mayerich et al.,
2008b; cf. Li et al., 2010 based on the same imaging principles as
that of the KESM). KESM whole-brain data sets now include Golgi
(neuronal circuits; Abbott, 2008), Nissl (soma distribution; Choe
et al., 2010), and India ink (vascular networks; Choe et al., 2009;
Mayerich et al., 2011b). Methods related to the KESM include
All-Optical Histology (Tsai et al., 2003) and Array Tomography
(Micheva and Smith, 2007). There are also methods that explore
much finer structural detail, such as Serial Block-Face Scanning
Electron Microscopy (SBF-SEM; Denk and Horstmann,2004),and
Automatic Tape-Collecting Lathe Ultramicrotome (ATLUM; Hay-
worth, 2008). The resolution and size of the volume that can be
imaged by the above methods vary widely (resolution of 10s of nm
to 100s of nm, to volumes ranging from 10s of μm cube up to 1 cm
cube; see Choe et al., 2008 for a review), but they all share the same
principle of physical sectioning or physical ablation, as opposed to
optical sectioning common in conventional 3D microscopy (All-
Optical Histology uses a hybrid approach, physical plus optical
sectioning; Tsai et al., 2003).
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Data from KESM and similar approaches based on light
microscopy can greatly contribute to connectomics research,
by filling the critical gap between large scale, lower resolution
methods like diffusion MRI (Basser and Jones, 2002; Tuch et al.,
2003; Hagmann et al., 2007; Roebroeck et al., 2008) on the one
hand and small-scale, higher resolution methods like SBF-SEM
(Denk and Horstmann, 2004) on the other hand. It is also notable
that KESM data are by nature multiscale, ranging from the sub-
cellular (<1 μm) to the whole organ scale (∼1 cm). Due to the
large volume (several tera voxels) and the multiscale nature, visu-
alization alone is a huge challenge, before we even start worrying
about quantitative connectivity analysis. Furthermore, delivering
the neuronal circuit data to connectomics researchers is also a
challenge, due to the same reasons as above. To solve this issue,
we developed a web-based neuroinformatics platform for efficient
visualization and analysis of the multiscale KESM data sets.

In this paper, we will first provide an overview of KESM, then
discuss in detail the web-based neuroinformatics framework called
the KESM brain atlas (KESMBA). Next, we will present the KESM
data sets using KESMBA. Finally, we will discuss the relevance of
the KESMBA to connectomics research, and identify challenges
and future directions.

2. MATERIALS AND METHODS
2.1. SPECIMEN PREPARATION
Two mouse brains were imaged in their entirety, after being
stained by Golgi-Cox for the visualization of neuronal morphol-
ogy. C57BL/6J mice were anesthetized with isoflurane inhalant
anesthesia. Each mouse was decapitated, the brain removed and
immersed in Golgi-Cox solution that contained 1% potassium
chromate, 1% potassium dichromate, and 1% mercuric chloride
in distilled water. The brain was then soaked for 10–16 weeks in the
dark and then washed in distilled water overnight. Additionally, it
was immersed in a 5% ammonium hydroxide solution in distilled
water for about one week in the dark and then again washed in
distilled water for 4 h. After that, the brain was dehydrated through
a graded series of ethanols starting with 50% ethanol in water and
increasing to 100% ethanol over a time period of 6 weeks. Finally,

it was embedded in araldite following a standard protocol (Abbott
and Sotelo, 2000), with the exception that each step needed to infil-
trate the brains with araldite took 24 h. KESM sectioning requires
that whole-brains be completely dehydrated and infiltrated with
araldite plastic. Normal plastic embedding is typically carried out
on much smaller pieces of tissue, so we have modified the process-
ing steps to allow us to embed whole mouse brains that we can cut
using the KESM.

2.2. IMAGING WITH THE KNIFE-EDGE SCANNING MICROSCOPE
We used the KESM for sectioning and imaging (Mayerich et al.,
2008b) two prepared mouse brains (both Golgi). Figure 1 shows
a photo of the KESM with its major components.

Each stained mouse brain, embedded in a plastic block, was
mounted on the three-axis precision stage. The diamond knife-
collimator assembly was used to cut sequential 1.0 μm-thick
sections from the tissue blocks, while providing transmission illu-
mination. (Note that the KESM design supports illumination
through the objective (McCormick, 2004) and the original imple-
mentation already includes this design, especially for fluorescence
imaging.) The light passed through the diamond knife and pene-
trated the tissue sections for imaging. The brain tissues stained in
Golgi were imaged with a Nikon Fluor 10× objective (NA = 0.3).
The actual image digitizing was performed by a DALSA CT-F3
high-sensitivity line-scan camera capturing the transmitted light,
and these images were stored in the designated storage. In order
to automatically control the stage movement and data acquisi-
tion process, we developed in-house control software (Kwon et al.,
2008). Noise due to the knife-edge misalignment, defects in the
knife blade, and knife chatter were removed through image pro-
cessing algorithms including light normalization (Mayerich et al.,
2007). The KESM controller also employed a stair-step cutting
algorithm to minimize damage to tissue between neighboring
columns (Kwon et al., 2008). After preliminary image process-
ing for noise and distortion removal, TIFF formatted raw image
files were compressed into high quality JPEG format and stored for
further processing, while the original TIFF images were kept for
archival purposes. We imaged horizontal sections from the brain.

FIGURE 1 |The knife-edge scanning microscope and its operation.

(A) The Knife-Edge Scanning Microscope and its main components are
shown: (1) high-speed line-scan camera, (2) microscope objective, (3) diamond
knife assembly and light collimator, (4) specimen tank (for water immersion

imaging), (5) three-axis precision air-bearing stage, (6) white-light microscope
illuminator, (7) water pump (in the back) for the removal of sectioned tissue,
(8) PC server for stage control and image acquisition, (9) granite base, and (10)
granite bridge. (B) The imaging principle of the KESM is shown.
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2.3. THE KESM BRAIN ATLAS
The KESM brain atlas (KESMBA) framework has been designed
and implemented to allow the widest dissemination of KESM
mouse brain circuit data and to enable easy visual and quanti-
tative analysis. For this, we had several design requirements, that
the atlas is (1) not dependent on high-end computer hardware
(e.g., expensive graphics cards), (2) not dependent on custom 3D
viewing applications or plug-ins, and (3) browsable within any
standard web browser.

2.3.1. Basic idea: transparent overlay with distance attenuation
The basic idea we use to meet the requirements listed above is
transparent overlay of images with distance attenuation (Eng and
Choe, 2008). Figure 2 shows the concept. Overlaying an image
stack containing two intertwining objects (Figure 2A) to get min-
imum intensity projection (Figure 2B) results in the loss of 3D
information. Interleaving each image with semi-opaque blank
images brings out the 3D information (Figure 2C). This is similar
to the artistic use of haze to achieve depth effect in a 2D medium
(cf. Kersten et al., 2006). In practice, raw images containing data
already have semi-opaqueness in the background once made
transparent, so simply overlaying them results in the same kind
of effect. This simple approach, when combined with a Google
Maps™-like zoomable web interface, results in a powerful brows-
ing environment for large 3D brain data. In fact, we customized
and extended the Google Maps API (version 2) to construct the
KSEMBA.

2.3.2. Image processing and adding transparency
After the raw image files were acquired using the KESM, three
additional image processing steps were performed to enhance
the image quality suitable for the web atlas. First, to enhance
visibility when overlayed, we inverted the original images with
black foreground and white background to have white foreground
and black background. Next, because the inverted images do not
have enough luminance contrast, we performed Gamma correc-
tion with a sigmoidal non-linearity to expand the luminance
contrast between foreground and background pixels within each

image. Finally, we turned the background color of the image to
be transparent, for layering of the images to achieve a 3D view
within a web browser. The pixels were made transparent accord-
ing to their gray-level value. The processed images were stored
in PNG format which supports alpha channel transparency. The
contrast factor and contrast center values (25 and 50, respec-
tively) used in the gray-level transparency process were empirically
selected.

2.3.3. Multiscale tile generation
Once the image processing is done, pyramidal tiles are generated.
Each tile in Google Maps consists of 256 × 256 pixels. The pyra-
midal structure of the Google Maps tiles in different zoom levels
is shown in Figure 3A. Our Golgi data sets have 8–10 columns,
where each column consists of a tall stack of 2,400 × 12,000-
pixel images. Below, we will consider the case with 8 columns.
Calculation for the 10 column case can be done in a similar
manner.

With the KESM image stack, we prepared tiles for 6 different
zoom levels compatible with the Google Maps API’s zoom level
from 2 to 7. The number of tiles required at zoom level z is 2z × 2z.
Therefore, the Golgi data set requires

∑7
z=2 2z × 2z = 21, 840

tiles for each section, and 121,692,480 tiles for all 5,572 sections,
theoretically. Fortunately, the actual number of tiles we created
is 4,892 per section and 27,258,224 overall because each image
section is not square-shaped and we only had to create tiles con-
taining tissue data. Figure 3B shows an example of the tiles we
created for the highest zoom level of 7. In the example, we had
to create only 8 tiles out of 16 possible ones because the other 8
tiles were empty. Preparing a tile pyramid requires extra storage,
time, and effort. Assuming that the above mentioned PNG trans-
form did not increase the file size, in our Golgi data set, the tile
pyramid (4,892 × 256 × 256 × 5,572 = 320,002,112) causes about
39% increase in disk space usage (without tiles, the total size is
19,200 × 12,000 × 5,572 = 230,400,000). However, once they are
generated, they contribute to saving image download time for the
currently viewed portion of the atlas. For example, the KESMBA
has a map area of 80% browser window width × 600 pixel window

FIGURE 2 |Transparent overlay with distance attenuation. (A) An image stack containing two intertwined objects are shown. (B) Simple overlay of the
image stack in (A) results in loss of 3D perspective. (C) Overlay with distance attenuation helps bring out the 3D cue.
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FIGURE 3 | Multiscale tiling. (A) Tile pyramid compatible with
GoogleMaps. Quad-tree pyramid of tiles and the x-y coordinate indexing
convention are depicted. Each tile has 256 × 256 pixels. Zoom level
ranges from 0 to 7, and zoom level N has 2N × 2N tiles. Following this
tiling convention automatically enables various map functions including
zoom-in/out. (B) Example of actual tiles. The maximum zoom level of the
Golgi image section (19,200 × 12,000 pixels) is 7 [=argminx

(256 × 2x ≥ max(19200,12000))]. The minimum zoom level is set to 2. This

particular example shows how the original image is tiled and how the
tiles are named at zoom level 2. The dark image in the middle is the
image section halved down 5 times (600 × 375 pixels) to fit in zoom level
2 (1,024 × 1,024 pixels). After putting the downsized image at the center,
transparent image patches (gray dashed area) are added to fill the
incomplete tiles so that every tile can have the same 256 × 256 pixels
size. Because there is no need to generate empty tiles, only 8 tiles are
created out of 16 possible ones.

height specified in a Cascading Style Sheet (CSS). Given typical
screen resolution, the number of 256 × 256 sized tiles concurrently
displayed on a client web browser will be ∼30 at the maximum,
which is less than 1% of the original image section at the maximum
zoom level (19,200 × 12,000). Once all the tiles are generated,
each tile is named consistent with Google Maps tile specifica-
tion. For example, a tile name 1_2_3.png denotes zoom level = 1,
x-coordinate = 2, and y-coordinate = 3.

2.3.4. Web atlas based on Google maps API
To enable 3D visualization, we customized the Google Maps
JavaScript API. Google Maps JavaScript API provides extensive
functions required for a geographical atlas. In addition to the
essential navigational functions of zooming and panning, Google
Maps JavaScript API offers useful features such as zoom scale
bar, double-click zoom-in, and overlaying various objects includ-
ing images, text, markers, and polygons. Google Maps provides
an extensive API specification and there exist a large number of
private developers seeking and sharing solutions for customizing
the API.

2.3.4.1. Customizations. Existing API functions were cus-
tomized to fit the purpose of the KESMBA. This customiza-
tion included: using custom tiles; tile overlays; user options to
select the number and interval of the tile overlays; overlaying
zoomable annotation; and map redraw function. The API was
further extended to include: information panel; scale bar; map
capture button; and z-axis navigation controller.

We generated a custom map type instance of the “GMapType”
class to call the map tiles from the Google database to feed in the
custom tiles we generated. Multiple tiles from subsequent image
sections are overlaid to create a 3D effect. The summary code below
provides an overview of how this is achieved using the Google
Maps API.

////////////////////
// File: overlay.js
////////////////////

...

// 1. Create a tile layer.
customLayer=[new GTileLayer(...)];

// 2. Generate a custom tile URL.
customLayer.getTileUrl=customGetTileUrl;

// 3. Create an overlay instance of
// the GTileLayerOverlay class.
customOverlay=new GTileLayerOverlay
(customLayer);

// 4. Create a map type instance of the
// GMapType class.
customMap=new GMapType(...);

// 5. Create a map instance of the GMap2
// class.
var myMap=new GMap2(document.getElementById
("map"),

{mapTypes:[customMap]});
// 6. Add predefined custom map type into
// the map instance.
myMap.addMapType(customMap);

// 7. Add a custom tile layer into the map
// instance.
cMap.addOverlay(overlays);
...
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We allow users to select the number of tiles to overlay and the
interval between two overlays, so that they can freely generate the
3D view that they prefer. On top of the image tile overlays, we
added another optional overlay for text annotation. This anno-
tation can change at different zoom levels, so that it can show
more global description at a distant view and detailed description
at close-up. Finally, we added a “redraw” function so that when a
user changes any of the above options (overlay size, overlay inter-
val, and annotation on/off) and the map needs to be redrawn, it
does not refresh the entire page but redraws only the map area.
This is achieved by using the JavaScript “arguments.callee” prop-
erty, with which an executing function can recursively refer to
itself. When “loadFcn” is called to redraw the map, it re-invokes
the original “load” function. Redrawing the map in this way does
not have to resummon the entire page, and therefore is faster.

2.3.4.2. Extensions. Since the Google Maps JavaScript API is
created solely for 2D geographical maps, some features necessary
for the 3D brain atlas are missing and thus are not customizable.
We introduced a horizontal menu bar on top of the map to include
the functions that are necessary for the KESMBA. Most of the new
features are achieved by using various properties of the Document
Object Model (DOM). In the menu, we added a z-axis navigation
function with a drop-down menu (depth navigation step size)
and buttons (“+” and “−” for moving in/out). Also, users can
choose whether to display the annotation layer by clicking on a
checkbox. To facilitate capturing the current view on the atlas,
we added an image capture button. When the button is clicked,
it opens the print.html file using the windows.open method. In
print.html, it gets the map area information of index.html by the
“window.opener” property. Then, it copies whatever is on the map
area of index.html to generate the page content of print.html using
the “innerHTML” property.

Scale bar is one of the uncustomizable features of Google Maps.
Therefore, we created one and attached it onto the map. We first
created a 〈div〉 object using “createElement” method. Then, it was
appended to the map div (〈div id =“mapArea”〉) by using “get-
Container” and “appendChild” methods. To make KESMBA more
informative, we created a panel to display the information of the
current view. In the panel to the right, the KESMBA displays the
information about the specimen, stain type, current plane of view,
dimension of the image section, and the z-range of the layers in
the current view. An area to display the above information dynam-
ically is first encapsulated by 〈span id =“xx”〉. . .〈/span〉 tags, and
its contents are updated using the “firstChild” and “data” proper-
ties. This way, contents of the information panel are automatically
updated as the user navigates or switches between the atlases using
the top menu bar. Figure 4 shows the interface of the KESMBA
containing all the above mentioned features.

3. RESULTS
In this section, we will present our two KESM Golgi data sets and
results from applying the KESMBA framework to these data sets.

3.1. KESM GOLGI DATA SETS
The first Golgi brain was sectioned and imaged in 2008 (from July
7 to August 8, 2008). These results were first reported in Abbott

(2008). The first Golgi data set did not include the left frontal lobe,
part of the left temporal lobe, and part of the right frontal lobe
due to a misconfigured frame buffer that truncated the images,
although the entire brain was sectioned using the KESM. The sec-
ond Golgi brain was sectioned and imaged in 2010 (from June 8
to August 4, 2010). The second data set contained the entire brain.
The first Golgi data set, although partly incomplete, includes less
noise than the second Golgi data set, so we decided to make avail-
able both data sets within the KESMBA framework. These results
are shown in Figures 5–7. All data sets had a voxel resolution of
0.6 μm × 0.7 μm × 1.0 μm, so at maximum zoom, the data are
quite detailed, as shown in Figure 8.

3.2. 3D RENDERING THROUGH IMAGE OVERLAYS
All results shown in Figures 5–8 were from direct screenshots
of the KESMBA. The 3D effect is most notable in Figure 8.
To highlight the z-axis resolution of the KESM data sets, and
to show the effectiveness of our overlaying technique, we pre-
pared views of a fixed region in the KESM data set by varying
the number of overlays (Figures 9A–C). As we can see from this
figure, overlays are effective in rendering 3D content, all within
a standard web browser without any dedicated plug-in. Another
technique that we implemented that is especially helpful when
viewing with a larger field of view (i.e., zoomed out) is to overlay
images at a certain interval. For example, overlaying 20 images at
an interval of 5 would visualize a 100-μm-thick volume (compare
Figures 9D,E).

3.3. MULTISCALE NATURE OF THE KESM DATA
One of the main advantages of the KESMBA is that it is very
easy to navigate through the data, both within a certain scale and
across multiple scales. In fact, this capability assisted greatly in
producing the figures in the very article. Here, we will present the
multiscale nature of the KESM data and show the effectiveness
of the KESMBA framework in handling such multiscale data. In
Figure 10, we show successive snapshots of the KESMBA while
zooming from the largest scale to the smallest scale. Each step
of zooming in doubles the resolution, so the final panel has 32×
higher resolution than the first panel.

3.4. NEURONAL CIRCUITS: LOCAL AND GLOBAL
Finally, we examine the relevance of the KESM data sets to con-
nectomics research. Although it is true that with Golgi-Cox only
∼1% of the entire population of neurons are stained and thin
myelinated axons are not stained reliably, we can still gain valu-
able insights from this whole-organ level data at a microscopic
resolution.

KESM Golgi data sets can help advance connectomics research
in two ways, (1) locally and (2) globally. At the local scale, we
can investigate the basic circuits (Shepherd, 2003). Although exact
connectivity cannot be established, the repeating pattern can help
us refine our basic circuit model, and also use the data to validate
synthetic circuits constructed based on a theoretical generative
model (see, e.g., van Pelt and Uylings, 2005; Koene et al., 2009).
Having access to these basic circuits from all regions in the brain
is also a great benefit, as shown in Figure 11. This figure shows
neurons from the cerebellum, inferior colliculus, thalamus, and
hippocampus.
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FIGURE 4 | KESM brain atlas interface. A screenshot of the KESM
brain atlas running in a web browser is shown. Red markers and text
were added on top for the purpose of explanation, below. (A) Navigation
panel: panning and zoom-in/zoom-out. (B) Data set selection. Golgi,
Golgi2, India Ink are available in the pull-down menu. (C) Sectioning
plane orientation. Three standard planes supported (planned). (D) Depth
navigation. Amount of movement (unit = 1 μm) in the z direction and
forward (deeper, [+]) or backward (shallower, [−]) can be controlled. (E)

Overlay count. How many images to overlay can be selected here. (F)

Overlay interval. For high zoom-out levels, overlaying every n images is
enough, and this helps visualize thicker sections. (G) Information
window containing specimen meta data and current location information.
(H) Scale bar that automatically adjust to the given zoom level. (I) Main
display. Note that the Google logo on the bottom left is shown due to the
use of the Google Maps API, and it by no means indicate any connection
between the KESM data and Google.

At the global scale, certain fiber tracts show up prominently in
the KESM Golgi data. For example, various commissures in the
frontal lobe and dense fiber bundles in the striatum are promi-
nently visible (Figure 12). Similar fiber tracts can easily be identi-
fied, such as the hippocampal commissure in the posterior part of
the brain.

3.5. DOWNLOAD PERFORMANCE
The above results confirm the effectiveness of the KESMBA’s
pseudo 3D view method using image overlays. However, the
additional image overlays mean longer download time, and it
will have limited utility if the download time exceeds wait-
ing time tolerable for the users. Figure 13 shows the result
of download time analysis of the KESMBA. Download time

and download data size were measured in two modern web
browsers (Internet Explorer 8.0.6 and Mozilla Firefox 3.6.8) using
HttpWatch 7.0.26, a browser plug-in to monitor http traffic.
Expectedly, the download time and data size were proportional
to the number of overlays. Notably, Firefox took extraordinar-
ily long with large variance, while downloading 20 overlays.
The Intranet and the Internet download times for 20 overlays
reached above 22 and 44 s respectively with Microsoft Inter-
net Explorer, and 53 and 52 s respectively with Mozilla Firefox.
Literature on the tolerable waiting time for a web page down-
load presents discordant thresholds between 4 and 41 s (Selvidge
et al., 2002; Galletta et al., 2004), but none of them used a
web page with as much graphical content as the KESMBA.
Considering the unique graphics-rich nature of the KESMBA,
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FIGURE 5 | Golgi data set 1. A fly-through of the Golgi data set 1 is shown.
The data were obtained by sectioning in the horizontal plane (upper right
corner: anterior, lower left corner: posterior). This is the full extent of the data
that was captured. We can see that part of the left temporal lobe, left frontal
lobe, and part of the right frontal lobe are cut off. Scale bar = 1 mm. Each

image is an overlay of 20 images in the z direction. The z-interval between
each panel is 600 μm. The numbers below the panels show the ordering.
These are cropped screenshots from the KESMBA. This data set, obtained in
2008, is the first whole-brain-scale data set of the mouse at sub-micrometer
resolution.

we believe the above download times are within the tolerable
threshold.

4. DISCUSSION
This article presents one of the first whole-brain-scale mouse
brain atlases imaged at a sub-micrometer resolution, and a
novel neuroinformatics framework for rapid visualization and
exploration of the massive data sets. The main value of this
kind of resource is that it fills the gap between (1) the lower

resolution (100s of μms), system-level (10s of cm), diffusion
MRI-based tractography data and (2) the higher resolution (10s
of nm), small volume (10s of μm), EM-based synaptome data.
Both local and global circuit data from our KESM brain atlas
are expected to contribute greatly to connectomics research.
In the following, we will discuss existing brain atlas and neu-
ronal morphology resources and draw a comparison with the
KESM brain atlas, and consider potential challenges and initial
solutions.
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FIGURE 6 | Golgi data set 2. A fly-through of the Golgi data set 2 is shown.
The data were obtained by sectioning in the horizontal plane (left: anterior,
right: posterior). Scale bar = 1 mm. Each image is an overlay of 20 images in
the z direction. The z-interval between each panel is 800 μm, except for the

last where it was 200 μm (so that data from near the bottom of the data stack
can be shown: otherwise it will overshoot into regions with no data). The
numbers below the panels show the ordering. See Movie S1 in
Supplementary Material for a fly-through of this data set.

4.1. BRAIN MAPS AND ATLASES
The 3D mouse brain atlas, at a typical macroscale spatial reso-
lution of 10 μm, is an indispensable guide to navigation within

the mouse brain (Paxinos and Franklin, 2001; Paxinos and Wat-
son, 2006). Without it, the mouse brain microstructure, viewed
as a database of individual neurons, is virtually unintelligible. The
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FIGURE 7 | Golgi data set 2, Coronal and Sagittal Views. The coronal (A) and sagittal (B) views of the data set in Figure 6 are shown. Scale bar = 1 mm.
These views show the superior z -axis resolution of the KESM data sets.

FIGURE 8 | Details from Golgi data set 1. Details from the Golgi data set
1 are shown at full resolution. This panel shows an overlay of 20 images,
thus it is showing a 20-μm-thick volume. Scale bar = 100 μm. The arrow
heads, from left to right, point to (1) the soma of a pyramidal cell in the
cortex and (2) its apical dendrite, and (3) a couple of spiny stellate cells.
Other pyramidal cells and stellate cells can be seen in the background. At
this resolution, we can see dendritic spines as well.

focus of activity for standardizing anatomical structures and ontol-
ogy for the mouse, like those defined in the mouse and rat atlases
produced by Paxinos and Franklin (2001) and Paxinos and Watson
(2006), are at this macrostructure level.

4.1.1. The Mouse Atlas Project (MAP)
MacKenzie-Graham et al. (2003) developed a probabilistic atlas
of the adult and developing C57BL/6J mouse. MAP consists of
not only data from Magnetic Resonance Microscopy (MRM) and
histological atlases, but also a suite of tools for image process-
ing, volume registration, volume browsing, and annotation. MAP
will produce an imaging framework to house and correlate gene
expression with anatomic and molecular information drawn from
traditional and novel imaging technologies. This digital atlas of the
C57BL/6J mouse brain is composed of volumes of data acquired
from μMRI, block-face imaging, histology, and immunohisto-
chemistry. MAP technology provides the infrastructure for the

development of the Allen Brain Atlas (MacKenzie-Graham et al.,
2003; see below). Also see the related Mouse BIRN (Biomedical
Informatics Research Network).

4.1.2. The Allen Brain Atlas
The Allen Brain Atlas contains detailed gene expression maps for
∼20,000 genes in the C57BL/6J mouse (Lein et al., 2007). A semi-
automated procedure was used to conduct in situ hybridization
and data acquisition on 25 μm-thick sections (z-axis) of the mouse
brain. The x-y-axis resolution of the images range from 0.95 to
8 μm. The Allen Brain Atlas is the first comprehensive gene expres-
sion map at the whole-brain level, and is currently accessed over
4 million times per month, with over 250 scientists browsing the
data on a daily basis.

4.1.3. The Mouse Brain Library (MBL)
MBL is developing methods to construct atlases from celloidin-
embedded tissue to guide registration of MBL data into a standard
coordinate system, by segmenting each brain in its collection into
1,200 standard anatomical structures at a resolution of 36 μm
(Rosen et al., 2000). Algorithms are to be designed to segment
each brain in the MBL into a set of standard anatomical struc-
tures like those defined in the rat atlas produced by Computer
Vision Laboratory for Vertebrate Brain Mapping at Drexel College
of Medicine, whose computerized 3D atlas was built from stained
sections for the mouse brain that reconstructs Nissl-stained sec-
tional material, a 17.9-μm isotropic 3D data set, from a freshly
frozen brain of an adult male C57BL/6J mouse.

4.1.4. BrainMaps.org
BrainMaps.org is an internet-enabled, high-resolution brain map
(Mikula et al., 2007). The map contains over 10 million mega
pixels (35 terabytes) of scanned data, at a typical resolution of
∼0.46 μm/pixel (in the x-y plane). The atlas provides an intuitive
web-based interface for easy and band-width-efficient navigation,
through the use of a series of subsampled (zoomed out) views of
the data sets, similar to the Google Maps interface. Even though
the x-y plane resolution is below 1 μm, the z-axis resolution is
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FIGURE 9 | Effectiveness of image overlays. The effect of an increasing
number of overlays is shown. Scale bar = 100 μm. The data is from the same
region as that from Figure 8. (A) Since each KESM image corresponds to a
1-μm-thick section, a single image conveys little information about the
neuronal morphology. (B) Five overlayed images, corresponding to a
5-μm-thick section, begins to show some structure but it is not enough. (C)

With twenty overlayed images, familiar structures begin to appear. (D,E) At a

zoomed-out scale, skipping over images can be an effective strategy to view
the circuits more clearly. In (D), 20 overlays at an interval of 1, representing a
20-μm-thick volume is shown. In (E), 20 overlays at an interval of 5 is shown,
representing 100 μm. The dense dendritic arbor in the hippocampus (left),
fiber tract projecting toward the hippocampal commissure (middle, top), and
the massive number of pyramidal cells and their apical dendrites (right) are
clearly visible only in (E).

orders of magnitude lower (for example, one coronal brain set has
234 slides in it, corresponding to a sectional thickness of 25 μm).
The database also serves serial sections from electron microscopy,
cryo sections, and immunohistochemistry, and hosts a total of 135
data sets (as of March 2, 2011).

4.1.5. Whole-Brain Catalog (WBC)
WBC is a 3D virtual environment for exploring multiple sources of
brain data (including mouse brain data), e.g., Cell Centered Data-
base (CCDB, see below), Neuroscience Information Framework
(NIF), and the Allen Brain Atlas (see above). WBC has native sup-
port for registering to the Waxholm Space, a rodent standard atlas
space (Johnson et al., 2010). Multiple functionalities including
visualization, slicing, animations, and simulations are supported.

In summary, there are several mouse brain atlases available,
with data from different imaging modalities, but their resolution
is not high enough in one or more of the x, y, or z axes to show
morphological detail of neurons.

4.2. DATABASES OF 3D RECONSTRUCTION OF NEURONS
The low spatial resolution in existing whole-brain level brain
maps and atlases have been pointed out as a major limitation.

Near-micron-level reconstructions of brain areas do exist, but
only for a small volume. Part of the reason is that, in many cases,
the geometric reconstructions were done manually, with the aid
of interactive editing tools like Neurolucida (Glaser and Glaser,
1990), Reconstruct (Fiala, 2005), or Neuron_Morpho (Brown
et al., 2007).

4.2.1. The Duke/Southampton archive of neuronal morphology
This on-line archive of neuronal geometry (Cannon et al.,
1998) includes full 3D representations of 124 neurons from
the rat hippocampus, obtained following intracellular stain-
ing with biocytin and reconstruction using Neurolucida. The
archive includes data both in the native format as supplied
from the digitization software, and in a simpler, 3D standard-
ized format (given the extension “SWC” in the archive). The
data for the SWC files are obtained by fitting cell segments in
three dimensions with cylinders, directly confirming the loca-
tion and size of these shapes using a computer-based tracing
system.

4.2.2. NeuroMorpho.org
This is a centrally curated collection of reconstructed neurons, cur-
rently containing 5793 cells (version 5, November 15, 2010) from
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FIGURE 10 | Multiscale view of the KESMBA. A multiscale view of the
KESMBA is shown (Golgi data set 1), by gradually zooming into the
hippocampus (the numbers below the panels show the zoom-in sequence).

All panels show an overlay of 20 sections.The first four panels are shown with
an overlay interval of 5 and the last two with an interval of 1. Axons emerging
from the hippocampal neurons are clearly visible (arrow head, last panel).

various species and brain regions (Ascoli et al., 2007). The data
are available for download in SWC format. L-neuron is a model-
ing and analysis project that is associated with this database, where

statistical features of dendritic geometry and stochastic generation
of (statistically) realistic neurons are studied (Senft and Ascoli,
1999; Ascoli and Krichmar, 2000; Ascoli, 2002).
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FIGURE 11 | Different types of local circuits. Different types of local circuits
from the KESM Golgi data set 1 are shown. (A) Cerebellum. (B) Inferior
colliculus. (C) Thalamus. (D) Hippocampus (also see Figure 10). See Figure 8

for circuits in the neocortex. Scale bar = 100 μm. See Movie 2 in
Supplementary Material (cerebellum, colliculi) and Movie 3 in Supplementary
Material (hippocampus).

4.2.3. The cell centered database (CCDB)
CCDB houses high-resolution 3D light and electron microscopic
reconstructions spanning the dimensional range from 5 nm3 to
50 μm3 produced at the National Center for Microscopy and
Imaging Research (NCMIR; Martone et al., 2002). The current
CCDB has 8391 micrograph data sets (as of March 2, 2011) in
various modalities including confocal, light microscopy, electron
tomography, electron microscopy, live imaging, filled cell imaging,
protein imaging, and serial block-face imaging.

4.2.4. The SynapseWeb
The SynapseWeb (Fiala and Harris, 2001) is a portal into a
dense network of synaptic connections and supporting struc-
tures in the gray matter of the brain that can be fully visualized
only through 3D electron microscopy. It provides an interface
for examining volumes of brain tissue at nanometer resolu-
tions which have been reconstructed from serial section electron
microscopy. Currently, the SynapseWeb houses three brain vol-
umes ranging from 62 to 108 μm3 from the CA1 regions of rat
hippocampus.

In summary, there are several excellent neuronal morphol-
ogy databases that serve the neuroscience community, but they

are limited to a small number of neurons from limited volumes,
isolated from the system-level context.

4.3. ATLASING AND NEURONAL MORPHOLOGY DESCRIPTION
STANDARDS

A rapid increase in web-based resources serving neuronal mor-
phology and atlas-scale data sets gave rise to the need for data
representation standards.

The Waxholm Space (Johnson et al., 2010; Hawrylycz et al.,
2011) is a new standard atlasing space for rodents. The effort to
build this standard space was motivated by multiple non-standard,
yet widely used coordinate spaces such as those in the Allen Brain
Atlas (Lein et al., 2007) or Paxinos and Franklin’s atlas (Paxinos
and Franklin, 2001).

As for neuronal morphology, NeuroML has become the de facto
standard (using XML). BrainML, on the other hand, provides an
XML framework for the exchange of general neuroscience data at
the whole-brain scale.

4.4. ALTERNATIVE MAPPING APIs
Geospatial interfaces have undergone massive innovation in the
last decade and as we have demonstrated in this article, they can
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FIGURE 12 | System-level fiber tracts in the KESM Golgi data

set 2. (A) Horizontal section at the level of the anterior commissure
(the “)”-shaped fiber bundle) is shown (left: anterior, right:
posterior). Massive fiber tracts in the striatum can also be observed.

(B,C) Zoomed in view showing the anterior commissure near the
middle. (D) Close-up of the fiber bundles in the striatum can be
seen. A large number of apical dendrites in the adjoining cortex can
also be seen.

FIGURE 13 | KESMBA download performance analysis. Average of 10
download trials for each setting (browser type and overlay size) is plotted
(error bars indicate standard deviation). IE, internet explorer, FF, firefox.
Except for the case of Mozilla Firefox downloading 20 overlays, both the
Intranet and Internet downloading times increased proportionally with the
overlay size.

be very effective in presenting biological data. However, existing
tools are encumbered by proprietary licensing, which limits adap-
tation to cosmetic levels and requires awkward workarounds to
implement even basic functionality. Use of open source tools will
allow for code level adaptation as opposed to API extension, and
facilitate interoperability and adoption by other groups.

Tools that can help this transition include GDAL and Open-
Layers. The open source GDAL1 is a translator library for data
formats maintained by the Open Source Geospatial Foundation.
OpenLayers is an open source browser-based map display system
using client side JavaScript. OpenLayers2 serves up data as a service
and supports the basic tile display functionality (i.e., zoom levels,
layers) with custom controls used in map navigation. It also sup-
ports a number of advanced features such as layer opacity, feature
opacity, vector formats and others necessary for more sophisti-
cated user interfaces. A key feature is the ability to use disk-based
caching to improve local performance, which can greatly improve
performance of KESMBA-like web atlases.

Open standards and best practices are widely used in the
geospatial community and contribute significantly to the interop-
erability of geospatial visualization across a wide range of devices.
Modifications of standards such as the Web Map Service for large
scale microscopy data offer potential for interoperability between
neuroinformatics systems.

4.5. CHALLENGES
The KESM data sets are in a unique strategic position to help
advance the field of connectomics in the short term future (5–
10 years). This is due to its system-level scope combined with
sub-micrometer resolution. However, there are many challenges

1http://gdal.org/
2http://openlayers.org

Frontiers in Neuroinformatics www.frontiersin.org November 2011 | Volume 5 | Article 29 | 13

http://gdal.org/
http://openlayers.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Chung et al. Knife-edge scanning microscope brain atlas

that need to be overcome in order to enable fully quantitative con-
nectivity analysis such as graph theoretical analysis (Sporns, 2002;
Sporns and Tononi, 2002; Kötter and Stephan, 2003) or motif
analysis (Milo et al., 2002). Here, we will discuss some of these
challenges and suggest strategies to overcome these challenges.

4.5.1. Establishing connectivity
One of the main issues with any approach based on light
microscopy (LM) is the requirement that sparse stains like Golgi
are used (which stains about 1% of the total neuronal popula-
tion). Dense stains commonly used in electron microscopy will
render objects in the specimen indistinguishable at the resolution
permitted by LM. Furthermore, stains like Golgi do not stain thin
axons, thus tracing long projections even for the sparse sample is
difficult. Long-range tracers like biocytin could be a good solu-
tion, but these tracers require intracellular injection and a long
transport time, so applying them at the whole-brain scale can
be troublesome. An attractive possibility is to use Brainbow trans-
genic mice (Livet et al., 2007), combined with fluorescence imaging
(recently, we have successfully imaged fluorescent proxies [10 μm
beads] with the KESM using laser illumination). This way, neu-
rons are densely labeled, but due to the variation in the emitted
wavelength, even close-by neurons can be differentiated (Licht-
man et al., 2008). Techniques using pseudorabies virus (PRV) can
also be used to label neurons that form an actual circuit since PRV
allows for trans-synaptic tracing (Smith et al., 2000; Willhite et al.,
2006; Kim et al., 2011). As most recent labeling methods such as
Brainbow and PRV require fluorescence imaging, further devel-
opment of KESM fluorescence imaging capability will become a
key requirement.

An alternative to the experimental techniques above is to esti-
mate connectivity based on the sparse data. Methods like those
proposed by Kalisman et al. (2003) can be used for this pur-
pose. Also, a systematic simulation study can be conducted with a
full synthetic circuit, by dropping a certain proportion of connec-
tions and observing the resulting change in behavior. The degree

of redundancy in the connections (both for real and synthetic
circuits) will play an important role here.

4.5.2. From image to structure
Another important issue is that of structural reconstruction
(Figure 14). Together with whole-brain-scale data acquisition,
structural reconstruction is a grand challenge for connectomics.
The DIADEM (Digital Reconstruction of Axonal and Dendritic
Morphology) Challenge and lessons learned from the first round
of competition show a long road ahead of us in terms of accu-
rate circuit tracing (Liu, 2011). The KESM data sets are basically
image stacks and they do not provide quantitative morpholog-
ical or connectivity data. Among different approaches we have
found that vector tracing methods are fast and reliable (Can et al.,
1999; Al-Kofahi et al., 2002; Mayerich et al., 2008a, 2011a; Han
et al., 2009a,b). However, these approaches are not perfect and
small errors can lead to topological mistakes, which can cause
serious errors in establishing connectivity (Jain et al., 2010a). Jain
et al. (2010b) propose the use of machine learning techniques,
and this can be a promising direction. However, whatever auto-
mated methods we use the burden of validation (see, e.g., Warfield
et al., 2004; Mayerich et al., 2008c) still remains and human inter-
vention is inevitable. The question is how to make this human
intervention minimal while maximizing accuracy. We are currently
exploring several options: (1) multiple-choice selection from para-
meterized reconstruction alternatives, (2) interactive editing using
graph cuts, and (3) colorized voxel-intensity-based confidence
to aid in rapid editing region selection (Yang and Choe, 2009).
These approaches can help combine automated reconstruction
algorithms with the power of human computing (von Ahn, 2006;
von Ahn et al., 2006, 2008), to enable reliable tracing of massive
volumes of neuronal circuit data.

4.5.3. From structure to function
The connectome is fundamentally a static structure, an adja-
cency matrix. Important physiological parameters such as sign

FIGURE 14 | From image to geometry. (A) A portion of KESM Golgi data set 1 is shown (cortex). Maximum intensity projection is used to show a thicker
section containing a large number of neurons. Scale bar = 100 μm. (B) Semi-automated 3D reconstruction results are shown (partial results, using Neuromantic,
Myatt and Nasuto, 2007).
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(excitatory/inhibitory), weight (synaptic efficacy), and delay
(axonal conduction delay) are not available. How can these and
other physiological properties be inferred from just the struc-
ture? Toledo-Rodriguez et al. (2004) shows a possibly powerful
solution to this: Use gene expression data. They found that gene
expression and electrophysiological properties are closely corre-
lated. The availability of very large gene expression atlases such
as the Allen Brain Atlas (Lein et al., 2007; 22,000 genes), and
imaging modalities such as Array Tomography that support mol-
ecular as well as EM imaging (Micheva and Smith, 2007) are
great resources for this kind of approach (see, e.g., Markram,
2006). Another straight-forward yet potentially valuable approach
is to start with computational simulation based on detailed neu-
ronal morphology (cf. the Blue Brain Project; Markram, 2006).
The reconstructed geometry can be used to construct multi-
compartment models (see, e.g., Dayan and Abbott, 2001). Appro-
priate parameters such as channel conductance, capacitance, etc.,
need to be figured out (Vanier and Bower, 1999). Tools like NEU-
RON, GENESIS, neuroConstruct, and NeuGEN can be used for
multi-compartment simulation and parameterized synthetic cir-
cuit generation/simulation/analysis (Hines and Carnevale, 1997;
Bower and Beeman, 1998; Ascoli et al., 2001; Eberhard et al., 2006;
Gleeson et al., 2007; Koene, 2007; Koene et al., 2009). Data from the
KESM can help narrow down on the range of various parameters
for these simulations (see Druckmann et al., 2008 for parameter
constraining procedures).

4.5.4. Enabling connectomics research through neuroinformatics
From visualization to annotation to editing and quantitative analy-
sis, neuroinformatics tools are expected to serve as a key to the
success of connectomics research. This is because the process of
going from data to information and information to knowledge
cannot be achieved through purely automated (fast but inaccurate)
or purely manual (accurate but slow) means. Thus, an informatics
platform is needed to optimally blend both automated and manual
exploration and analysis methods.

The KESM brain atlas framework provides a good starting
point. However, to increase its utility as a connectomics plat-
form, it needs to be expanded to include support for all three
standard sections (coronal, horizontal, and sagittal), overlay of
automated reconstructions, and reconstruction editing facilities
(uncertainty/confidence visualization, reconstruction alternatives,
etc.). These reconstructed morphologies have to be moved one step
farther to achieve the connectivity diagram needed for connec-
tomics research. Thus, facilities to allow users to manually specify
neuron-to-neuron connectivity, or allow parametric connectivity
specification (e.g., connect axons and dendrites that meet a certain

rule, where the rule can be specified by setting parameters such as
proximity radius, etc.) are needed. With the reconstructed geom-
etry already in place, calculating such parameterized connectivity
could be done rapidly. A distribution of connection matrices can
be generated based on such parametrizations, from which mean-
ingful structural and functional properties of the connectome can
be extracted.
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SUPPLEMENTARY MATERIAL
The Movies S1, S2, and S3 for this article can be found online at
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2011.
00029/abstract

Media Files: All video clips were made using MeVisLab
(http://www.mevislab.de). Note that the video clips are presented
to showcase the KESM data itself, and are independent of the
KESMBA web interface.

Movie S1 | A video clip of a sweep-through of the entire KESM Golgi data set 2
is shown, along all three sectioning planes: Sagittal, coronal, and horizontal.
Initial block width is 11.52 mm.

Movie S2 | A video clip of a small region near the cerebellum and the colliculi
from the KESM Golgi data set 1 is shown. Zoom-in near the end of the clip
shows a number of cerebellar Purkinje cells. The view is initially horizontal, but
later on it rotates and shows sagittal sections. Initial width of the block is
2.88 mm.

Movie S3 | A video clip of a small region near the hippocampus (middle) and the
cortex (bottom) from the KESM Golgi data set 1 is shown. Initial width of the
block is 1.44 mm.
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