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Abstract

Although it is generally accepted that eukaryotic gene order is not random, the basic principles of gene arrangement on a
chromosome remain poorly understood. Here, we extended existing population genetics theories that were based on
two-locus models and proposed a hypothesis that genetic interaction networks drive the evolution of eukaryotic gene
order. We predicted that genes with positive epistasis would move toward each other in evolution, during which a
negative correlation between epistasis and gene distance formed. We tested and confirmed our prediction with com-
putational simulations and empirical data analyses. Importantly, we demonstrated that gene order in the budding yeast
could be successfully predicted from the genetic interaction network. Taken together, our study reveals the role of the
genetic interaction network in the evolution of gene order, extends our understanding of the encoding principles in
genomes, and potentially offers new strategies to improve synthetic biology.
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Introduction
With thousands of genomes being sequenced, it is increas-
ingly being observed that gene order in a genome is not
random (Hurst et al. 2004). For example, six genes in the
allantoin degradation (DAL) pathway formed a cluster on
chromosome IX during the evolution of Saccharomyces cer-
evisiae (Wong and Wolfe 2005). More dramatically, three
genes in the galactose utilization (GAL) pathway formed a
cluster in multiple lineages independently during fungal evo-
lution (Slot and Rokas 2010). However, the evolutionary prin-
ciples underlying such nonrandom gene order are still elusive,
except when neighboring genes form an operon (Lawrence
1999; Lawrence 2002; Qian and Zhang 2008; Zaslaver et al.
2011).

A number of hypotheses have been proposed to explain
the evolution of gene order. First, the clustering of genes with
similar functions in the genome may facilitate their coordi-
nated expression. Although neighboring genes indeed tend to
have similar expression profiles (Cho et al. 1998; Cohen et al.
2000; Boutanaev et al. 2002; Spellman and Rubin 2002;
Williams and Bowles 2004), such phenomena could also be
explained by the “leaky” expression of neighboring genes
(Spellman and Rubin 2002; Hurst et al. 2004; Liao and
Zhang 2008; Ghanbarian and Hurst 2015). Second, house-
keeping or essential genes tend to cluster in a genome
(Lercher et al. 2002; Pal and Hurst 2003), a phenomenon

that might be explained by natural selection to reduce gene
expression noise (Batada and Hurst 2007). However, this the-
ory cannot explain the nonrandom gene order within and
between such clusters. Third, mutational bias, such as tandem
gene duplication, could also lead to nonrandom gene order;
however, after removing tandem duplicate genes, gene order
is still nonrandom in the aspects described earlier (Hurst et al.
2004). Together, these observations suggest that additional
evolutionary mechanisms exist to explain nonrandom gene
order in the genome.

The evolution of gene order may be driven by natural
selection to optimize recombination frequencies among
genes because gene order determines gene distance (D, de-
fined as the number of genes between two genes on a chro-
mosome) and gene distance is highly correlated with
recombination frequency (supplementary fig. S1,
Supplementary Material online, the budding yeast as an ex-
ample). Several theoretical analyses suggested that the evolu-
tion of recombination frequency between a pair of genes can
be influenced by their epistatic interaction (Nei 1967, 1969;
Eshel and Feldman 1970; Feldman et al. 1980; Kondrashov
1982, 1988; Charlesworth 1990; Kouyos et al. 2007;
Charlesworth and Charlesworth 2011). Here, epistasis, or ge-
netic interaction, refers to the phenomenon that the fitness
effects of two mutations on two different genes are not in-
dependent (Phillips 2008), and can be quantified as the dif-
ference between the relative fitness of the double mutant
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(xab) and the multiplicative expectation from those of two
single mutants (xaBxAb). Previous theories could be summa-
rized as two effects, the short-term effect and the long-term
effect (fig. 1A). On the one hand, the linkage of genetically
interacting genes (regardless of sign) is advantageous in the
short term because it helps to maintain the epistasis-induced
linkage disequilibrium (LD), which is favored by natural selec-
tion (Nei 1967, 1969; Eshel and Feldman 1970; Feldman et al.
1980; Kouyos et al. 2007; Charlesworth and Charlesworth
2011) (fig. 1A, the solid line; supplementary note S1,
Supplementary Material online). Here, the coefficient of LD
is defined as the difference between the genotype frequency
of the wild-type individuals (XAB) and the multiplicative ex-
pectation from the frequencies of the wild-type alleles (XAXB).
On the other hand, for two deleterious mutations, genetic
recombination breaks the negative LD induced by negative
epistasis and thus increases the proportion of double
mutants. This increase benefits the population in the long
term by facilitating the purge of deleterious mutations, which
has been suggested to be related to the origin of sexual re-
production (Feldman et al. 1980; Kondrashov 1982;
Charlesworth 1990) (fig. 1A, the dash line).

To summarize, genetic recombination is never favored by
natural selection for positively epistatic gene pairs, whereas
for negatively epistatic gene pairs, the long- and short-term
effects of genetic recombination counteract each other
(fig. 1A). Therefore, epistasis could drive the evolution of re-
combination frequencies among genes on the same chromo-
some, potentially by altering gene order. In this process, a
negative correlation between epistasis and gene distance,
hereafter referred to as E–D correlation, evolves.
Furthermore, this correlation would be especially strong
among positively epistatic gene pairs due to the synergistic
combination of the long- and short-term effects (fig. 1A).
However, these theoretical predictions have never been rig-
orously tested with empirical data. In this study, we tested
these predictions with both simulation and yeast empirical
epistasis data. Our study thus reveals a basic principle in the
evolution of gene order and enhances our power to decode
information from well-constructed genetic interaction net-
works and thousands of sequenced genomes.

Results

Negative E–D Correlation Is Observed during in silico
Evolution
We first performed in silico evolution in which two genes (A
and B) were considered, each having a wild-type allele (A or B)
and a deleterious allele (a or b). The relative fitness of the
haploid wild-type genotype (xAB) was defined as 1, and the
epistasis (E) was defined as xab�xaBxAb. For two genotypes
with different gene distances (D) between A and B, gene flow
within this region is strictly prohibited because recombina-
tion within the region between A and B leads to the gain or
loss of genes after segregation (Wu and Ting 2004).
Furthermore, the “modifier” locus of recombination fre-
quency is completely linked with A and B (Nei 1967, 1969),
making it possible to directly compare the fitness of

genotypes with different gene distances. Therefore, to inves-
tigate the impact of gene distance on fitness, we compared
the average fitness of two populations over generations, one
with D between A and B equal to 50 and the other with
D equal to 0. Based on the empirical data from the budding
yeast S. cerevisiae (Mancera et al. 2008), these D values cor-
respond to recombination frequencies R¼ 0.264 and 0.064,
respectively (supplementary fig. S1, Supplementary Material
online). In each generation, we calculated the frequency
changes of genotypes by considering both natural selection
and genetic recombination. Figure 1B shows the results of the
first 100 generations of in silico evolution, when long-term
effects begin to dominate the evolutionary process. If epistasis
between A and B was positive, the population with D¼ 50
was always outcompeted by the population with D¼ 0
(fig. 1B, xD¼ 50�xD¼ 0< 0). Furthermore, the fitness differ-
ence increased with the magnitude of the epistasis value
(fig. 1B). In other words, reduced D between two genes
with positive epistasis is favored by natural selection. By con-
trast, if the epistasis between A and B was negative, the pop-
ulation with D¼ 50 exhibited a short-term disadvantage
followed by a long-term advantage compared with the pop-
ulation with D¼ 0 (fig. 1B). As expected, the long-term ad-
vantage was due to an elevated purging rate of deleterious
alleles [fig. 1C, Xa (D¼ 50)� Xa (D¼ 0)< 0]. A similar trend was
observed when we compared a population with D¼ 50 and
one with D¼ 100 (R¼ 0.464, supplementary fig. S2,
Supplementary Material online).

We also performed in silico evolution in a series of strains
in which D varied between 0 and 100 (R¼ 0.064 and 0.464,
respectively). We recorded the average fitness of each popu-
lation at the 100th generation (x100) and identified the op-
timal D, Dopt, for each epistasis value (fig. 1D). Given that the
effective population size (Ne) in the budding yeast is �107

(Wagner 2005), the minimal selection coefficient that can be
detected for yeast is �10�7. In other words, all D values that
reduce the relative fitness by <10�7 are permitted during
evolution. We calculated the mean of all permitted D values
(dashed line in fig. 1D). As predicted in our model, a strong
negative E–D correlation was observed from the results of in
silico evolution. Importantly, such negative E–D correlation
was also observed at the 50th and 200th generation (supple-
mentary fig. S3, Supplementary Material online). To further
test whether the outcome of in silico evolution was sensitive
to population genetics parameters, we examined various val-
ues for initial allele frequencies and fitness defects. We ob-
served a negative E–D correlation with all parameter sets
(supplementary fig. S4, Supplementary Material online).

Chromosomal Arrangement of Genes in Star-Like
Motifs of Genetic Interaction Networks
The analyses we have described so far were based on two-
locus processes. In reality, however, a gene may have genetic
interactions with multiple genes that together form a com-
plex genetic interaction network (Boone et al. 2007). In sharp
contrast to the network topology, genes are linearly aligned
on a limited number of chromosomes, and therefore, the
optimization of pairwise gene distances may be restricted
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by the chromosomal localization of other genes. Thus, it
remains unknown whether the negative E–D correlation
would evolve in the context of a highly connected network
of genetic interactions.

We first examined the impact of epistasis on the chromo-
somal order of genes in a star-like motif, which is typical in
empirical genetic interaction networks (Costanzo et al. 2010).
To this end, we built a toy motif in which a hub gene interacts
with nine partner genes with different epistasis values ranging
from �0.004 to 0.004 (fig. 2A). We fixed the chromosomal
location of the hub gene and attempted to place partner
genes on the same chromosome. We focused on the epistasis
and gene distance of hub-containing gene pairs, and there-
fore, we placed all partner genes on the same side of the hub
gene on the chromosome for convenience. We calculated
x100 for each of the total (9!¼) 362,880 possible gene orders
and found that x100 varied among them (fig. 2B).
Importantly, the gene order with the highest x100 showed
a perfect negative E–D correlation (qED¼�1, fig. 2C),
whereas the gene order with the lowest x100 showed a per-
fect positive E–D correlation (qED¼ 1, fig. 2D). In fact, we

found that x100 was negatively correlated with qED (fig. 2B,
q¼�0.94, P< 10�100, Spearman’s correlation), implying
that the negative E–D correlation itself is under natural se-
lection. To understand whether the negative correlation be-
tween x100 and qED is still present under the parameters
derived from empirical data, we randomly chose epistasis
values and fitness defects from two genome-wide studies in
the budding yeast (Costanzo et al. 2010, 2016) and still ob-
served strong negative correlations between x100 and qED

(supplementary fig. S5A and B and table S1, Supplementary
Material online). And we also confirmed that the negative
correlation between x100 and qED was insensitive to D and
initial allele frequencies (supplementary fig. S5C and D and
table S1, Supplementary Material online).

Next, we calculated the distance (d) to the fittest gene
order shown in figure 2C, which was defined as the num-
ber of differently placed genes (fig. 2E), for each possible
gene order. We found that an increase in d reduced x100

(fig. 2E), again emphasizing the impact of gene order on
fitness. To further investigate the impact of the range of
epistasis on x100, we generated a series of epistasis

A B

C D

FIG. 1. Theoretical prediction and computational simulations of the negative E–D correlation. (A) The short- and long-term effects are in the same
direction when epistasis is positive but are in the opposite directions when epistasis is negative. Thus, a negative E–D correlation can be predicted
from the view of population genetics. (B) Fitness differences between a strain with D¼50 and a strain with D¼0 are plotted over 100 generations
during simulations of in silico evolution. (C) The difference in allele a’s frequency (Xa) between strains with D¼50 and D¼0 are plotted over 100
generations during simulations of in silico evolution. (D) The average fitness of a population at the 100th generation (x100) is plotted against
epistasis and D. For each epistasis, we defined all permitted D values with their resulting x100. If x100 is smaller than that of the optimal distance
(Dopt) by< 10�7, the minimal selective coefficient that can be detected by nature given the effective population size (Ne � 107) of yeast, D is
permitted. The mean of all permitted D values is plotted against epistasis (dashed line).
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ranging from 0.004 to 0.020, shuffled the gene order, and
recalculated the average x100 of all gene orders with the
same d (fig. 2E). We found that although it was always true
that higher d led to a reduction of x100, the increase in the
range of epistasis values enlarged the fitness differences
among gene orders (fig. 2E).

Our model further predicted that positive epistasis should
play a more important role in the evolution of gene order
(fig. 1), such that altering the order of partner genes that have
positive epistasis with the hub gene would lead to a larger
fitness reduction. As expected, we observed that the gene-
order variants with changes exclusively to the positively

A

B

C D

E

F

FIG. 2. The negative E–D correlation in star-like motifs of genetic interaction networks. (A) A toy model of a star-like motif in which gene A is the
hub. Gene A has positive epistasis with genes B, C, D, and E, and negative epistasis with genes G, H, I, and J. The range of epistasis is
(0.004� [�0.004]¼) 0.008 in this motif. (B) Spearman’s correlation coefficient between epistasis and D (qED) varies among gene orders. The
average fitness at the 100th generation (x100) is negatively correlated with qED. (C) The gene order with the highest x100. qED¼�1. (D) The gene
order with the lowest x100. qED¼1. (E) The difference between a gene order and the gene order with the highest x100 (d) is defined as the number of
differently placed genes. Two examples with d¼ 3 are shown. The heat map of the relative x100 (normalized to the highest x100) is shown. The
average relative x100 decreases with the increase of d. The reduction is more dramatic when the range of epistasis values is larger. (F) Shuffling
among genes B, C, D, and E (positive epistasis with the hub gene A) have larger impact on x100 than shuffling among genes G, H, I, and J (negative
epistasis with the hub gene A). P values of one-tailed Mann–Whitney U test are shown. The gray dashed line indicates the x100 of the optimal gene
order in panel (C).
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epistatic genes generally had a larger reduction in fitness com-
pared with those with changes exclusively to the negatively
epistatic genes (fig. 2F).

Chromosomal Arrangement of Genes in
All-Connected Motifs of Genetic Interaction Networks
We further examined the negative correlation between x100

and qED in all-connected motifs. To this end, we built a toy all-
connected motif with five nodes and assigned epistasis values
in the range of�0.0036 to 0.0036 to edges (fig. 3A). Again, we
observed a strong negative correlation between x100 and qED

(fig. 3B, q¼�0.87, P¼ 3.2� 10�38). The gene order with the
highest fitness had a strong negative E–D correlation
(qED¼�1.00, fig. 3C), whereas the gene order with the lowest
fitness had a positive E–D correlation (qED¼ 0.39, fig. 3D).
Similarly, we confirmed that the negative correlation between
x100 and qED was insensitive to epistasis values, fitness
defects, gene distances, and initial allele frequencies (supple-
mentary fig. S6 and table S2, Supplementary Material online).
Furthermore, we observed that the fitness of a gene order
decreased with the increase in its d (fig. 3E), and this trend was
stronger when the range of epistasis was larger (fig. 3E).

Negative E–D Correlation in S. cerevisiae
To investigate whether the negative E–D correlation is sup-
ported by empirical evidence, we retrieved the pairwise epis-
tasis data generated by Costanzo et al., who systematically
measured the vegetative growth rates of both single and dou-
ble mutants in the budding yeast S. cerevisiae and estimated
epistasis values for �26 million gene pairs (Costanzo et al.
2010, 2016). As expected, we observed a significant negative
E–D correlation among linked genes (fig. 4A, q¼�0.15,
P¼ 4.0� 10�8, N¼ 1,254). Consistent with this trend, un-
linked genes on the same chromosome exhibited lower epis-
tasis values (fig. 4A, gray dashed line). As a control, we
permutated the gene orders and recalculated the correlation
coefficients 1,000 times. We found that the negative E–D
correlation disappeared after permutation (fig. 4B,
P< 0.001, permutation test).

These observations are potentially attributable to a num-
ber of confounding factors. The first is mutational bias, such
as tandem duplication. However, duplicate genes tend to
have negative epistasis (Tischler et al. 2006; Dean et al.
2008; DeLuna et al. 2008; Musso et al. 2008; Vavouri et al.
2008; Qian et al. 2010), which should result in a positive E–D
correlation. Nevertheless, we controlled for this mutational
bias by randomly keeping only one gene in a gene family and
still observed the negative E–D correlation (supplementary
fig. S7A, Supplementary Material online, q¼�0.17,
P¼ 1.8� 10�5, N¼ 641).

Second, genes with coordinated expression are clustered
(Cho et al. 1998; Cohen et al. 2000; Boutanaev et al. 2002;
Spellman and Rubin 2002; Williams and Bowles 2004). If
coordinately expressed genes tend to have positive epistasis,
the negative E–D correlation could result from these genes.
To control for this effect, we first inferred expression pattern
similarity for each pair of genes by calculating the
correlation of gene expression levels in multiple conditions

(Qian and Zhang 2014). We did not observe a significant
correlation between epistasis and expression similarity
(q¼�0.015, P¼ 0.6, N¼ 1,202). Nevertheless, we divided
these gene pairs into two groups according to expression
similarity, recalculated the E–D correlation within each group,
and still observed significant negative E–D correlations (sup-
plementary fig. S7B and C, Supplementary Material online).
Similar results were obtained when we calculated the partial
E–D correlation after controlling for expression similarity
(partial q¼�0.14, P¼ 6.6� 10�7, N¼ 1,202). In addition,
we also found that coordinated gene expression occurring
through 3D chromatin interactions did not confound our
results (supplementary fig. S7D, Supplementary Material on-
line, q¼�0.17, P¼ 8.7� 10�6, N¼ 704), which was not un-
expected, as 3D chromatin interactions do not influence
recombination frequency.

Because functionally related genes are nonrandomly
distributed on chromosomes (Wong and Wolfe 2005;

A

B

C

D

E

FIG. 3. The negative E–D correlation in all-connected motifs of ge-
netic interaction networks. (A) A toy model of an all-connected mo-
tif. (B) The fitness at the 100th generation (x100) is negatively
correlated with qED. (C) The gene order with the highest x100.
qED¼�1.00. (D) The gene order with the lowest x100. qED¼0.39.
(E) The heat map of the relative x100 (normalized to the highest
x100) is shown. The relative x100 decreases with the increase of d.
The reduction is more dramatic when the range of epistasis is larger.
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Slot and Rokas 2010) and functional relationships between
genes may lead to epistasis, we next examined whether
functional relationships could confound the negative
E–D correlation. We observed similar negative E–D corre-
lations for gene pairs with an either high- or low semantic
similarity of GO terms in molecular functions (supplemen-
tary fig. S7E and F, Supplementary Material online), biolog-
ical processes (supplementary fig. S7G and H,
Supplementary Material online), and cellular components
(supplementary fig. S7I and J, Supplementary Material on-
line). Again, we calculated partial correlations controlling
for semantic similarity of GO terms in molecular functions
(partial q¼�0.15, P¼ 7.3� 10�7, N¼ 1,151), biological
processes (partial q¼�0.15, P¼ 3.2� 10�7, N¼ 1,151),
and cellular components (partial q¼�0.15,
P¼ 3.2� 10�7, N¼ 1,151). All these results indicate that
the functional relationship is not a confounding factor in
the negative E–D correlation, which is not unexpected
given that a large fraction of genetic interactions do not
reflect functional relationships (He et al. 2010; Costanzo
et al. 2016).

Finally, we investigated the impact of gene expression
noise on the negative E–D correlation because it has been
proposed that essential genes were colocalized in open chro-
matin regions to reduce gene expression noise (Batada and
Hurst 2007; Chen and Zhang 2016). To control for this effect,
we first calculated the average gene expression noise
(Newman et al. 2006) for each gene pair. We used the dis-
tance of each coefficient of variation (CV) to a running me-
dian of CV values (DM) to quantify gene expression noise
(Newman et al. 2006) in order to minimize the effect of gene
expression magnitude on gene expression noise. We observed
a negative E–D correlation for gene pairs with an either high-
or low average DM (supplementary fig. S7K and L,
Supplementary Material online). Again, we calculated the
partial correlation controlling for gene expression noise and
still observed a negative E–D correlation (partial q¼�0.16,
P¼ 9.7� 10�3, N¼ 258).

Positive Epistasis Plays an Important Role in the Origin
of the Negative E–D Correlation
Our model further predicted that the reduction of the dis-
tance between positively epistatic genes should play a more
important role in the formation of the negative E–D correla-
tion (figs. 1 and 2). Indeed, a significant negative E–D corre-
lation was observed among positively epistatic gene pairs in
S. cerevisiae (fig. 4C, q¼�0.14, P¼ 0.0064, N¼ 391), whereas
no significant correlation was observed among negatively ep-
istatic gene pairs (fig. 4D, q¼�0.025, P¼ 0.47, N¼ 863). We
further verified the role of positive epistasis by shuffling epis-
tasis values among all 391 positively epistatic gene pairs in
S. cerevisiae. As expected, the E–D correlation was significantly
weakened after the permutation (fig. 4E, P¼ 0.005, one-tailed
permutation test). By contrast, no significant difference was
observed after shuffling negative epistasis values (fig. 4F,
P¼ 0.722, one-tailed permutation test), even though the lat-
ter analysis shuffled more gene pairs (N¼ 863).

A B

C D

E F

G H

FIG. 4. A negative E–D correlation is observed in the empirical genetic
interaction network of the budding yeast S. cerevisiae, and positive
epistasis plays a more important role in its formation. (A) A significant
negative E–D correlation is observed in S. cerevisiae. Gene pairs are
separated into bins based on D, with equal width of five genes. The
mean value of epistasis and the standard error of the mean (SEM)
within each bin are shown. Spearman’s correlation coefficient q and
corresponding P values were calculated from the raw data (N¼1,254).
The gray dashed line shows the average epistasis among unlinked
genes (D>100). (B) Distribution of E–D correlation coefficients in
1,000 shuffled genomes. The arrow indicates the observed correlation
coefficient in S. cerevisiae. (C and D) A significant negative E–D cor-
relation is observed among positively epistatic gene pairs (N¼391)
but not among negatively epistatic gene pairs (N¼863). Spearman’s
correlation coefficient q and the corresponding P values are calcu-
lated from the raw data. The dashed line shows the average epistasis
among unlinked genes. (E) The distribution of correlation coefficients
in 1,000 artificial genomes in which values of positive epistasis are
shuffled. The arrow indicates the E–D correlation coefficient in reality.
(F) Similar to (E), values of negative epistasis are shuffled. (G and H)
The proportion of gene pairs with significant positive epistasis is sig-
nificantly correlated with D, but that with significant negative epis-
tasis is not. SEMs are estimated based on binomial distribution. The
dashed lines show the proportion of gene pairs with significant pos-
itive or negative epistasis among unlinked genes.
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In studies by Costanzo et al., epistasis was classified into
three categories: significantly positive, significantly negative,
and nonsignificant (Costanzo et al. 2010, 2016). A strong
negative correlation was observed between gene distance
and the proportion of gene pairs with significant positive
epistasis (fig. 4G, q¼�0.82, P¼ 5.5� 10�5), whereas no sig-
nificant correlation was observed between gene distance and
the proportion of gene pairs with significant negative epistasis
(fig. 4H, q¼ 0.43, P¼ 0.088). All these observations empha-
size the important role of positive epistasis in the origin of the
negative E–D correlation.

Epistasis-Driven Evolution of Gene Order after the
Whole Genome Duplication in Yeast
Thus far, we have observed a negative E–D correlation and
demonstrated that the correlation was mainly attributable to
positively epistatic gene pairs. The aforementioned theories,
simulations, and empirical evidence led us to propose a hy-
pothesis of epistasis-driven evolution of gene order in S. cer-
evisiae. The whole genome duplication (WGD, fig. 5A) and
the subsequent extensive gene losses substantially changed
the epistatic relations among genes and markedly rewired the
genetic interaction network in yeast (Kellis et al. 2004; Dixon
et al. 2008; Tischler et al. 2008; VanderSluis et al. 2010). For
instance, only 29% of the identified synthetic lethality is con-
served between Schizosaccharomyces pombe and S. cerevisiae
(Dixon et al. 2008). At the same time, extensive chromosome
rearrangement events occurred. For example, in a
reconstructed ancestral species before the WGD (Byrne and
Wolfe 2005), we identified the gene pairs that were located on
the same chromosome, and surprisingly, 84.6% of them are
localized on different chromosomes in S. cerevisiae. More
strikingly, among gene pairs that are localized on the same
chromosome in both the ancestral species and S. cerevisiae,
99.6% differ in gene distance. Based on these observations, we
proposed that the rewired genetic interaction network drove
the evolution of gene order, resulting in numerous chromo-
some rearrangement events (Kellis et al. 2004). When gene
losses ceased, the rewiring of genetic interactions slowed, and
the evolutionary force on gene distance also diminished.
Consistently, synteny relationships are strongly conserved in
the species of the Saccharomyces sensu stricto group (Kellis
et al. 2003).

Our model predicted that the negative E–D correlation
should be weaker if the gene order in S. cerevisiae has been
unchanged since the WGD. The reason is that the gene order
in the ancestor was not subject to the natural selection im-
posed by the genetic interaction network of the current
S. cerevisiae genome. Furthermore, given the massive gene
losses after the WGD, the genetic interaction network cannot
be 100% conserved. To test this prediction, we calculated the
gene distances in the reconstructed ancestral species men-
tioned earlier (Byrne and Wolfe 2005). Indeed, we found that
the negative E–D correlation disappeared when the gene
distances in S. cerevisiae were replaced by those in the ances-
tral species (fig. 5B, q¼ 6.9� 10�3, P¼ 0.26, N¼ 26,630). This
observation indicates that the negative E–D correlation in
S. cerevisiae formed during the evolution of gene order after

the WGD. Consistently, we observed that positively epistatic
gene pairs decreased their distances whereas negatively epi-
static gene pairs increased their distances during evolution
(fig. 5C, q¼�0.17, P¼ 0.061, N¼ 127).

To further test the role of positive epistasis in the evolution
of gene order, we identified genes that were ancestrally linked
(i.e., D� 100 in the reconstructed ancestor) and examined
whether they moved toward or away from each other during
evolution. Consistent with our model, genes with significant
positive epistasis were more likely to move toward each other
than genes without significant epistasis (fig. 5D,
P¼ 1.5� 10�3, two-tailed Fisher’s exact test), whereas the
difference between gene pairs with significant negative epis-
tasis and those without significant epistasis was not signifi-
cant (fig. 5D, P¼ 0.41, two-tailed Fisher’s exact test). Together,
these observations support our hypothesis of epistasis-driven
evolution of gene order in yeast.

Genetic Interaction Network Accurately Predicts
Gene Order in Yeast
Finally, we determined whether the gene order in S. cerevisiae
could be successfully predicted by the empirical data of ge-
netic interaction networks (Costanzo et al. 2010, 2016). To
this end, we identified 22 all-connected three-node motifs in

A B

C D

FIG. 5. The origin of the negative E–D correlation after the WGD in
yeast. (A) Phylogenetic relationship among yeast species. The black
arrow indicates the reconstructed ancestor and the gray arrow indi-
cates the WGD event. (B) Negative E–D correlation is not observed
when the gene order in S. cerevisiae is replaced by that in the recon-
structed ancestor. Gene pairs are separated into bins based on D, with
equal width of five genes. The mean and SEM of epistasis within each
bin are shown. Spearman’s correlation coefficient q and the corre-
sponding P values were calculated from the raw data (N¼ 26,630).
The dashed line shows the average epistasis among unlinked genes.
(C) The change in D (S. cerevisiae—the reconstructed ancestor) is
negatively correlated with the epistasis in S. cerevisiae (N¼ 127).
(D) The D between a gene pair in S. cerevisiae is compared with
that in the reconstructed ancestor. Proportions of gene pairs moving
toward and away from each other among gene pairs with significant
positive epistasis (left), nonsignificant epistasis (middle), and signifi-
cant negative epistasis (right) are shown.
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which all three genes are localized within a 100-gene range on
a chromosome. An example is shown in figure 6A, in which
VMA22 positively interacts with SRB2 and negatively interacts
with AIM17, and the epistatic interaction between SRB2 and
AIM17 is weak. All six possible gene orders are enumerated in
figure 6B. Among them, the first gene order exhibits a perfect
E–D anticorrelation (q¼�1, fig. 6C), which is exactly the
prediction of our model. In fact, it is also the real order of
these genes on chromosome VIII. The second gene order
successfully places positively epistatic genes close to each
other and negatively epistatic genes far from each other.
Therefore, it is generally consistent with our prediction
(fig. 6C). Either gene order was considered as being success-
fully predicted by our model if it actually occurred in the yeast
genome.

We examined the accuracy of our prediction at the geno-
mic scale. We first divided these 22 motifs into two groups
based on the magnitude of repistasis. Group L contains 11
motifs with larger repistasis and Group S contains 11 motifs
with smaller repistasis (fig. 6D). We found that the gene orders
of seven (out of 11) motifs in Group L were precisely pre-
dicted by our model, and the accuracy was significantly higher
than the random expectation (17.6%, fig. 6E, P¼ 0.001, per-
mutation test). By contrast, the predictive accuracy in Group
S (2 out of 11) was not significantly different from the random
expectation (fig. 6E, P¼ 0.607, permutation test) because low
variation among epistasis values in a motif reduces the selec-
tive coefficients (figs. 2E and 3E). More broadly, the propor-
tion of successful predictions (first and second gene orders in
fig. 6B) is 100% in Group L, significantly higher than the ran-
dom expectation (33.3%, fig. 6F, P< 0.001, permutation test).
This high predictive power suggests that epistasis plays a
vital role in driving the evolution of gene order. We fur-
ther identified 243 and 1,302 all-connected motifs within
the range of 150 and 200 genes on the same chromosome,
respectively, and again confirmed the predictive power of
the genetic interaction network (supplementary fig. S8A–
F, Supplementary Material online). Moreover, the predic-
tive power of epistasis on gene order is independent of
expression similarity because the latter could not accu-
rately predict gene order (supplementary fig. S9A–I,
Supplementary Material online).

We then determined whether gene order could be pre-
dicted when the genetic interaction network is incomplete.
To this end, we identified 92 star-like motifs in which all genes
are on the same chromosome and at least one gene with
D� 40 to the hub gene. For example, SFH1, which encodes a
component of a chromatin remodeling complex, genetically
interacts with 90 genes on the same chromosome (fig. 6G
shows 20 genes with D< 100 to SFH1). Because the negative
E–D correlation is mainly contributed by positively epistatic
gene pairs in theory (figs. 1 and 2), our model predicted that
genes having strong positive epistasis with SFH1 should be
located close to it on the chromosome. Indeed, these genes
(VRP1, FKS1, RPL26A, VPS38, DCR2) are located close to SFH1.
Specifically, the gene (VRP1) having the strongest positive
epistatic interaction with SFH1 was the closest gene to
SFH1 on the chromosome (fig. 6H).

To examine the predictive accuracy at the genomic scale,
we divided these 92 star-like motifs into two groups based on
the difference between the top two highest epistasis values in
the motif (Diffepistasis, fig. 6J). We found that the proportion of
successful predictions was 32.6% in Group L and 21.7% in
Group S, both of which were significantly higher than random
expectation (fig. 6K, P< 0.001 for Group L, and P¼ 0.001 for
Group S, permutation test). Furthermore, despite the lower
predictive power, our model could still predict gene locations
in 707 star-like motifs in which the closest gene to the hub
was within D¼ 90 (supplementary fig. S8G and H,
Supplementary Material online, P¼ 0.002 for Group L and
P¼ 0.036 for Group S, permutation test).

Discussion
In our study, we provided results from both computational
simulation and empirical data analysis to support the role of
genetic interaction networks in driving the evolution of gene
order. We performed simulations with different sets of
parameters, some of which were from empirical data or
within the range of empirical data (Schacherer et al. 2009;
Costanzo et al. 2010). The negative E–D correlation was ob-
served with all parameter sets (supplementary figs. S4–S6,
Supplementary Material online), consistent with both theo-
retical predictions (fig. 1A) and empirical results (fig. 4).

The epistasis values were estimated mainly from null alleles
(Costanzo et al. 2010); thus, it remains unknown whether our
conclusion applies to other deleterious alleles. Fortunately,
Costanzo et al. also estimated 7,786,453 pairwise epistasis
values for either decreased abundance by mRNA perturba-
tion (DAmP) alleles or temperature-sensitive (ts) alleles with
mutations typically changing coding sequences, which offered
us the opportunity to address this question (Costanzo et al.
2010, 2016). We found that the epistasis values of null alleles
were significantly correlated with those of other deleterious
alleles of the same gene (supplementary fig. S10A–L,
Supplementary Material online), suggesting that the negative
E–D correlation is likely a general phenomenon for various
deleterious alleles. More importantly, because DNA deletion
events that lead to null alleles are frequently observed in yeast
natural populations (Schacherer et al. 2009), epistasis among
null alleles by itself may be sufficiently strong to drive the
evolution of gene distance.

In principle, if the frequencies of deleterious alleles in a
population are significantly reduced by natural selection,
the advantage of genetic linkage could be small for this pop-
ulation. However, numerous deleterious mutations (e.g., de-
letion of a whole gene, nonsense mutations, missense
mutations, and mutations altering start codons) have been
observed in natural populations (Liti et al. 2009; Schacherer
et al. 2009), suggesting that the frequencies of deleterious
alleles may not be low. This phenomenon is probably due
to the antagonistic pleiotropic effects of a mutation in mul-
tiple environments (Qian et al. 2012).

It is worth noting that theoretical analysis predicts that
epistasis can drive the evolution of recombination frequency
rather than gene distance. In addition to gene distance, 1) the
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lengths of intergenic regions and 2) recombination hot/
cold spots could also affect recombination frequency.
Nevertheless, a strong correlation between gene distance
and physical distance, that is, the number of nucleotides
between two genes, was observed (q¼ 0.998, P< 10�100,
N¼ 1,624,935), suggesting that the effect of (1) is negligi-
ble. Furthermore, physical distance is highly correlated
with recombination frequency when the physical distance
is< 180 kb (supplementary fig. S1C, Supplementary
Material online, q¼ 0.88, P< 10�100, N¼ 336,227),

suggesting that the effect of (2) is also limited. As a result,
recombination frequency and gene distance are highly
correlated (supplementary fig. S1B, Supplementary
Material online, q¼ 0.87, P< 10�100, N¼ 337,892, for
gene pairs with D� 100). Because the recombination fre-
quency was only measured for �58% of gene pairs in
S. cerevisiae (Mancera et al. 2008) and was unknown for
the reconstructed ancestral species, we used gene dis-
tance to approximate recombination frequency in this
study. The optimization of gene distances among

A

H
K

B C D

G

E

I

F

J

FIG. 6. Gene orders can be predicted from the yeast genetic interaction network. (A) A three-node all-connected motif in the yeast genetic
interaction network. The standard deviation of epistasis values (repistasis) in this motif is 0.05. (B) Six possible gene orders are listed. The first is the
observed gene order on chromosome VIII in yeast. (C) The E–D relationship for the six possible gene orders in (B). We consider the prediction
successful if the first two gene orders are observed because they exhibit negative E–D correlations. In particular, the prediction is precise if the first
gene order is observed. The dashed line represents E¼ 0. (D) A histogram of the standard deviation of epistasis values (repistasis) based on which
genes are divided into two groups with similar sizes: Group S and Group L. (E) The proportions of precise prediction of Group S, Group L, and
random (R) expectations based on permutation. Error bars represent standard deviations among 1,000 permutations. (F) The proportions of
successful predictions, similar to (E). (G–I) A star-like motif in the yeast genetic interaction network and the gene order on chromosome XII in
yeast. The hub gene SFH1 and 19 genes with the distance<100 to SFH1 are shown. (J) A histogram of differences in the two largest epistasis values
in the motif (Diffepistasis) based on which genes are divided into two groups with similar sizes: Group S and Group L. (K) Proportion of successful
predictions of the closest gene in Group S and Group L. Their respective random expectations based on permutation are shown in gray. Error bars
represent standard deviations among 1,000 permutations.
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multiple gene pairs may often involve the rearrangement
of genes on a chromosome.

It is also worth noting that synthetic genetic array (SGA),
the experimental strategy used to generate double mutants, is
based on recombination between two null alleles (Tong et al.
2001; Costanzo et al. 2010). Thus, double mutants for linked
genes may have a smaller initial frequency, which may lead to
inaccuracy in estimating fitness values for these mutants. To
determine whether such potential experimental bias has any
impact on our results, we calculated the partial E–D correla-
tion after controlling for the double mutant fitness values.
Again, we observed a strong negative E–D correlation (partial
q¼�0.17, P¼ 1.3� 10�9, N¼ 1,254). This result was not
unexpected because the fitness of double mutants and
gene distance was only weakly correlated (q¼ 0.086,
P¼ 0.002, N¼ 1,254). More discussion on the caveats in
the analysis of empirical data is included in supplementary
note S2, Supplementary Material online.

In a recently study, �1,800 genetic suppression interac-
tions were identified in the budding yeast (van Leeuwen et al.
2016), which can be regarded as an extreme form of positive
genetic interactions. Among them, nine gene pairs are tightly
linked (D� 2, supplementary table S3, Supplementary
Material online). This number is significantly greater than
the random expectation (permutation test, P¼ 0.01), again
supporting our model.

The selection on clusters of locally adapted alleles, which
sometimes were captured in chromosomal inversions, has
been studied previously (Yeaman 2013; Kirkpatrick 2017). In
our study, we proposed a hypothesis (the negative E–D cor-
relation) on deleterious alleles and tested this hypothesis with
analyses on empirical data and simulation, both in the con-
text of genetic interaction networks. Therefore, our results
provide additional clues for understanding the basic princi-
ples of genome organization. In particular, the origin and
maintenance of clusters of genes in the same metabolic path-
way, which have puzzled scientists for years (Wong and Wolfe
2005; Slot and Rokas 2010; Lang and Botstein 2011), could be
well explained by genetic interactions. Genes in a linear met-
abolic pathway exhibit positive epistasis because 1) double
mutants and single mutants have identical impacts on
destroying the function of the pathway (He et al. 2010),
and 2) the accumulation of deleterious intermediate prod-
ucts resulting from a loss-of-function mutation in a down-
stream gene of a metabolic pathway may be prevented by a
loss-of-function mutation in an upstream gene (Wong and
Wolfe 2005; Slot and Rokas 2010; Lang and Botstein 2011).
Because genetic linkage is advantageous among genes with
positive epistasis, the clustering of genes in the same linear
metabolic pathway, such as genes in the galactose utilization
pathway or allantoin degradation pathway, is favored by nat-
ural selection (Wong and Wolfe 2005; Slot and Rokas 2010).

Many factors have been reported to influence the evolu-
tion of gene order, such as tandem gene duplication, position
effects on gene expression noise (Batada and Hurst 2007;
Chen and Zhang 2016), coordinated gene expression among
neighboring genes (Cho et al. 1998; Cohen et al. 2000;
Boutanaev et al. 2002; Spellman and Rubin 2002;

Williams and Bowles 2004), clustering of functionally related
genes (Wong and Wolfe 2005; Slot and Rokas 2010), among
many others. In this study, we provided evidence that in
addition to these factors, the genetic interaction network
also played an important role in driving the evolution of
gene order. Because the empirical data of epistasis (fitness
values) are available in the budding yeast, an evolutionary
simulation integrating many genetic interactions is possible,
which makes epistasis unique among all factors driving the
evolution of gene order. Based on the empirical data of yeast
genetic interaction network, our simulation indicates that the
selective coefficient is on the order of 10�7, suggesting that
epistasis may play an important role in determining gene
order in yeast, a species with a relative large effective popu-
lation size (107). A negative E–D correlation is expected to be
observed in species with a smaller effective population size
only if the range of epistasis is larger than that in yeast (figs. 2
and 3). Because the genome-wide empirical data of epistasis
are unavailable in species with a smaller effective population
size (e.g., humans and flies), it requires further investigations
whether the genetic interaction network plays a role in the
evolution of gene order in these species in the future.

Materials and Methods

Genomes
The genome annotation of S. cerevisiae was downloaded from
the Saccharomyces Genome Database (SGD, http://www.
yeastgenome.org, version R64). The gene order of the recon-
structed ancestor before the WGD (Gordon et al. 2009) was
downloaded from the Yeast Gene Order Browser (YGOB)
(Byrne and Wolfe 2005).

Simulation
To examine the fitness effect of gene distance (D), two-locus
dynamics under selection were simulated for populations
with different D (from 0 to 100 in 1-gene increments), as
well as a series of epistasis values (E, from �0.004 to 0.004
in 0.001 increments) between two loci. The recombination
frequency (R) between these two loci was estimated from D
using the equation below:

R ¼ D� 0:004þ 0:064

which is the linear relationship estimated from the distance
between two genes (D) and the empirical recombination
frequencies (R) between them quantified in a previous study
(Mancera et al. 2008). The simulation was performed in hap-
loid organisms, in order to be in alignment with the analyses
of empirical data, in which epistasis values were quantified in
haploid yeast (Costanzo et al. 2010, 2016). A and B are wild-
type alleles of two di-allelic loci on the same chromosome; a
and b are their deleterious alleles with fitness values of
xaB¼xAb¼ 0.992. The fitness of the wild-type (xAB) was
defined as 1, and the epistasis E was defined as xab�xaBxAb.
The initial allele frequencies of a and b were both 0.1. The two
loci were initially under linkage equilibrium, and therefore the
frequencies of AB(XAB), Ab(XAb), aB(XaB), and ab(Xab) were
0.81, 0.09, 0.09, and 0.01, respectively. After random mating,
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selection, and recombination, the frequencies of the four
genotypes in the next generation were calculated with the
following equations (Nei 1967):

X
0

AB ¼
XABxAB

�x
� R XABxABXabxab � XaBxaBXAbxAbð Þ

�x2

X
0

Ab ¼
XAbxAb

�x
þ R XABxABXabxab � XaBxaBXAbxAbð Þ

�x2

X
0

aB ¼
XaBxaB

�x
þ R XABxABXabxab � XaBxaBXAbxAbð Þ

�x2

X
0

ab ¼
Xabxab

�x
� R XABxABXabxab � XaBxaBXAbxAbð Þ

�x2

�x is the average fitness of a population and was calculated
as follows:

�x ¼ XABxAB þ Xabxab þ XaBxaB þ XAbxAb

For each population, the average fitness (�x) and the
frequencies of deleterious alleles (Xa and Xb) were
recorded in each generation of the simulation. The differ-
ence between the average fitness of two populations with
different D (D¼ 50 and D¼ 0) reflects whether linkage is
favored by natural selection or not. The frequency differ-
ence of the deleterious alleles between these two popu-
lations is related to the long-term effects of
recombination. We also performed the simulation with
a variety of parameter values (supplementary fig. S4,
Supplementary Material online).

The average fitness of a population at the 100th generation
(x100) was used to infer the fitness effect of gene distance at a
given epistasis value. For each epistasis value, we could iden-
tify an optimal gene distance (Dopt) as well as a series of
permitted gene distances (Dpermitted). The difference in x100

between Dpermitted and Dopt was <10�7. The mean of all
Dpermitted values was calculated. In addition, our simulation
did not introduce new mutations to the population, and
therefore, the frequencies of deleterious alleles reduced over
generations. Nevertheless, the negative E–D correlation was
also observed at the 50th and 200th generation (supplemen-
tary fig. S3, Supplementary Material online).

Toy Motifs
We built a toy motif in a genetic interaction network to
simulate the fitness effect of gene distance. In the star-like
motif (fig. 2A), a hub gene (A) interacted with nine partners
(genes B, C, D, E, F, G, H, I, and J) with nine epistasis values
ranging from 0.004 to �0.004 in �0.001 increments. We
attempted to place nine partner genes on the same side of
the hub gene on a chromosome. Because we focused on the
epistasis between the hub gene and the partners, placing
the partners on different sides would not affect the results.
We fixed the chromosomal location of the hub gene, and the
partner genes were placed at D¼ 20, 30, 40, 50, 60, 70, 80, 90,
and 100 from the hub gene. The locations of the nine partners
were shuffled while keeping the epistasis values unchanged.

The fitness of a gene order was defined as the average x100 for
all nine hub-containing gene pairs. Thus, we could calculate
the fitness for a total of (9!¼) 362,880 possible gene orders.
Other parameters (epistasis, fitness defect, D, and initial allele
frequency) were also used to test whether the simulation
result was parameter sensitive (supplementary fig. S5,
Supplementary Material online). Here, epistasis values and
fitness defects were randomly chosen from the empirical
data in previous studies (Costanzo et al. 2010, 2016).

For the all-connected motif (fig. 3A), five genes (A, B, C, D,
and E) interacted with each other with ten epistasis values
ranging from �0.0036 to 0.0036 in 0.0008 increments. The
five genes were placed on the same chromosome, and the
gene locations were set as 1, 19, 65, 93, and 102, so that the
maximum D in the motif was 100. The locations of these five
genes were shuffled, whereas the epistasis values were kept
unchanged. Similar to the star-like motifs, the fitness of a gene
order was defined as the average x100 for all ten gene pairs.
The fitness was calculated for a total of (5!¼) 120 possible
gene orders. Other parameters (epistasis, fitness defect, D, and
initial allele frequency) were also used to determine whether
the simulation result was parameter sensitive (supplementary
fig. S6, Supplementary Material online).

Epistasis
Epistasis values were retrieved from the studies of Costanzo
et al. (Costanzo et al. 2010, 2016). Because the epistasis values
of the overlapping gene pairs in these studies were highly
correlated (r¼ 0.71, P< 10�100, Pearson’s correlation,
N¼ 2,604,539), we merged their epistasis values. A pair of
genes was filtered if (a) the epistasis value between their
null mutations was not a number (NaN) or (b) the epistasis
values of the same null mutation pair had opposite signs in
reciprocal crosses or in different studies. We also removed the
gene pairs with the null mutation in at least one gene result-
ing in a higher fitness value than that of the wild-type. This
filtering was performed because only a small number of an-
tagonistic pleiotropic genes were detected in rich media
(Qian et al. 2012). Thus, the elevated fitness observed upon
gene deletion in Costanzo et al. was likely due to inaccurate
estimation of fitness. If epistasis between a pair of genes was
examined multiple times, we used the epistasis value with the
smallest P value. Following Costanzo et al. (2010), epistasis
values with P< 0.05 were classified as significant.

In addition to the two data sets from Costanzo et al., sev-
eral other studies have also estimated epistasis values using
high-throughput strategies (Boone et al. 2007). In principle,
we could have included all of them in this study. However, for
practical reasons these data sets were not suitable for our
study. First, it would not be appropriate to combine other
data sets with that of Costanzo et al. because epistasis values
from multiple studies potentially have different sources of
error, especially if they followed different protocols. Second,
the sample sizes of epistasis data of linked genes from other
studies were not sufficiently large to examine the E–D corre-
lation. Because the data set from Costanzo et al. represents
the largest available so far, containing �27 times more
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significant epistasis than the total of all other studies, we
focused on these epistasis data in this study.

Recombination Frequency
Genotypes of meiosis products from 46 tetrads were down-
loaded from Mancera et al. (2008) at http://www.ebi.ac.uk/
�huber/recombination/. A pair of DNA markers was filtered
if the genotypes were available in less than half of the spores
(< 92 spores). For each pair of markers, spores with parental
genotypes (Np) and nonparental genotypes (Nnp) were
counted. The recombination frequency of a pair of markers
(Rm) was calculated as follows:

Rm ¼ Nnp=ðNp þ NnpÞ

The recombination frequency between a pair of genes (Rg)
wasdefinedastheaveragerecombinationfrequencyofallmarker
pairs within the pair of genes, which was calculated as follows:

Rg ¼
X

i¼1

X

j¼1

Rm ij=ij

Subscripts i and j represent ith and jth markers in each
gene, respectively.

Identification of Duplicate Genes
All-against-all BlastP was performed to search for duplicate
genes. Gene pairs with E values< 10�10 were defined as du-
plicate genes.

Expression Similarity
Expression profiles of 6,359 genes in 40 studies were compiled
by a previous study (Kafri et al. 2005). Pearson’s correlation
coefficient for two genes was calculated within each study in
the compiled data set, and expression similarity between
these two genes was defined as the average correlation coef-
ficient among studies.

Other Yeast Functional Genomic Data
Protein–protein interaction data were obtained from the
SGD. Three-dimensional chromatin colocalization data were
retrieved from Duan et al. (2010). Genome-wide gene expres-
sion noise data were downloaded from Newman et al. (2006).
A list of essential genes was downloaded from the Database of
Essential Genes (DEG, version 10.6) (Luo et al. 2014). Semantic
similarity of Gene Ontology (GO) terms was calculated using
the R package GOSemSim (version 1.22.0) (Yu et al. 2010).

Shuffling of Gene Positions or Epistasis Values
To obtain the null distribution of E–D correlation coefficients,
we shuffled gene positions while keeping the genome structure
of S. cerevisiae unchanged (i.e., number of chromosomes and
number of genes on each chromosome). The epistasis value of
each gene pair was also kept unchanged. Gene distances were
then calculated based on the new genomic locations.

To estimate the relative importance of different epistasis
categories (positive and negative) in shaping the E–D corre-
lation, we shuffled epistasis values of one category while

keeping the other category unchanged. Gene positions
were not changed during this process.

Estimating the Predictive Accuracy of Gene Order
To examine the accuracy of our prediction of gene order, we
estimated the success rate by chance (gray bars in fig. 6 and
supplementary figs. S8 and S9, Supplementary Material online)
by randomly assigning the positions of genes 1,000 times. For
each permutation, the average proportion of successful pre-
dictions among motifs was estimated. The mean and standard
deviation among the 1,000 permutations were then calculated.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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