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Abstract

Deep convolutional networks have been developed to detect prohibited items for automated

inspection of X-ray screening systems in the transport security system. To our knowledge,

the existing frameworks were developed to recognize threats using only baggage security

X-ray scans. Therefore, the detection accuracy in other domains of security X-ray scans,

such as cargo X-ray scans, cannot be ensured. We propose an object detection method for

efficiently detecting contraband items in both cargo and baggage for X-ray security scans.

The proposed network, MFA-net, consists of three plug-and-play modules, including the

multiscale dilated convolutional module, fusion feature pyramid network, and auxiliary point

detection head. First, the multiscale dilated convolutional module converts the standard con-

volution of the detector backbone to a conditional convolution by aggregating the features

from multiple dilated convolutions using dynamic feature selection to overcome the object-

scale variant issue. Second, the fusion feature pyramid network combines the proposed

attention and fusion modules to enhance multiscale object recognition and alleviate the

object and occlusion problem. Third, the auxiliary point detection head adopts an auxiliary

head to predict the new keypoints of the bounding box to emphasize the localizability without

requiring further ground-truth information. We tested the performance of the MFA-net on

two large-scale X-ray security image datasets from different domains: a Security Inspection

X-ray (SIXray) dataset in the baggage domain and our dataset, named CargoX, in the cargo

domain. Moreover, MFA-net outperformed state-of-the-art object detectors in both domains.

Thus, adopting the proposed modules can further increase the detection capability of the

current object detectors on X-ray security images.

Introduction

X-ray screening systems support transport security by detecting concealed prohibited items,

including explosives, drugs, weapons, chemicals, and other contraband in carry-on baggage

and cargo. In traditional X-ray screening systems, manual screening by human operators plays

a vital role. However, complex features in X-ray images, such as object occlusion, and object-

scale variety, increase in the fatigue level of the screener, which could cause false alarms.
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Therefore, automatic detection of prohibited items, especially employing artificial intelligence

(AI)-based X-ray scanning, is deployed to decrease the processing time and increase the accu-

racy of the detection process.

A critical challenge of AI-based X-ray inspection system development is the limited avail-

ability of X-ray security image datasets of good quality and large size. Only a few X-ray screen-

ing image dataset are publicly available. For example, GDXray [1] is a small publicly released

benchmark dataset of baggage X-ray scanning images with noncomplex content, as presented

in Fig 1. In addition, SIXray [2] is a large benchmark dataset of baggage X-ray scanning images

that provides more challenging detection images than GDXray in terms of complex content

anFd bias-negative samples (i.e., images without prohibited items). To our knowledge, public

benchmark datasets of X-ray security images only contain images from the baggage domain.

However, X-ray scanning systems are used in baggage scanning and other environments, such

as cargo scanning. Therefore, AI-based systems trained using these public datasets [3–7] might

be inadequate for dealing with real-world scenarios. In this work, we first synthesized a cargo

X-ray scanning image dataset called CargoX, which provides complex content that includes

variation geometrics with varying scales and viewpoints of objects. Furthermore, CargoX pro-

vides further information for detection learning (i.e., instance segmentation information).

Accordingly, we evaluated the performance of existing AI-based object detectors and the pro-

posed object detector on the SIXray and CargoX datasets to explore the compatibility of detec-

tors in real-world security X-ray scanning scenarios.

Recently, AI-based security scanning for classification and prohibited object detection has

had rapid advances with the use of traditional machine learning [8–13] and deep convolution

neural networks (CNNs) [2, 14–21]. Previous studies on objection detection within the context

Fig 1. Representative image examples of the GDXray dataset [1].

https://doi.org/10.1371/journal.pone.0272961.g001
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of baggage threat recognition have employed state-of-the-art object detectors with transfer

learning to overcome the limitations of the small sizes X-ray security datasets. However,

although transfer learning can enhance detection performance, it is still sensitive to geometric

variations, one of the main challenges in X-ray security images. Conditional convolution, such

as dynamic convolution [22], SKNet [23], ResNeSt [24], switchable atrous convolution (SAC)

[25], and deformable convolution [26], is an effective method to alleviate geometric variations

in the natural image domain. Due to the heavy object-scale variant on X-ray security compared

to the natural image domian, adding the existing condition convolutional method cannot

achieve as high performance as the natural image domain as presented in Table 2. To increase

the performance of the object detectors on X-ray security images, we propose using a new con-

ditional convolution-based module called the multiscale dilated convolutional (MDConv)

module. The MDConv module converts the standard convolution to a conditional convolu-

tion to overcome heavy geometric variations of prohibited items in the X-ray security dataset

using multiple options for the dilated convolution. This method improves the performance of

the geometric transformation of the detectors and fuses the features dynamically using the

attention mechanism weight selection. As presented in Table 2, the MDConv module outper-

forms previous conditional convolutional methods and achieves mean average precision

(mAP) values of 55.4% and 72.5% on the SIXray10 and CargoX datasets, respectively.

Another effective approach to addressing geometric variations, especially scale variations, is

adopting the multiscale feature fusion network. The feature pyramid network (FPN) [27] is a

representative multiscale feature fusion framework that achieves remarkable performance in

object detection by fusing multiscale features with shallow content-descriptive and deep

semantic features. After the success of the FPN, several FPN-based methods, such as the

PAFPN [28], have been proposed to improve FPN performance. Cross-scale fusion and skip

connections are general approaches to improve feature representation and alleviating informa-

tion loss of the FPN (e.g., Libra R-CNN [29], and AugFPN [30]). However, the fusion of differ-

ences in cross-scale feature maps after interpolation may cause aliasing effects, resulting in

confused localization. As the attention mechanism can optimize the fused aliasing feature and

enhance discriminative abilities [31], we propose an attention mechanism with multiscale fea-

ture fusion modules to create the feature fusion network (FusionFPN) to mitigate the informa-

tion loss and aliasing effects and effectively generate multiscale semantic features to overcome

object-scale variations and occlusion issues. As observed in Table 3, the FusionFPN outper-

forms the previous FPN-based methods and achieves mAP values of 54.6% and 71.3% on the

SIXray10 and CargoX datasets, respectively.

Generally, bounding box regression is designed to predict the bounding box position

defined by four points (i.e., the width, height, and top-left corner x- and y- coordinates), which

is enough for the localization of the object. However, bounding box prediction is not precise,

especially on X-ray security images with complex content and heavy occlusion. We integrate

the proposed the additional auxiliary head approach with the two-stage object detector detec-

tion head to achieve high localizability in X-ray security images. The proposed method is called

the auxiliary point detection head (point head). The point head is designed to predict key-

points of the object bounding box to improve the localization performance of the detectors

and mitigate the occlusion issue by precisely predicting the object bounding box. As presented

in Table 5, the point head outperforms the previous detection head optimization method with

an mAP value of 71.5% on the CargoX dataset.

Finally, we propose MFA-net, in which the MDConv module, FusionFPN, and point head

described above are incorporated into a two-stage object detector to overcome the difficulties

in X-ray security object detection systems, such as object-scale variance and object occlusion

and enhance the localization performance of the detector on X-ray scanning images in baggage
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and cargo image domains. To demonstrate the effectiveness of the MFA-net, we incorporate

the MFA-net into the Cascade R-CNN and Cascade Mask R-CNN and evaluate the detector

performance on the SIXray and the synthetic dataset, CargoX. On the CargoX dataset, the

MFA-net-based Cascade Mask R-CNN achieves an mAP value of 75.2%, 2.6% higher than that

of the baseline Cascade Mask R-CNN. In addition, the mAP of the MFA-net-based Cascade

R-CNN is 5.5% higher than the baseline Cascade R-CNN with an mAP of 58.0% on the SIX-

ray10 dataset.

Materials and methods

MFA-net

In this subsection, we describe the architectural design of the proposed MFA-net, which com-

bines the two-stage object detectors with the three proposed components. The three proposed

components (i.e., MDConv module, FusionFPN, and point head) are designed to be incorpo-

rated into two-stage object detectors (e.g., the Faster R-CNN [32], Cascade R-CNN, and Cas-

cade Mask R-CNN [33]) on the backbone network, feature fusion network, and detection

head, respectively, as depicted in Fig 2. Typically, the three proposed components can be

incorporated into one- or two-stage object detectors. Nonetheless, the MFA-net aims to out-

perform state-of-the-art object detectors in terms of detection accuracy. Consequently, we

incorporated the proposed methods with two-stage object detectors, demonstrating better

detection accuracy than one-stage object detection. The architecture and details for each com-

ponent are described in the following subsections.

Multiscale dilated convolutional module

Generally, the backbone of state-of-the-art object detectors is the network used for the classifi-

cation task (e.g.,, ResNet [34], VGG16 [35], and ResNeXt [36]) without the last fully connected

layers. However, directly using the classification network as a backbone impedes the localiza-

tion accuracy for large objects and the recognition of small objects. Therefore, we exploited

dilated convolution, an effective technique to enlarge the field of view of filters or the kernel of

Fig 2. Two-stage object detector incorporated with the three proposed components (i.e., the multiscale dilated convolutional module, fusion

feature pyramid network, and auxiliary point detection head).

https://doi.org/10.1371/journal.pone.0272961.g002
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convolution on the MDConv module to increase the multiscale object feature extraction ability

of the detector backbone.

The MDConv module is designed to convert the 3×3 standard convolutional mechanism in

all bottleneck blocks of the ResNet family classification backbone (i.e., ResNet50 [34],

ResNet101, and ResNeXt101 [36]) to 3×3 conditional convolution using a set of k parallel con-

volutional operations with diverse dilated rates and attention mechanism as the feature selec-

tion weight generator. The 3 ×3 standard convolutional operation with weight W and dilated

rate d that takes x as input to generate an output y, where y = Conv(x, W, d), is converted to

the conditional convolutional operation as follows:

y ¼
Xk

i¼1

aiConvðx;W; diÞ; ð1Þ

where k is the number of parallel convolutional operations, di represents the dilated rate of

each convolutional operation, and αi denotes the feature selection weight for each convolu-

tional operation generated by the selection module. In this study, we set k to 3 and di to 1, 2,

and 4.

In addition, Fig 3 presents the architecture of the MDConv module, comprising three

major processes. First, MDConv extracts the semantic feature from the output feature of the

previous layers in the same scenarios as the input of the bottleneck layers of ResNet family

backbone with k parallel 3×3 convolutional operations with various dilated rates. Second, the

selection module generates the MDConv module input feature-dependent selection weight, α,

for each individual output feature of the multiple-dilated-rates convolutional operation in the

previous process. The feature selection weight is calibrated with the extracted global context.

The architecture of the selection module consists of the global average pooling operation, 1×1

convolutional layers, rectified linear unit (ReLU) activation function and softmax activation

function to generate and normalize the feature selection weight as follow.

a ¼ sðConvðReLUðConvðGAPðxÞÞÞÞÞ; ð2Þ

Fig 3. Multiscale dilated convolutional module architecture.

https://doi.org/10.1371/journal.pone.0272961.g003
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where x is the input of the MDConv module, GAP denotes the global average pooling layer,

Conv is a 1×1 convolutional layer, ReLU represents the ReLU activation function, and σ indi-

cates a softmax activation function. Finally, the extracted features from the parallel convolu-

tional operation are dynamically aggregated with the input feature-dependent selection weight

with a multiplication operation that emphasize the most prohibited item-related features

extracted from each 3×3 convolution operation in MDconv module and suppresses unrelated

features.

Fusion feature pyramid network

In general, a two-stage object detector backbone is equipped with a feature fusion network,

such as the FPN [27], to achieve high performance by exploiting the inherent multiscale struc-

ture of the backbone to construct a feature pyramid with rich semantics at all levels, facilitating

the detection of objects at different scales, as displayed in Fig 4a). However, the features at dif-

ferent levels in the FPN and FPN-based methods undergo a 1×1 convolution before perform-

ing feature fusion in a top-down path, leading to feature information loss at the highest

pyramid level. Although cross-scale fusion and skip connections in FPN-based methods [29,

30] can alleviate the information loss, these methods result in an aliasing effect on integrated

features. Consequently, we propose the FusionFPN to improve the localization performance of

Fig 4. Comparison of the architecture of the feature pyramid network (FPN) and the proposed FusionFPN: a) architecture of the FPN, b)

architecture of FusionFPN, c) attention module architecture, and d) fusion module architecture.

https://doi.org/10.1371/journal.pone.0272961.g004
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the detectors by mitigating the information loss of the FPN and the aliasing effect from differ-

ent scale feature integrations. The FusionFPN further leverages the information from different

levels of the feature pyramid by extending the FPN with an attention module and feature

fusion module.

The FusionFPN has two major components: the attention and fusion modules incorporated

sequentially (Fig 4b)). The attention module emphasizes the prohibited object-related features

before the feature fusion process. Furthermore, the fusion module aggregates all scale features

from the attention module to overcome the information loss problem of the original FPN. To

mitigate the aliasing effect (i.e., the influence of all scale-feature integration), we employ an

attention mechanism, which is the intuitive solution to reduce the influence of the aliasing

effects in the fusion module. In other words, the attention module is designed to improve the

feature representation, and the fusion module is designed to alleviate the information loss of

the original FPN with cross-scale feature fusion and reduce the aliasing effect of cross-scale

feature fusion to improve the localizability of the model.

Attention module. The proposed attention module computes complementary attention

in spatial and channel dimensions by incorporating channel attention and spatial attention in

parallel. The attention maps from the two branches are fused via concatenation and undergo a

1×1 convolutional layer, as illustrated in Fig 4c). The channel attention module generates

attention maps using the global context module. The module adopts global average pooling

layers, effectively enhancing the learning of the extent of the object, followed by a 1×1 convolu-

tional layer with the ReLU activation function and a 1×1 convolutional layer. In addition, the

softmax activation function is employed in the last process as follows:

Ac ¼ sðConvðReLUðConvðGAPðFÞÞÞÞÞ; ð3Þ

where F is an intermediate feature map defined as the input of the attention module, GAP
denotes the global average pooling layer, Conv is a 1×1 convolutional layer, ReLU represents

the ReLU activation function, Ac indicates the channel attention map, and σ is a softmax acti-

vation function.

We employed global average pooling and global max pooling operations along the channel

axis and aggregated them to generate an efficient feature descriptor to compute the spatial

attention map. Global average pooling and global max pooling are applied to effectively high-

light information regions and aggregate the information. The spatial information feature maps

were forwarded to the 1×1 convolutional layer with the ReLU activation function and the 1×1

convolutional layer with a softmax activation function, as follows.

As ¼ sðConvðReLUðConvðGAPðFÞ þMAPðFÞÞÞÞÞ; ð4Þ

where MAP indicates the global max pooling layer, and As denotes the spatial attention map.

The spatial attention map and channels attention were fused via concatenation, followed by a

1×1 convolutional layer. The fused attention map is multiplied by the input feature map using

the elementwise multiplication operation to emphasize the prohibited object related feature in

the input feature map. The overall attention process can be summarized as follows:

F0 ¼ ConvðconcatðAc;AsÞÞ � F; ð5Þ

where F0 is the output of the attention module, and concat is the concatenation process along

the channel axis.

Fusion module. The proposed fusion module is based on a dynamic selection mechanism

that allows the model to adaptively select the feature map from all levels of output of the atten-

tion module based on multiple levels of input information. The proposed fusion module
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consists of the fuse and select operations, as illustrated in Fig 4d). The fuse operation combines

and aggregates the information from multiple levels to obtain global and comprehensive fea-

ture representation. The select operation aggregates the feature maps of differently levels

according to the selection weights.

First, we prepared the input of the fusion module by resizing the different scale feature

maps from attention module to the same spatial and channel dimension. We converted the

channel dimension of the feature maps with a 1×1 convolutional operation (Conv). To resize

the spatial feature map, we upsampled it using bilinear interpolation operation and down-

sampled with a 3×3 convolutional operation with a stride of 2, and padding of 1 (Conv3). The

input preparation process for each level of the fusion module is demonstrated in algorithm 1.

Algorithm 1: The input preparation process for level l of the fusion module
Input: The attention module feature outputs F0 from all levels
Output: The feature maps with the same spatial and channel dimensions
F
Parameter: n is the number of the levels of the feature pyramids, Si is
the spatial dimension of the feature map at level i.
for i = 1,2,..,n do
% convert feature map channel dimension
F0i = Conv(F0i)
% convert feature map spatial dimension
if Si = Sl then
Fi = F0i

else if Si < Sl then
Fi = Bilinear_interpolation(F0i)

else if Si > Sl then
Fi = Conv3(F0i)

end
Second, the selection weight is generated by employing global average pooling and global

max pooling, followed by a 1×1 convolutional layer with the ReLU activation function and a

1×1 convolutional layer without the softmax activation function as follows:

F̂ ¼ ConvðReLUðConvðGAPð
Xn

i¼0

FiÞ þMAPð
Xn

i¼0

FiÞÞÞÞ; ð6Þ

where Fi represents the resized feature maps from each level of the attention module, n denotes

the number of the level of the feature pyramids, and F̂ indicates the selection weight for each

feature level. We incorporated the selection weight with the input feature maps using an ele-

mentwise operation to select the semantic information from each level of the feature pyramid.

Auxiliary point detection head

Several state-of-the-art object detectors have demonstrated outstanding performance in terms

of localization by optimizing detection head architecture, such as adding an auxiliary detection

head [33, 37]. In this work, we propose the auxiliary point detection head, an additional detec-

tion head designed to predict further keypoints of the bounding box to enhance the localiza-

tion performance of the detectors without additional ground-truth annotation. The point head

enhances the localizability of the detector by allowing the detector to learn more information

about the object bounding box. In other words, with more information to learn, the detectors

indicate the object bounding box more precisely than the baseline detector without the pro-

posed point head. The architecture of the auxiliary point detection head (point head) is illus-

trated in Fig 5b).
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Generally, two-stage object detectors such as Faster R-CNN consist of two prediction heads

(Fig 5a)) and predict two outputs for each candidate object, including an object class and the

bounding box position defined by four points (i.e., the width, height, and top-left corner x-
and y-coordinates), as listed in Fig 5c). The point head is adopted in the second stage of the

object detectors in parallel to the class and bounding box offset prediction head, as depicted in

Fig 5b) to predict five points of the bounding box (i.e., top-left corner, top-right corner, bot-

tom-left corner, bottom-right corner, and center of the bounding box) in Fig 5d). The ground

truths for additional points were calculated from the ground truths of the bounding box as fol-

lows:

Cx ¼ tlx þ
W
2

� �

;

Cy ¼ tly þ
H
2

� �

;

trx ¼ tlx þW;

try ¼ tly;

blx ¼ tlx;

bly ¼ tly þH;

brx ¼ tlx þW;

bry ¼ tly þ H;

where Cx and Cy denote the x- and y- coordinates of the center point, tlx and tly are the x- and

y-coordinates of the top-left corner, trx and try indicate the x- and y-coordinates of the top-

Fig 5. Architectural and bounding box detection-output comparison between the two-stage object detector shared head and proposed auxiliary point

detection head: a) two-stage object detector shared head architecture, b) proposed auxiliary point detection architecture, c) two-stage object detectors:

bounding box detection-output points, and d) auxiliary point detection head output points.

https://doi.org/10.1371/journal.pone.0272961.g005
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right corner, blx and bly represent the x- and y-coordinates of the bottom-left corner, and brx
and bry denote the x- and y-coordinates of the bottom-right corner, respectively. In addition,

H is the height of the bounding box, and W is the width of the bounding box. Thus, 10 output

parameters exist for the point head module. Furthermore, the computation cost for this mod-

ule is minimal compared to the Mask R-CNN because the point head module predicts only 10

output parameters for five bounding box keypoints instead of predicting the segmentation

mask in a pixel-to-pixel manner.

Experiments

Datasets

The experiment in this study was conducted on two X-ray security inspection datasets belong-

ing to two different domains. The public dataset SIXray [2] contains baggage scanning images.

The second dataset is the synthetic cargo scanning dataset CargoX. We designed the experi-

ments to evaluate the performance of the proposed MFA-net on the SIXray and CargoX

because we expected the MFA-net to achieve high performance in both image domains, over-

come the difficulties of each dataset, and increase the compatibility of the detectors in real-

world scenarios.

SIXray

The SIXray dataset [2] is a set of large-scale security inspection X-ray images with six classes of

prohibited items (i.e., guns, knives, wrenches, pliers, scissors, and hammers). The SIXray data-

set comprises three subdatasets: SIXray10, SIXray100, and SIXray1000. In this study, we evalu-

ated the proposed object detectors only on SIXray10, in which all 8,929 positive images and

exactly 10 times the negative images are included. The dataset was optimized on 80% of the

data for training and evaluated on the remaining 20% of the data for testing.

CargoX

The CargoX dataset is a synthetic set of cargo security X-ray images and is the first cargo

domain dataset (which we proposed). We generated the cargo X-ray images by cropping them

from high-resolution images of vehicles with cargo. It is impossible to accurately label the pro-

hibited items using only the cropped cargo images; thus, we inserted the prohibited items into

cropped cargo images. The prohibited items in the CargoX dataset include four different types

of knives, which are common weapons for general security screening systems, as presented in

Fig 6a).

Fig 6. Prohibited items and X-ray security images in the CargoX dataset: a) examples of prohibited items for the CargoX dataset and b) image

examples for the CargoX dataset.

https://doi.org/10.1371/journal.pone.0272961.g006
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Inserting items are generated by rotating each type of knife about the x-axis, taking X-ray

projection images every 10˚, and rotating about y-axis and taking X-ray images every 45˚. We

define the images categories by the knife type and roll angle (the rotation angle around x-axis)

when taking X-ray projection images. First, the knife images are divided into four categories

by type. Second, the knife images taken with different roll angle of each group are divided into

four groups (i.e., the knife images taken at 45˚ to 135˚, 135˚ to 225˚, 225˚ to 315˚, and 315˚ to

45˚ roll angle). Then, we combined the four groups into two groups for each type of knife with

a similar shape, combining knife images with roll angle from 45˚ to 135˚ and 225˚ to 315˚, and

combining knife images with roll angle from 135˚ to 225˚ and 315˚ to 45˚. Therefore, the Car-

goX dataset contains eight prohibited item categories with four knife types, and each type is

associated with two categories with different roll angle ranges. We randomly selected a knife

image from each category, and inserted it into a random position in the cropped cargo images

to generate images for each category.

Moreover, Fig 6b) illustrates the synthetic X-ray images in the CargoX dataset. The syn-

thetic cargo X-ray dataset, CargoX, contains 64,000 X-ray images, consisting of 40,000 images

for training, 12,000 images for validation, and 12,000 images for testing. The CargoX dataset

has several properties that differ from other security X-ray datasets. First, prohibited items

appear with varied scales and viewpoints. Furthermore, the dataset provides the necessary

information, such as item categories and bounding box position, and additional information

to learn object detection more precisely, which is the object instance segmentation. Finally, the

images in this dataset have complex content and noise, as presented in Fig 6b).

Performance measure

To evaluate the performance of the object detectors, we used the mAP. The mAP is a metric

from the MS COCO [38] object detection challenge, with three different IoU thresholds. The

thresholds include the mAP (mAP scores of 10 IoU thresholds from 0.5 to 0.95, with a step of

0.05), mAP50 (mAP scores with an IoU of 0.5), and mAP75 (mAP scores with an IoU of 0.75).

Implementation details

In the implementation, we adopted two-stage object detectors, such as the Faster R-CNN [32],

Cascade R-CNN, and Cascade Mask R-CNN [33] with ResNet-50, ResNet-101 [34], and

ResNeXt-101 [36] along with the proposed components. The Cascade Mask R-CNN is not

implemented for SIXray because the dataset did not provide a mask annotation. Furthermore,

we replaced all 3×3 convolutional backbone operations with the multiscale dilated module

(MDconv). FusionFPN was employed as the feature fusion network instead of the FPN [27].

The point head was adopted for the detection head. We implemented this model with MMDe-

tection [39], an open-source object detection toolbox based on PyTorch. The models were

trained for 20 epochs in the experiment with initial learning rates of 0.005 and 0.02 for SIXray

and CargoX, respectively. The learning rate was multiplied by 0.1 after 16 and 19 epochs. We

used an SGD optimizer with a batch size of four images per graphics processing unit (GPU) in

an environment equipped with NVIDIA Titan Xp GPU, CUDA version 10.2, and PyTorch

1.5.

Results and discussion

Ablation study

We perform several ablations to optimize and evaluate the performance of each of the three

proposed improvements (i.e., the MDConv module, FusionFPN, and point head).
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Performance of the multiscale dilated convolutional module. We performed an experi-

ment to optimize the hyperparameter k, which is the number of 3× 3 convolutional operations

in MDConv. Table 1 reveals that using three 3×3 convolutional operations in MDConv

achieved the best mAP in both the SIXray10 and CargoX datasets.

The effectiveness of the MDconv module was examined on the SIXray10 and CargoX data-

sets by incorporating MDconv with Cascade R-CNN with FPN. We evaluated the performance

of MDConv by comparing the performance with the MS COCO state-of-the-art module that

optimizes the two-stage object detector backbones with conditional convolution, including

switchable atrous convolution (SAC) from DetectoRS [25], the ResNeSt [24] backbone, and

deformable convolution [26]. These previous backbone optimization methods, including the

MDConv module, were adopted in the ResNeXt-101 baseline backbone. Table 2 indicates that

MDConv enhances the mAP values by 2.9% and 2.3% on the SIXray10 and CargoX datasets,

respectively. Furthermore, MDConv outperforms other state-of-the-art backbones with 55.4%

mAP on SIXray10 and 72.5% mAP on CargoX.

Performance of the fusion feature pyramid network. To demonstrate the effectiveness

of FusionFPN, we substituted the proposed FusionFPN in the Cascade R-CNN with MS
COCO state-of-the-art feature fusion networks (i.e., FPN [27], PAFPN [28], AugFPN [30], and

Libra R-CNN [29]) that were proposed to improve multiscale feature learning. Table 3 indi-

cates that the FusionFPN outperforms other state-of-the-art feature fusion networks with a

54.6% mAP on SIXray10 and 71.3% on CargoX.

Performance of the auxiliary point detection head. We performed an experiment

involving variant predicted point formulations to optimize the number of keypoints outputs of

the point head. The experiment on one point uses the supervision of the center of the ground-

truth box (C). In the two-points case, we used the top-right (tr) and the bottom-left (bl) points

of the ground-truth box. We added the center points to the two-point case in the three-point

case. Supervision of the bottom-right (br) points is added to the three-point case in the four-

point case. The last case is the five-point case, which uses supervision of the top left (tl), top

right, center, bottom left, and bottom right of the ground-truth box as predicted points of the

Table 1. Effect of the number of parallel 3 × 3 convolutional operations (k) in MDConv.

Method Backbone k mAP mAP50 mAP75

SIXray10 CargoX SIXray10 CargoX SIXray10 CargoX

Cascade R-CNN [33] ResNeXt-101 w FPN 1 52.1 70.1 78.4 95.9 59.9 81.1

ResNeXt-101 w FPN 2 54.9 71.9 78.5 96.5 64.1 81.7

ResNeXt-101 w FPN 3 55.4 72.5 79.6 96.5 63.2 82.2

ResNeXt-101 w FPN 4 54.9 68.3 79.3 95.5 62.4 77.6

https://doi.org/10.1371/journal.pone.0272961.t001

Table 2. Comparison of the performance of the MDConv module with previous applications of conditional convolutional modules on the backbones of object detec-

tors on the SIXray10 and CargoX datasets.

Method Backbone Addition Module mAP mAP50 mAP75

SIXray10 CargoX SIXray10 CargoX SIXray10 CargoX

Cascade R-CNN [33] ResNeXt-101 w FPN - 52.5 70.2 78.3 95.9 60.6 81.1

ResNeXt-101 w FPN SAC [25] 43.0 63.9 67.9 92.8 47.0 71.3

ResNeSt (s101) [24] - 51.4 67.1 75.4 94.1 58.6 74.8

ResNeXt-101 w FPN DCN [26] 54.2 72.1 78.8 96.4 62.8 82.4

ResNeXt-101 w FPN MDconv 55.4 72.5 79.6 96.5 63.2 82.2

https://doi.org/10.1371/journal.pone.0272961.t002
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point head. The experiments in Table 4 deployed Faster R-CNN and Cascade R-CNN with

ResNet-50 with FPN and ResNet-101 with FPN. As the number of points increases, the detec-

tion accuracy also increases. Adding a point head in the five-points case on the Faster R-CNN

with ResNet50 backbone with FPN and ResNet-101 with FPN increases the mAP by 11.2%

and 3.8% for SIXray10 and 1.3% and 1.2% for CargoX, respectively. Furthermore, adopting a

point head with Cascade R-CNN with a ResNet50 backbone with FPN improves the mAP over

the baseline by 3.3% on SIXray10 and 0.3% on CargoX. We also compared the performance of

the proposed point head with the keypoint-based prediction object detector. However, Centri-

petalNet requires the instance segmentation ground truth for learning. Therefore, we only

compared the test results on CargoX for a fair comparison. Table 5 indicates that the Cascade

R-CNN with the point head outperforms the previous keypoint-based prediction research and

achieves a 71.5% mAP.

Effect of the proposed modules on quantitative performance

This subsection demonstrates the individual effects of the proposed modules (i.e., MDConv,

Fusion FPN, and point head) on the MFA-net. We experimented by adopting each module on

Table 3. Comparison of the performance of the fusion feature pyramid network with state-of-the-art feature fusion networks on the CargoX dataset.

Method Backbone Feature Fusion Network mAP mAP50 mAP75

SIXray10 CargoX SIXray10 CargoX SIXray10 CargoX

Cascade R-CNN [33] ResNeXt-101 FPN [27] 52.5 70.7 78.3 96.1 60.6 80.2

ResNeXt-101 PAFPN [28] 54.2 71.1 79.1 96.1 63.1 81.6

ResNeXt-101 AugFPN [30] 53.7 71.1 78.9 96.2 62.1 80.5

ResNeXt-101 Libra R-CNN 52.7 71.0 77.2 96.4 59.9 81.4

ResNeXt-101 FusionFPN 54.6 71.3 79.3 96.5 62.5 81.3

https://doi.org/10.1371/journal.pone.0272961.t003

Table 4. Effect of the position of the point in the point head Module.

Method Backbone Point Position mAP mAP50 mAP75

SIXray10 CargoX SIXray10 CargoX SIXray10 CargoX

Faster R-CNN [32] ResNet-50 w FPN - 39.5 66.7 72.1 95.9 38.2 75.7

1[C] 45.4 66.7 77.5 95.9 47.8 75.8

2[tr,bl] 41.3 64.8 73.2 95.3 45.2 73.2

3[tr,C,bl] 49.1 67.6 78.4 95.9 55.2 77.4

4[tr,C,bl,br] 49.2 67.8 78.6 95.8 54.6 77.6

5[tl,tr,C,bl,br] 50.7 68.0 79.3 95.8 56.7 77.9

Faster R-CNN [32] ResNet-101 w FPN - 48.5 67.0 79.0 95.8 54.0 76.3

1[C] 49.8 67.0 78.9 95.9 53.9 76.2

2[tr,bl] 44.6 66.5 75.2 95.6 48.4 75.9

3[tr,C,bl] 51.9 68.1 78.7 96.0 59.1 78.0

4[tr,C,bl,br] 51.8 67.8 79.0 95.6 59.0 78.0

5[tl,tr,C,bl,br] 52.3 68.2 78.6 95.9 60.7 78.5

Cascade R-CNN [33] ResNet-50 w FPN - 49.7 69.5 78.4 96.0 55.3 79.3

1[C] 48.5 67.9 79.5 96.0 53.1 78.1

2[tr,bl] 40.8 63.4 72.5 93.9 40.4 72.0

3[tr,C,bl] 51.4 69.3 79.5 95.9 58.4 79.6

4[tr,C,bl] 52.0 69.4 79.3 95.9 59.4 79.9

5[tr,C,bl,br] 53.0 69.8 79.7 96.0 60.1 80.6

https://doi.org/10.1371/journal.pone.0272961.t004
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the Cascade R-CNN with a ResNeXt-101 backbone with the FPN. Table 6 indicates that incor-

porating the MDConv module into ResNeXt-101 on the Cascade R-CNN improves the mAP

values by 2.9% and 2.3% on SIXray10 and CargoX, respectively. Furthermore, replacing the

FPN with the proposed FusionFPN achieves a 54.6% mAP on SIXray10, an increase of 2.1%

over the baseline, and a 71.3% mAP on CargoX, an increase of 1.1% over the baseline. In addi-

tion, adopting the point head leads to an mAP increase of 3.5% and 1.3% on SIXray10 and

CargoX, respectively. Furthermore, incorporating all contributions with the Cascade R-CNN

with a ResNeXt-101 backbone with the FPN increases the mAP values by 5.5% and 2.5% on

SIXray and CargoX, respectively.

Effect of the proposed modules on qualitative performance

For a quality performance analysis of the proposed modules, we visualized the effect of each

proposed component on CargoX and SIXray. We incorporated each proposed component

into the baseline (i.e., the Cascade R-CNN with a ResNeXt-101 backbone with the FPN) and

compared the detection performance with the baseline. Fig 7a) indicates that each of the three

proposed modules enhances the localization performance to predict the position of an object’s

bounding box more accurately. The proposed components also refine the classification perfor-

mance, as detailed in Fig 7b). Furthermore, Fig 8a) indicates that adopting the proposed mod-

ules can decrease false-negative prediction cases of the baseline detectors. Besides decreasing

false-negative prediction cases compared to the baseline, Fig 7c) and 7d) and Fig 8b) and 8d)

reveal that the proposed modules can also decrease the number of false-positive prediction

cases. Fig 8c) illustrates that the proposed modules can detect prohibited objects and provide

better performance in terms of localization in false-negative ground-truth cases.

Comparison with state-of-the-art detectors

Previous studies [2, 44] on SIXray usually evaluated the object detector performance by deter-

mining the accuracy in the mAP of the classification and localization, which is different from

the general object detection task on natural images (e.g., MS COCO and PASCAL VOC).

Table 5. Comparison of the performance of the point head with state-of-the-art keypoint-based object detectors on the CargoX dataset.

Method Backbone mAP mAP50 mAP75

CornerNet [40] Hourglass104 63.7 89.3 72.5

CenterNet [41] ResNet-101 70.7 96.2 79.3

Centripetalnet [42] Hourglass104 62.8 90.4 70.5

Grid R-CNN [43] ResNeXt-101 + FPN 70.2 96.2 79.3

Cascade R-CNN w Point Head ResNeXt-101 + FPN 71.5 96.0 82.3

https://doi.org/10.1371/journal.pone.0272961.t005

Table 6. Effect of each proposed module on the SIXray10 and CargoX datasets.

Method Backbone MDConv Fusion FPN Point Head mAP mAP50 mAP75

SIXray10 CargoX SIXray10 CargoX SIXray10 CargoX

Cascade R-CNN [33] ResNeXt-101 w FPN ✘ ✘ ✘ 52.5 70.2 78.3 95.9 60.6 81.1

✔ ✘ ✘ 55.4 72.5 79.6 96.5 63.2 82.2

✘ ✔ ✘ 54.6 71.3 79.3 96.5 62.5 81.3

✘ ✘ ✔ 56.0 71.5 80.0 96.0 65.5 82.3

✔ ✔ ✔ 58.0 72.7 80.3 96.5 68.3 83.5

https://doi.org/10.1371/journal.pone.0272961.t006
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Fig 7. Visualization of the effect of the proposed MDConv, FusionFPN, point head, and MFA-net with all the proposed modules on CargoX.

https://doi.org/10.1371/journal.pone.0272961.g007

Fig 8. Visualization of the effect of the proposed MDConv, FusionFPN, point head, and MFA-net with all the proposed modules on SIXray [2].

https://doi.org/10.1371/journal.pone.0272961.g008
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However, we evaluated the performance of MFA-net using the MS COCO mAP metric on the

SIXray and CargoX datasets. Therefore, we conducted experiments on SIXray10 and CargoX

by comparing the performance of the MFA-net with the MS COCO state-of-the-art object

detectors. Table 7 compares the MFA-net with the MS COCO state-of-the-art one- and two-

stage detectors. Compared to the Faster R-CNN with a ResNeXt-101 backbone with the FPN,

the MFA-net-based Faster R-CNN increases mAP values by 3.3% and 2.5% on SIXray10 and

CargoX, respectively. Furthermore, the MFA-net-based Cascade R-CNN with ResNeXt-101

improves the mAP values over the baseline by 5.5% on SIXray10 and 2.5% on CargoX. Addi-

tionally, the MFA-net outperforms the state-of-the-art approaches in SIXray and CargoX and

achieves the best performance with mAP values of 58.0% and 75.2%, respectively.

In term of the computational efficiency, we compared the proposed method with state-of-

the-art object detectors. Comparing the performance of the proposed MFA-net with other

object detection methods, the MFA-net outperform other methods in term of detection accu-

racy (e.g., classification accuracy and object bounding box localization accuracy). However, as

demonstrated in Table 7, the proposed MFA-net has more trainable parameters than the base-

line models. Specifically, the MFA-Net (Faster R-CNN) with the ResNet-50 backbone requires

about 15.5 million more parameters (120.67 ms more inference time) than the Faster R-CNN

baseline methods to improve the accuracy by 1.6% mAP for the CargoX dataset because the

MFA-net consists of three plug-and-play modules incorporated into the baseline models.

Accuracy is of the utmost importance for security checks, and it takes seconds to minutes for a

human to inspect a cargo image; thus, the accompanying increase in estimated time is negligi-

ble. In addition, the inspection system generally has high-specification computing power;

therefore, it is expected that the increase in the estimation time due to the accompanying

parameter increase can be further minimized.

Conclusions

In this study, we investigated the feasibility of object detection of contraband items in X-ray

security images, an essential application in industry to maintain transport security against

smuggled items in various forms. However, this promising application has not yet been stud-

ied computer vision because few well-established X-ray datasets are available. To promote

research in this field, we constructed a cargo X-ray security image dataset named CargoX that

provides realistic content with complex content and various geometrics and evaluated object

detection algorithms on the cargo domain dataset for the first time.

Moreover, we proposed the MFA-net, an object detector, to identify prohibited items and

overcome the challenges of X-ray security images over natural images, such as overlapping

objects, heavy cluttering, geometric variation, and complex content. The MFA-net consists of

three main plug-and-play modules (i.e., MDConv module, FusionFPN, and point head) that

can be easily mounted into most two-stage object detection networks. We evaluated the per-

formance of the MFA-net using two X-ray security datasets from the baggage domain SIXray

and the cargo domain CargoX. The experiment results reveal that each proposed module out-

performed the previous methods with a similar optimization concept. Furthermore, the MFA-

net significantly improves the performance of the baseline detectors qualitatively and quantita-

tively in both domains.

Overall, we demonstrated the proposed detector’s potential application in real-world

inspections. Its usage might reduce the need for the intervention of human operators and elim-

inate human error factors in the inspection process.
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Table 7. Performance comparison with state-of-the-art algorithms on the SIXray and CargoX datasets.

Method Backbone # Params (M) mAP mAP50 mAP75

SIXray10 CargoX SIXray10 CargoX SIXray10 CargoX

SSD300+DOAM [3] VGG16 24.71 45.9 63.3 68.8 93.7 53.0 70.7

SSD300 [45] VGG16 24.68 45.6 55.9 68.9 89.7 52.1 60.4

SSD512 [45] VGG16 25.42 48.6 65.5 72.3 94.9 55.8 73.8

YOLOv3 [46] DarkNet-53 61.56 39.5 56.9 73.8 93.1 37.8 62.3

FCOS [47] ResNet-101 w FPN 50.89 46.8 66.8 76.7 95.5 51.0 76.8

RetiNaNet [48] ResNext-101 w FPN 54.88 40.5 66.7 71.5 95.3 41.1 76.6

CornerNet [40] Hourglass104 200.95 - 63.7 - 89.3 - 72.5

Grid R-CNN [43] ResNext-101 w FPN 82.88 - 70.2 - 96.2 - 79.3

Libra R-CNN (Faster R-CNN) [29] ResNeXt-101 87.84 48.9 68.1 76.7 96.4 56.3 77.5

HRNet (Faster R-CNN) [49] HRNetV2p-40 63.16 50.3 66.4 78.5 95.9 57.3 74.7

HRNet (Cascade R-CNN) [49] HRNetV2p-40 90.95 55.1 71.5 78.9 96.5 64.3 80.6

ResNeSt [24] S-101 w FPN 91.52 51.4 67.1 75.4 94.1 58.6 74.8

Faster R-CNN [32] ResNet-50 w FPN 41.16 39.5 66.7 72.1 95.9 38.2 75.7

MFA-Net (Faster R-CNN) ResNet-50 56.72 51.2 68.3 78.8 96.5 57.7 78.1

Faster R-CNN [32] ResNet-101 w FPN 60.15 48.5 67.0 79.0 95.8 54.0 76.3

MFA-Net(Faster R-CNN) ResNet-101 86.87 54.0 69.2 79.7 96.7 61.8 77.8

Faster R-CNN [32] ResNeXt-101 w FPN 59.79 49.8 68.5 78.7 96.2 56.4 79.0

MFA-Net (Faster R-CNN) ResNeXt-101 75.04 53.1 71.0 77.9 96.9 61.3 81.4

Cascade R-CNN [33] ResNet-50 w FPN 68.95 49.0 69.5 78.4 96.0 55.2 79.3

MFA-Net (Cascade R-CNN) ResNet-50 84.46 55.4 71.1 79.6 96.4 64.5 81.1

Cascade R-CNN [33] ResNet-101 w FPN 87.94 53.0 70.1 79.4 95.9 61.2 80.2

MFA-Net (Cascade R-CNN) ResNet-101 114.61 57.5 71.3 80.8 96.3 66.8 81.4

Cascade R-CNN [33] ResNeXt-101 w FPN 87.58 52.5 70.2 78.3 95.9 60.6 81.1

MFA-Net (Cascade R-CNN) ResNeXt-101 102.78 58.0 72.7 80.3 96.5 68.3 83.5

Cascade mask R-CNN [33] ResNet-50 w FPN 76.82 - 71.9 - 95.5 - 89.4

MFA-Net (Cascade mask R-CNN) ResNet-50 92.33 - 72.2 - 96.1 - 89.5

Cascade mask R-CNN [33] ResNet-101 w FPN 95.81 - 72.1 - 95.5 - 89.4

MFA-Net (Cascade mask R-CNN) ResNet-101 122.48 - 72.4 - 95.9 - 89.9

Cascade mask R-CNN [33] ResNeXt-101 w FPN 98.45 - 72.6 - 96.7 - 82.3

MFA-Net (Cascade mask R-CNN) ResNeXt-101 110.65 - 75.2 - 96.7 - 84.5

https://doi.org/10.1371/journal.pone.0272961.t007
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