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Few advances have been made in overall survival for glioblastoma multiforme (GBM) 
in more than 40 years. Here, we report the case of a 38-year-old man who presented 
with chronic headache, nausea, and vomiting accompanied by left partial motor sei-
zures and upper left limb weakness. Enhanced brain magnetic resonance imaging 
revealed a solid cystic lesion in the right partial space suggesting GBM. Serum testing 
revealed vitamin D deficiency and elevated levels of insulin and triglycerides. Prior to 
subtotal tumor resection and standard of care (SOC), the patient conducted a 72-h 
water-only fast. Following the fast, the patient initiated a vitamin/mineral-supplemented 
ketogenic diet (KD) for 21 days that delivered 900 kcal/day. In addition to radiotherapy, 
temozolomide chemotherapy, and the KD (increased to 1,500 kcal/day at day 22), the 
patient received metformin (1,000 mg/day), methylfolate (1,000 mg/day), chloroquine 
phosphate (150 mg/day), epigallocatechin gallate (400 mg/day), and hyperbaric oxy-
gen therapy (HBOT) (60  min/session, 5 sessions/week at 2.5 ATA). The patient also 
received levetiracetam (1,500 mg/day). No steroid medication was given at any time. 
Post-surgical histology confirmed the diagnosis of GBM. Reduced invasion of tumor 
cells and thick-walled hyalinized blood vessels were also seen suggesting a therapeutic 
benefit of pre-surgical metabolic therapy. After 9 months treatment with the modified 
SOC and complimentary ketogenic metabolic therapy (KMT), the patient’s body weight 
was reduced by about 19%. Seizures and left limb weakness resolved. Biomarkers 
showed reduced blood glucose and elevated levels of urinary ketones with evidence 
of reduced metabolic activity (choline/N-acetylaspartate ratio) and normalized levels of 
insulin, triglycerides, and vitamin D. This is the first report of confirmed GBM treated with 
a modified SOC together with KMT and HBOT, and other targeted metabolic therapies. 
As rapid regression of GBM is rare following subtotal resection and SOC alone, it is 
possible that the response observed in this case resulted in part from the modified SOC 
and other novel treatments. Additional studies are needed to validate the efficacy of KMT 
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administered with alternative approaches that selectively increase oxidative stress in 
tumor cells while restricting their access to glucose and glutamine. The patient remains 
in excellent health (Karnofsky Score, 100%) with continued evidence of significant tumor 
regression.

Keywords: ketogenic diet, Warburg effect, glioblastoma, hyperbaric oxygen, calorie restriction, therapeutic 
ketosis, chloroquine, epigallocatechin gallate

BaCKGRoUND

Glioblastoma multiforme (GBM) is the most common and 
malignant of the primary adult brain cancers (1–4). Although 
survival is better in younger adults (<50  years) than in older 
adults (>50  years), less than 20% of younger adults generally 
survive beyond 24 months (3, 5–7). Accumulating evidence from 
cell culture studies and preclinical models indicate that glucose 
and glutamine are the primary fuels that drive the rapid growth 
of most tumors including GBM (8–11). Glucose drives tumor 
growth through aerobic fermentation (Warburg effect), while 
glutamine drives tumor growth through glutaminolysis (11–15). 
The fermentation waste products of these molecules, i.e., lactic 
acid and succinic acid, respectively, acidify the tumor micro-
environment thus contributing further to tumor progression 
(16–18). Glucose and glutamine metabolism is also responsible 
for the high antioxidant capacity of the tumor cells thus mak-
ing them resistant to chemo- and radiotherapies (10, 19). The 
reliance on glucose and glutamine for tumor cell malignancy 
comes largely from the documented defects in the number, 
structure, and function of mitochondria and mitochondrial-
associated membranes (10, 20–27). These abnormalities cause 
the neoplastic GBM cells to rely more heavily on substrate level 
phosphorylation than on oxidative phosphorylation for energy 
(28). Hence, the effective management of GBM will require 
restricted availability of glucose and glutamine.

The current standard of care (SOC) for GBM involves surgi-
cal resection and radiotherapy with concomitant and adjuvant 
temozolomide (TMZ) (3). High dose steroid (dexamethasone) is 
often prescribed along with the SOC for GBM to reduce vaso-
genic edema (29–31). It is now recognized that surgical resection 
and radiotherapy produce significant necrosis and hypoxia 
in the tumor microenvironment (4, 32). These disturbances 
disrupt the tightly regulated glutamine–glutamate cycle in the 
neural parenchyma thus increasing the levels of glutamine and 
also glutamate, an excitotoxic amino acid that enhances GBM 
invasion (33–37). Although TMZ increases progression free sur-
vival, it has only marginal effect on overall survival and actually 
increases the number of GBM driver mutations (3, 38). Moreover, 

Abbreviations: KD-R, calorie restricted ketogenic diet; GFAP, glial fibrillary 
acidic protein; KMT, ketogenic metabolic therapy; EMA, epithelial membrane 
antigen; CK, cytokeratin; CD31, cluster of differentiation 31; Ki67, antigen 
KI-67 also known as Ki-67 or MKI67 is a protein that in humans is encoded by 
the MKI67 gene; HBOT, hyperbaric oxygen therapy; MRI, magnetic resonance 
imaging; MRS, magnetic resonance spectroscopy; EGCG, epigallocatechin gallate; 
NAA, N-acetylaspartate; L/P, lactate/pyruvate ratio; IQR, interquartile range; dkl, 
decaliter; EMK, electronic ketogenic manager; GKI, glucose-ketone index; H&E, 
haematoxylin and eosin.

dexamethasone not only increases blood glucose levels but also 
increases glutamine levels through its induction of glutamine 
synthetase activity (30, 34, 39, 40). The anti-angiogenic drug 
bevacizumab, which exacerbates radiation-induced necrosis and 
selects for the most invasive tumor cells, is also widely prescribed 
to GBM patients (35). Viewed collectively, these observations 
may help explain why overall survival remains poor for most 
GBM patients.

Ketogenic metabolic therapy (KMT) is emerging as a viable 
complimentary or alternative therapeutic strategy for the man-
agement of malignant gliomas (35, 41–44). Calorie restriction 
and low-carbohydrate high-fat ketogenic diets (KD) reduce the 
glucose needed to drive the Warburg effect while also elevating 
ketone bodies that cannot be effectively metabolized for energy 
in tumor cells due to defects in mitochondrial structure and 
function (23, 27, 42, 45–50). Calorie restriction and restricted 
KD are anti-angiogenic, anti-inflammatory, anti-invasive, 
and also kill tumor cells through a proapoptotic mechanism  
(46, 51–54). Evidence also shows that therapeutic ketosis 
can act synergistically with several drugs and procedures to 
enhance cancer management improving both progression free 
and overall survival (10, 43, 55, 56). For example, hyperbaric 
oxygen therapy (HBOT) increases oxidative stress on tumor 
cells especially when used alongside therapies that reduce blood 
glucose and raise blood ketones (57). Chloroquine inhibition of 
lysosomal pH can prevent invasive and metastatic tumor cells 
from obtaining glucose and glutamine through phagocytosis 
or autophagy (10, 58). The glutamine dehydrogenase inhibi-
tor, epigallocatechin gallate (EGCG) is also proposed to target 
glutamine metabolism (59). Hence, KMT targets the multiple 
drivers of rapid glioma growth while enhancing metabolic 
efficiency in normal brain cells.

ethics statement
This study has been reviewed and approved by the Chair of the 
faculty of Medicine Alexandria University Medical Research 
Review Board (metabolic management of GBM patients along 
with the SOC therapy, protocol number 69/2016). Following 
IRB-approved directions for this study, a written informed con-
sent was obtained from the participant for the publication of this  
case report.

Case RepoRt

A 38-year-old male presented on February 2016 with chronic 
headache, nausea, and vomiting with left partial motor seizures 
and weakness in the upper left limb (Figure  1A). The symp-
toms persisted for about 3 weeks before further diagnostic and 
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FiGURe 1 | (a) Timeline of clinical course with dates of dietary treatments, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and 
hyperbaric oxygen therapy (HBOT). (B) Glucose/ketone index indicates the ratio of circulating glucose to urinary ketones at all eight clinical assessments during the 
15 months period from February 2016 to April 2017.
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radiological evaluation. Neurological examination revealed grade 
4 left upper limb weakness with mild left facial deviation. There 
was no history of chronic disorders or malignancy. The patient’s 
blood pressure was within normal limits (110/70). Laboratory 
investigation revealed unremarkable blood chemistry, with liver 
and renal functions within normal limits (Table 1). Blood homo-
cysteine level was elevated, while blood lipid analysis showed 
hypercholesterolemia and hypobetalipoproteinemia with mildly 
elevated levels of triglycerides (Table 1). Fasting blood glucose 
was normal, but fasting insulin level was elevated suggesting 
some degree of insulin resistance. The patient’s level of circulating 

25(OH)D3 was low (3.1  ng/dL). The patient was heterozygous 
for mutations (c677t and a1298c) in the methylenetetrahydro-
folate reductase (MTHFR) gene suggesting a folate deficiency. 
Enhanced magnetic resonance imaging (MRI) of the brain 
showed a solid cystic intra-axial occupying lesion in the right 
partial space (Figure 2A). MR tractography revealed displaced 
motor and sensory fibers. The preliminary diagnosis was GBM.

The patient’s caloric intake at diagnosis was approximately 
2,200–2,500 kcal/day (estimated from a 3-day food record and 
a 24-h diet recall). The patient underwent a 72 h water-only fast 
immediately after preliminary diagnosis and before any medical 
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taBle 1 | Influence of ketogenic metabolic therapy (KMT) on the patient’s biomarkers.

Before KMt/first presentation after KMt/before surgery KMt continued/after surgery (months)

Biomarkers 3 9 15 20
Hb (g/dL) 11.0 12.5 13.0 12.9 13.1 16.1
WBC/μL blood 5,000 4,200 3,200 4,500 5,500 4,200
Platelets/μL blood 162,000 171,000 220,000 280,000 310,000 186,000
Cholesterol (mg/dL) 115 – – 168 170 225
LDL (mg/dL) 50 – – 103 106 159
HDL (mg/dL) 34 – – 48 51 62
TG (mg/dL) 155 – – 83 81 101
25(OH)D3 (ng/dL) 3.1 18.0 32.0 48.0 55.0 42.0
Homocysteine (μM) 19.2 16.0 14.9 12.0 9.4 11.9
Fasting glucose (mg/dL) 89 72 64 75 71 65
Fasting insulin (μIU/mL) 13.10 6.50 5.00 4.10 3.80 2.11
Urine ketones UD +++ +++ ++ + ++
Weight (kg) 71.1 – 67.7 56.9 66.2 61.8
BMI (kg/m2) 25.10 – 23.70 19.90 23.17 21.60

UD, undetectable.
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or surgical treatment (Figure  1A). Consumption of a calorie 
restricted ketogenic diet (KD-R) for 23  days followed the fast. 
The patient’s biomarker profile before and after fasting and 
KD-R is shown in Table  1. Measurements of glucose, ketones, 
and insulin were taken at the laboratory in the morning. Urine 
ketones were scored as +, ++, and +++ corresponding to median 
capillary blood ketone levels of 0.5 mmol/L [interquartile range 
(IQR): 0.1–0.9], 0.7 mmol/L (IQR: 0.2–1.8), and 3 mmol/L (IQR: 
1.4–5.2), respectively.

A KD (4:1, fat:protein  +  carbohydrate) was administered 
to the patient in restricted amounts for 21  days after the fast 
and before surgical tumor resection (Figure  1A). This KD-R 
delivered an average of 900  kcal/day in total, which included:  
(1) 71 g = 639 kcal fat (33% as olive/flaxseed oils; 33% as medium-
chain triglycerides; 33% as organic butter); (2) 50 g = 200 kcal 
protein (poultry, fish, eggs, with no more than 15% dairy);  
(3) carbohydrate 15 g = 60 kcal (mainly from green leafy veg-
etables after subtracting the amount of carbohydrates in protein 
sources); and (4) 20 g = 0.1 kcal fiber. Meals were designed using 
the EMK software program. The KD-R was supplemented with 
B-complex vitamins, minerals, calcium, magnesium, and omega 
3 fatty acids to maintain nutrient adequacy and normal blood 
chemistry. Vitamin D3 was prescribed (5,000 IU/day) to correct 
the patient’s vitamin D deficiency. Other additions included 
metformin (1,000 mg/day) and methylfoliate (1,000 mg/day) to 
overcome MTHFR enzymatic blockage, to correct DNA hypo-
methylation, and to help decrease homocysteine accumulation. 
The patient received levetiracetam (1,500  mg/day) to control 
seizure activity. Immediate preoperative laboratory investigation 
revealed correction of the previous vitamin D deficiency, a return 
of homocysteine and triglycerides to normal levels, and correc-
tion of hypercholesterolemia and hypobetalipoproteinemia 
(Table 1). The patient’s glucose-ketone index (GKI), a calculation 
that tracks the ratio of blood glucose to ketones as a single value, 
remained in the predicted therapeutic range (Figure  1B) (60). 
No steroids (dexamethasone), phenytoin, or sugar-based osmatic 
diuretics (mannitol) were given to the patient.

After 21 days following initiation of the KD-R, the patient 
underwent an awake craniotomy with subtotal tumor resection 

(March 2016). The suspected diagnosis of GBM was confirmed 
by histopathology of tumor tissue. Regressive and regenerative 
changes not typical of untreated GBM were noted, possibly 
reflecting a favorable response to preoperative ketogenic 
therapy (Figure  3A). Haematoxylin and eosin histological 
analysis revealed the classical patterns of GBM (Figure  3A). 
The tumor was composed of a heterogeneous mixture of 
cells having pleomorphic hyperchromatic nuclei and variable 
amounts of eosinophilic cytoplasm set in a fibrillary back-
ground. Gemistocytic cells (<20%) were focally admixed. Focal 
epithelioid and clear cell features were also noted. Numerous 
mitotic figures, vascular proliferation, areas of necrosis (consti-
tuting 50% of the tumor), and focal pseudopalisading necrosis 
were seen. It is noteworthy that less aggressive forms of vas-
cular proliferation and mitosis (namely, glomeruloid vascular 
proliferation and granular mitoses, respectively) were noted 
together with the more ominous type of vascular proliferation 
and irregular mitoses (3/10HPF), more typically associated 
with GBM (Figure 3A). Also noted was limited infiltration of 
tumor cells into the surrounding parenchyma. Thick-walled 
hyalinized blood vessels, often seen in lower grade tumors, 
were also notable given that this patient had not yet received 
SOC. Granulation tissue formation and proliferating fibroblasts 
(organized around areas of necrosis) was another feature not 
usually present in untreated glioblastomas and suggested a 
favorable response to preoperative ketogenic therapy. The 
tumor tissue stained positive for GFA and highly positive for 
the Ki67 proliferative index and the cluster of differentiation 
31 vascularization index, but was mostly negative for epithelial 
markers (Figure 3B). The immunostaining data supported the 
diagnosis of glioblastoma and excluded low-grade gliomas and 
metastatic carcinomas.

The patient’s postoperative recovery was excellent with no 
signs of previous left weakness or seizures. The patient’s blood 
glucose level was 64 mg/dL and his urine ketone level was +++, 
producing an approximate GKI of 1.3. There was no intraop-
erative or postoperative increase in blood pH assessed by five 
arterial blood gas measures taken at consecutive hours. The 
patient was discharged to home 2 days after surgery. The R-KD 
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(L/P ratio) test showed an increased lactate ratio indicative of an 
abnormal oxidation-reduction state.

Enhanced brain MRI and magnetic resonance spectroscopy 
(MRS) evaluated 3  months postoperative and before radiation 
or chemotherapy revealed a stationary course of disease regard-
ing tumor size that persisted to 12 months (Figures 2B,C). The 
choline creatine ratio on MRS indicated significant reduction in 
tumor metabolism (Figure 4A). The patient was neurologically 

intact and free of clinical seizure activity using only levetiracetam 
(1,500 mg/day) and KD. Fasting glucose was 60–70 mg/dL with 
++ to +++ urine ketone levels and producing approximate GKI 
value of 1.8. Circulating insulin was low (approximately 4  IU) 
compared with the initial assessment (13 IU). The patient’s body 
weight was 67.7 kg with a BMI of 23.7. Radiotherapy with oral 
TMZ (75 mg/m2 orally once a day for 42 days) was initiated 18 h 
after water-only fasting (no food was consumed for up to 8  h 
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FiGURe 2 | (a) Preoperative radiology, (A) magnetic resonance imaging (MRI) contrast enhanced images axial and sagittal view revealed cystic lesion with  
perifocal edema “blue arrow” and midline shift “red arrow”; (B) magnetic resonance spectroscopy (MRS) of the lesion revealed high choline value (28) and low 
N-acetylaspartate (NAA) value (2.7); (C) Functional MRI showed affection of motor and sensory functions; (D) MRI tractography showed displaced motor and sensory 
fibers. (B) 3 months postoperative radiology (A) MRI contrast enhanced images axial and sagittal view revealed reduction in tumor size and perifocal edema with  
less midline shift; (B) MRS of the lesion revealed reduction of choline value (21) and elevation of NAA value (3.5) compare to preoperative study. (C) 12 months 
postoperative radiology (A) MRI contrast enhanced images axial and sagittal view revealed stationary or slightly decrease in tumor size and less perifocal edema with 
less midline shift; (B) MRS of the lesion revealed reduction of choline value (19) and elevation of NAA value (4) compare to previous study. (D) Postoperative radiology 
at 20 months. MRI contrast enhanced images for axial, sagittal, and coronal views revealed further reduction in tumor size, with no perifocal edema or midline shift.
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was continued together with 14 h daily fasting between dinner 
and breakfast. Together with the previously mentioned medica-
tion and supplements, the patient also received chloroquine 

phosphate (150  mg/kg) and EGCG (400  mg/day). Two weeks 
postoperative, the patient began receiving HBOT (2.5 ATA for 
60 min, 5 times/week). The baseline serum lactate/pyruvate ratio 
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FiGURe 3 | (a) Histopathological features of the patient glioblastoma multiforme (GBM). (A) Classic GBM area with pseudopalisading necrosis. (B) Regressive 
changes in the form of variable background fibrosis. (C) Glomeruloid thick-walled blood vessels. (D) Tumor edge showing limited brain infiltration (haematoxylin and 
eosin, 200×). (B) Immunohistochemical features of the patient GBM. (A,B) Diffuse positive staining for glial fibrillary acidic protein (100× and 200×, respectively). (C) 
Moderately high proliferative activity (Ki67, 200×). (D) Numerous blood vessels highlighted by cluster of differentiation 31 immunostaining (100×), negative staining 
for epithelial markers: CK [(E) 200×] and epithelial membrane antigen [(F) 200×], respectively.
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FiGURe 4 | (a) Comparison between tumor metabolism over 20 months. 
Choline indicates cell membrane turnover and reflects tumorigenesis. 
N-acetylaspartate (NAA) is a marker for neuronal integrity that decreases with 
brain malignancy and radio necrosis. Creatine is a marker for cellular energy 
that decreases significantly with malignancy and radio necrosis. Hunter angle 
(blue arrow) reflects the choline/NAA ratio. (B) Comparison between tumor 
size and midline shift (red line) over 20 months.
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following RT and TMZ). The patient also received 20 sessions of 
HBOT (2.5 ATA, 5 days/week, for 60 min/session). The L/P ratio, 
known to be elevated in GBM patients, was measured every week 
and sessions were repeated whenever L/P ratio increased (61). 
HBOT was also used to help lower the L/P ratio within normal 
limits (62, 63). The L/P ratio is also a good serum indicator for 
HBOT effectiveness on tumor oxygenation, glucose metabolism, 
and tumor redox state.

The patient continued with 30 sessions of brain radiation and 
completed his TMZ loading without significant side effects or 
noticeable neurological deficits. After 9 months of therapy, the 
patient’s weight was reduced to 56.9 kg (BMI 19.9). Despite the 
reduced BMI, the patient experienced no distress or discomfort. 
At this point, the patient transitioned to consuming an unre-
stricted KD with total calories around 1,500 kcal per day. Fasting 
blood glucose was around 70–75 mg/dL and urine ketone levels 
were + to ++ producing an approximate GKI of 5.0 (Figure 1B).

After 20 months of metabolic therapy and completion of radio 
and chemotherapy, the patient’s weight was 66.2 kg (BMI 23.2). 
Enhanced brain MRI and MRS revealed decrease in tumor size 
of about 1.5 cm in each diameter, with minimal perfusion and 
low metabolic activity assessed from the choline to creatine and 

choline to N-acetylaspartate (NAA) ratios on MRS (Figure 2D). 
Fasting insulin, glucose, and urine ketones were 2.1 IU, 65 mg/
dL, and + to ++, respectively, producing an approximate GKI of  
5.0 (Table  1). Also seen were further decreases in choline and 
increase in NAA with no midline shift or brain edema (Figure 2D), 
A reduction in tumor size was correlated with a correction of the 
midline shift after 20 months of treatment (Figure  4B). The 
patient remains in good health with no noticeable clinical  
or neurological deficits (Karnofsky Score, 100%).

DisCUssioN

In this case report, we describe a favorable therapeutic response to 
KMT and other treatments targeting metabolism in a 38-year-old 
man with GBM and metabolic imbalances. KMT is a nutritional 
anti-neoplastic intervention involving ketogenic or low-glycemic 
diets for managing malignant gliomas (42). The SOC for GBM 
was modified in this patient to initiate KMT prior to surgical 
resection, to eliminate steroid medication, and to include HBOT 
as part of the therapy. Specific drugs and dietary supplements were 
also used in the therapy. Previous studies showed that a KD is well 
tolerated for most GBM patients, but therapeutic efficacy can vary 
among patients perhaps due to differences in the degree of calorie 
restriction (42, 64–69). Few of the adult GBM patients treated 
with KDs in these studies were able to reach or maintain the GKI 
predicted to have the greatest therapeutic benefit for patients 
(near 1.0) (60). However, an excellent therapeutic response to 
the KD was seen in two children with high-grade gliomas (70). 
When compared to baseline, blood glucose levels were lower 
and blood ketone levels were higher in both children at 8 weeks, 
with the glucose and ketone values in the theoretical therapeutic 
zone (60). The observed reduction in blood glucose in our patient 
would reduce lactic acid fermentation in the tumor cells, while the 
elevation of ketone bodies would fuel normal cells thus protecting 
them from hypoglycemia and oxidative stress (10).

Previous studies showed that GBM survival and tumor growth 
was correlated with blood glucose levels, i.e., the higher was the 
blood glucose, the shorter was the survival, and the faster was 
the tumor growth (31, 40, 71–76). As the dexamethasone steroid 
is often prescribed together with the SOC for GBM (31, 40), the 
elimination of this steroid treatment could have contributed 
in part to the reduced glucose levels and favorable outcome 
observed in our patient. Evidence indicates that glioma cells 
cannot effectively use ketone bodies for energy due to defects 
in the number, structure, and function of their mitochondria  
(10, 23, 27, 42, 45–50, 77). The accuracy of the GKI as a predictor 
for therapeutic efficacy, however, is better when ketone bodies are 
measured from the blood than when measured from the urine 
(10). Nevertheless, the low GKI values observed in our patient 
following KMT was in the direction of predicted therapeutic suc-
cess for reducing lactic acid fermentation (41, 60). A reduction of 
glucose-driven lactic acid fermentation would not only increase 
tumor cell apoptosis, but would also reduce inflammation and 
edema in the tumor microenvironment thus reducing tumor cell 
angiogenesis and invasion (51, 52, 54, 78, 79).

Although KMT is effective in targeting the Warburg effect in 
GBM  cells it would be less effective in targeting glutamine, the 
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