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A B S T R A C T   

Ziziphi Spinosae Semen (ZSS) is a valued seed renowned for its sedative and sleep-enhancing properties. 
However, the price increase has been accompanied by adulteration. In this study, chromaticity analysis and 
Fourier transform near-infrared (FT-NIR) combined with multivariate algorithms were employed to identify the 
adulteration and quantitatively predict the adulteration ratio. The findings suggested that the utilization of 
chromaticity extractor was insufficient for identification of adulteration ratio. The raw spectrum of ZMS and HAS 
adulterants extracted by FT-NIR was processed by SNV + CARS and 1d + SG + ICO respectively, the average 
accuracy of machine learning classification model was improved from 77.06 % to 97.58 %. Furthermore, the R2 

values of the calibration and prediction set of the two quantitative prediction regression models of adulteration 
ratio are greater than 0.99, demonstrating excellent linearity and predictive accuracy. Overall, this study 
demonstrated that FT-NIR combined with multivariate algorithms provided a significant approach to addressing 
the growing issue of ZSS adulteration.   

1. Introduction 

Food fraud, as a global issue, has attracted extensive attention and 
concern in various countries and regions (Cebi, Bekiroglu, Erarslan, & 
Rodriguez-Saona, 2023). Whether for profiteering or deceiving con-
sumers, food adulteration seriously infringes upon the public’s rights to 
food safety and poses an undeniable threat to social stability and health 
(Saadat, Pandya, Dey, & Rawtani, 2022). Despite the measures taken by 
governments and relevant institutions worldwide to combat food adul-
teration, this problem persists and is characterized by a certain level of 
complexity (Gizaw, 2019). Effectively addressing the issue of food 
adulteration and safeguarding the public’s dietary safety has become an 

important and urgent issue. 
Ziziphi Spinosae Semen (ZSS), derived from the dried mature seeds 

of Ziziphus jujuba Mill. Var. Spinosa (Bunge) Hu ex H. F. Chou, is pri-
marily grown in the Asian, European, and Australian continents. 
Recognized as the primary origination of ZSS in the market of China, 
Shandong province commands a main market share and premium 
pricing, which has become a frequent target for unscrupulous merchants 
seeking to engage in adulteration. Modern research has indicated that 
ZSS contains over 150 active ingredients, which possess various bene-
ficial effects such as sedation and hypnotic properties (Yang et al., 2023; 
Wang, Ho, & Bai, 2022). This has consequently resulted in a continuous 
increase in the price of ZSS, which has prompted unscrupulous 
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merchants to use Ziziphi Mauritianae Semen (ZMS) and Hovenia Acerba 
Semen (HAS) in place of ZSS to deceive consumers and seek profits. 
Adulteration below 10 % is unprofitable for unscrupulous merchants, 
while above 50 % can be easily discerned by consumers, so the adul-
teration ratios in food markets typically range from 10 % to 50 %. ZSS, 
ZMS, and HAS exhibit similar shapes and colors, making it difficult to 
achieve precise distinctions solely with the naked eye. Nevertheless, the 
chemical composition and efficacy of ZMS and HAS differ significantly 
from those of ZSS, also with a price difference of nearly tenfold (Zhang 
et al., 2023). The aforementioned differences not only disrupts the 
competitive landscape of the market but also seriously harms the 
physical health of consumers who inadvertently consume adulterated 
products. Therefore, establishing a rapid and effective method to 
differentiate ZSS from its adulterants is of utmost importance. 

Currently, numerous techniques such as untargeted 1H NMR 
metabolomics (Yong et al., 2022), KASP, GC–MS/MS (Wang, Bai, Chen, 
Ren, Pang, & Han, 2022), and UHPLC-ELSD/UV (Sun, Lu, & Gao, 2021) 
have been employed for the identification of food adulterants. However, 
these methods suffer from limitations, including long analysis time, high 
cost, complex operation, and intricate sample preparation, which 
restrict their large-scale application in practical production settings. 
Fourier transform near-infrared spectroscopy (FT-NIR) is a highly effi-
cient and rapid detection technology that integrates advancements in 
computer science, spectral analysis, and chemometrics across various 
disciplines (Beć, Grabska, & Huck, 2022b). FT-NIR has found wide-
spread application in fast quality identification and control in the food 
industry (Cozzolino, 2021; Qu et al., 2015). It offers notable advantages 
such as rapid analysis speed, user-friendly operation, non-destructive 
testing, and environmentally friendly characteristics (Beć & Huck, 
2019). Various studies have also indicated the tremendous potential of 
FT-NIR spectroscopy in rapidly detecting food adulteration. For 
instance, it has been successfully applied to differentiate natural honey 
adulterated with syrup (Huang et al., 2020), palm oil adulterated with 
lard (Basri, Hussain, Bakar, Sharif, Khir, & Zoolfakar, 2017), and butter 
adulterated with vegetable oil (Medeiros, Freitas, Correia, Teixeira, & 
Fernandes, 2023). 

Although a recent study demonstrated that Flash GC e-nose and HS- 
GC–MS can successfully identify whether ZSS is adulterated (Zhang 
et al., 2023), but it did not involve the discrimination and quantitative 
prediction of ZSS adulteration ratio, and the high cost of the instruments 
used made them unsuitable for practical large-scale regulatory appli-
cations. The application of FT-NIR can not only fill the gap in the 
quantitative study of ZSS adulteration ratio, but also provide an 
economical, rapid and accurate approach of adulteration identification. 
Moreover, there were few reports that FT-NIR analysis was combined 
with multivariate algorithms such as wavelength selection and machine 
learning to solve food fraud. 

Therefore, this experiment aimed to investigate the feasibility of 
integrating FT-NIR spectroscopy with multivariate algorithms such as 
characteristic wavelength selection for rapid identification and quanti-
tative prediction of ZSS adulteration ratio, and the machine learning 
classification model and partial least squares regression (PLSR) quanti-
tative correction model were established to verify the feasibility. The 
research findings are expected to contribute to a new quality control 
approach for ZSS and other seed foods. 

2. Materials and methods 

2.1. Materials 

All samples of ZSS (15 batches) were collected from the Shandong 
province in China. Besides, ZMS and HAS for adulteration were pur-
chased from the wholesale food market. All samples were identified by 
Prof. Jianwei Chen from the College of Pharmacy, Nanjing University of 
Chinese Medicine, and passed the food quality detection to ensure their 
authenticity and reliability. 

2.2. Samples preparation 

Before analysis, all samples were crushed into powder by a high- 
speed crusher (QE-300, Zhejiang Yili Industry and Trade Co., Ltd., 
Zhejiang, China), passed through a 65-mesh sieve (250 ± 9.9um), and 
stored in dry, sealed, and dark environment. Therefore, in this experi-
ment, used as adulterants, each batch of ZMS and HAS were randomly 
added at gradients of 10 %, 20 %, 30 %, 40 %, and 50 % to 15 batches of 
pure ZSS. The samples were sufficiently mixed using a vortex oscillator 
(LC-Vortex-P2, Shanghai Lichen instrument Technology Co., Ltd., 
Shanghai, China). Two parallel samples were prepared for each 
gradient, resulting in a total of 30 samples for each adulteration gradient 
and 300 adulterated samples in total (150 each for ZMS and HAS 
adulterants). In addition, pure samples of ZSS, ZMS, and HAS were 
prepared as control groups for comparison. 

2.3. Chromaticity measurement 

After calibrating the instrument, the chromaticity (L*, a*, and b*) of 
pure samples and different proportion adulterated powders were 
determined by a Chroma extractor (CM-5, KONICA MINOLTA, Tokyo, 
Japan) under transmission mode using CIE D65/10◦. At room temper-
ature, the sample powders were put into a quartz cuvette for detection, 
triplicate parallel measurements of each sample were undertaken to 
mitigate systematic errors and provide L*, a*, and b* values, which were 
ultimately averaged to yield the measurement outcome. Moreover, due 
to potential disturbances caused by external light sources, tests on pre-
cision, stability, and repeatability were implemented. A higher L* value 
signifies a brighter color. The larger the a* value is, the redder the color 
is, and the larger the b* value is, the more yellow the color is (Kula-
pichitr, Borompichaichartkul, Fang, Suppavorasatit, & Cadwallader, 
2022). Total chromatic value (E*ab), Chroma (C*), hue angle (H*), and 
color index (CI) were calculated using Eqs. (1), (2), (3), and (4): 

E*ab =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L*2 + a*2 + b*2

√
(1)  

C* =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a*2 + b*2

√
(2)  

H* = arctangent(b*/a*) (3)  

CI = (180◦

− H*)/(L* + C*) (4)  

2.4. FT-NIR spectra acquisition 

All tested samples were dried to constant weight before analysis to 
eliminate moisture interference. The Antaris II FT-NIR spectrometer 
(Thermo Fisher Scientific, USA) was utilized to collect spectral data of 
the test powders through diffusive reflection mode. Specially designed 
quartz vials were employed to hold the powders, with minor compres-
sion applied to ensure uniform filling densities. Spectra were measured 
in the 12,000 ~ 4000 cm− 1 range, at a resolution of 16 cm− 1 and with 32 
scans per spectrum. Triplicate parallel analyses were conducted for each 
sample to obtain an average spectrum, which was subsequently 
employed for subsequent analyses. 

2.5. FT-NIR spectra preprocessing 

The spectral information acquired through FT-NIR is often contam-
inated by extraneous signals and noise, namely stray light, strong elec-
trical noise, and human-induced noise during transmission, besides the 
desired sample information (Xiao et al., 2022). These interferences can 
significantly compromise the accuracy of the built models. Thus, to 
enhance the performance of quantitative models, it is indispensable to 
implement appropriate preprocessing steps on the raw spectral signals. 
A diverse range of preprocessing techniques, such as multiplicative 
scattering correction (MSC), standard normal variate (SNV), Savitzky 
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Golay (SG), 1st-derivative (1d), 2nd-derivative (2d), and their combi-
nations, are employed through The Unscrambler X 10.4 software 
(CAMO, Inc., TEXAS, USA) in this study to optimize the initial spectra 
with the aim of establishing an optimal predictive model. 

2.6. Characteristic wavelength selection 

The collinearity problem carried by too many variables in FT-NIR 
raw spectra will cause varying degrees of influence on the accuracy 
and stability of the subsequent model predictions (Beć, Grabska, & 
Huck, 2022a). Therefore, the selection of characteristic wavelengths for 
preprocessed spectra is critical. The extraction of characteristic wave-
lengths can typically be divided into wavelength interval and wave-
length point selection algorithms, which include competitive adaptive 
reweighted sampling (CARS), interval combination optimization (ICO), 
random frog (RF), and other characteristic wavelength selection 
algorithms. 

The CARS algorithm is based on the absolute value of regression 
coefficients and serves as a wavelength point selection technique. In 
each screening step of the Partial Least Squares Regression (PLSR) 
model, the smallest regression coefficient’s absolute value is removed, 
thereby preserving wavelengths with higher weights. This process cul-
minates in identifying a subset of critical wavelength points for pre-
diction objects through cross-validation, resulting in the lowest root- 
mean-square error of prediction (Li, Liang, Xu, & Cao, 2009). The ICO 
algorithm achieves optimal selection of wavelength segments for NIR 
raw spectra by applying a soft shrinkage method to optimize the 
wavelength interval combination, followed by automatic optimization 
of the width of the final selected interval through local search (Song, 
Huang, Yan, Xiong, & Min, 2016). RF algorithm operates iteratively, 
calculating the probability of each variable being selected in each iter-
ation. The higher the probability, the more influential the variable is, 
and variables with higher selection probabilities are ultimately chosen 
as feature variables (Li, Xu, & Liang, 2012). The application of the above 
three wavelength selection algorithms can be achieved through MAT-
LAB 2021a software (MathWorks Inc., Natick, MA, USA). 

2.7. Application of classification model 

As a multivariate statistical method, Principal Component Analysis 
(PCA) is used to transform and reduce the dimensionality of collected 
data, and linear classification is further performed on the reduced data 
(Yan et al., 2021), which can be achieved by Simca-p 14.1 software 
(SIMCA Imola s.c., Imola, Bologna, Italy). Besides, the algorithms of 
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Arti-
ficial Neural Networks (ANN) were developed through MATLAB 2021a 
software (MathWorks Inc., Natick, MA, USA) to perform classification 
and discrimination on different levels of adulterants as well as pure 
samples. The 10-fold cross-validation was used to test the accuracy of 
the classification model. The clustering results were visualized by a 
confusion matrix diagram, and the prediction ability of the model was 
evaluated by true positive rate (TPR), false negative rate (FNR), positive 
predictive value (PPV), and false discovery rate (FDR), they were 
calculated using Eqs. (5), (6), (7), and (8). TP represents that the true 
class is positive, and the predicted class is also positive; FN represents 
that the true class is positive, but the predicted class is negative; and FP 
represents that the predicted class is positive, and the true class is 
negative (Zhang et al., 2023). Generally, higher values of TPR and PPV, 
as well as lower values of FNR and FDR, reflect the better predictive 
capability of the model, and the all-around performance of each classi-
fication model was judged by receiver operating characteristic (ROC) 
curve, a larger area under the ROC curve indicates the improved per-
formance of the model. 

TRP =
TP

TP + FN
(5)  

FNR =
FN

FN + TP
(6)  

PPV =
TP

TP + FP
(7)  

FDR =
FP

TP + FP
(8)  

2.8. Establishment and evaluation of PLSR model 

The Partial Least Squares Regression (PLSR) algorithm was executed 
through MATLAB 2021a software (MathWorks Inc., Natick, MA, USA) to 
achieve quantitative prediction of adulteration levels. The Kennard and 
Stone (KS) algorithm was employed to divide all pure and adulterated 
samples into calibration and prediction sets at a ratio of 7:3, respec-
tively, for the establishment and performance prediction of partial least 
squares regression (PLSR) models. 

The accuracy of the regression model was evaluated by calibration 
determination coefficient (R2

C), prediction determination coefficient 
(R2

p), root mean square error of calibration (RMSEC), root mean square 
error of prediction (RMSEP), RMSEP/RMSEC ratio, and relative percent 
deviation (RPD). Generally, a model is considered to have good pre-
dictive performance when R2 > 0.8, an appropriate fit is achieved when 
RMSEP/RMSEC ratio falls within 0.8–1.2, and a model is deemed reli-
able with an RPD greater than 2.0, which indicates its practical appli-
cability for predicting and analyzing results (Guan, Ye, Yi, Hua, & Chen, 
2022). Additionally, an excessive number of latent variables (LVs) can 
lead to overfitting of the PLSR model, while too few LVs can result in 
underfitting, significantly impacting the predictive performance of the 
model. Through cross-validation, the optimal value of LVs is determined 
by selecting the LVs value corresponding to the minimum RMSECV. 

3. Results and discussion 

3.1. Extraction and analysis of chromaticity value 

3.1.1. The chromaticity characteristics analysis of adulterated samples 
The chromaticity characteristics (L*, a*, b*, Eab, C, H*, and CI) of ZSS 

and adulterated samples were obtained from the chroma extractor, 
precision, stability, and repeatability of the method were tested to 
observe the potential interference caused by external light sources. As 
shown in Table 1S, the relative standard deviations (RSD) values ob-
tained were all <2.0 %, indicating that the measurement method is 
reliable and can be applied to experimental analysis. 

As the adulteration ratio increased, an upward trend in both L* value 
and b* value was observed in ZMS adulterants compared to pure ZSS, 
while a declining trend occurred in the HAS adulterants, and except for 
the 10 % ZMS adulterants, where slight change was presented compared 
to pure ZSS in terms of L* value, significant changes were observed in all 
other groups (Fig. 1A&C). As for a* value (Fig. 1B), no significant var-
iations occurred in both ZMS and HAS adulteration samples compared to 
pure ZSS as the adulteration ratio increased. 

It was indicated that, compared to naked eye observation (Fig. 1S), 
the chromaticity extractor can objectively quantify the chromatic dif-
ferences and changing trends of ZSS and its adulterants for further 
analysis. 

3.1.2. Qualitative identification of the ZSS and its adulterants 
After analyzing the changing trend of chromaticity parameters with 

the adulteration ratio, the unsupervised PCA model was applied to 
perform dimensionality reduction and linear classification, aiming to 
achieve an initial qualitative classification between ZSS and adulterated 
samples. Based on Fig. 1D, it was evident that for the ZSS, ZMS, and HAS 
samples, the cumulative contribution rate of the principal components 
reached 98.92 %, which proved that ZSS could be well distinguished 
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from both ZMS and HAS. However, when comparing ZSS with adulter-
ants at different proportions (Fig. 1E), it could be observed that two 
distinct regions can be formed between ZMS and HAS adulterants 
samples, and pure ZSS can be clearly distinguished from HAS adulter-
ated samples, but not completely differentiated from ZMS adulterated 
samples. From the classification results of PCA, it can be observed that 
relying solely on chromatic analysis cannot achieve a good distinction 
between samples with different adulteration ratios. 

Based on the preliminary classification, rapid discrimination for-
mula, utilizing chromaticity parameters and Bayesian linear discrimi-
nant analysis method, was established to distinguish ZSS and its 
adulterants (Table 2S). The reliability of the mathematical discrimina-
tion formula was verified through cross-validation (Table 3S). The re-
sults indicated that the cross-validation rate for different ratios of HAS 
adulterants was 99.4 %. The method established could quickly identify 
HAS adulteration samples, while the classification accuracy for different 
proportions of ZMS adulterants was only 60 %, with a cross-validation 
rate of only 56.4 %. 

In general, the chromatic features can be used to preliminarily 
determine whether ZSS was adulterated, but there were certain limita-
tions when it came to accurately discerning the adulteration ratios of 
ZSS. 

3.2. Analysis of FT-NIR raw spectral information 

3.2.1. FT-NIR spectral features 
In the FT-NIR spectrum, significant absorption peaks are primarily 

raised from O–H, C–H, C–C, C––C, and C––O functional groups. The 
spectra of ZSS, ZMS, HAS, and various adulterated samples all contained 
these functional groups. As shown in Fig.2A, the spectrum exhibited 6 
characteristic absorption peaks. The broad absorption peak around 
8300 cm− 1 was caused by the second overtone absorption of C–H 
stretching vibrations (Laouni, El, Elhamdaoui, Karrouchi, El, & Bouatia, 
2023). The absorption peak near 6920 cm− 1 was attributed to the first 
overtone absorption of O–H stretching vibrations (Zhang et al., 2021). 
The broad absorption peak around 5650 cm− 1 was induced by the first 

overtone absorption of C–H stretching vibrations (Zhan et al., 2017). 
The absorption peak near 5180 cm− 1 may be due to the second overtone 
absorption of C––O stretching vibrations or a combination of O–H 
stretching and bending vibrations (Liu et al., 2019). The absorption 
peaks between 4000 and 4400 cm− 1 were mainly caused by the com-
bination frequencies of C–H, C-H2, and C-H3 (Wu et al., 2018). 

3.2.2. Qualitative discrimination by PCA and machine learning algorithms 
It can be observed that the spectral differences between ZSS and 

adulterated samples were minimal, making it difficult to distinguish 
them based solely on raw spectral information. Therefore, the utilization 
of classification models was required for further implementation of 
categorization. The results of PCA exhibited similarity to the results of 
chromatic discrimination. Three distinct regions were observed in the 
separation of pure ZSS, ZMS, and HAS samples, with a cumulative 
contribution rate of 97.4 % for principal components 1 and 2 (Fig. 2D). 
This allowed for the classification between pure and adulterated sam-
ples, but successful discrimination among samples with different adul-
teration ratios cannot be achieved (Fig. 2E). 

Based on the preliminary classification, to obtain more accurate 
classification results for ZSS and its adulterants, three pattern recogni-
tion algorithms, including SVM, KNN, and ANN, were developed for in- 
depth analysis and data quantification, allowing for a more intuitive 
presentation of the classification results. Compared to the PCA model, 
SVM demonstrates strong generalization ability, can avoid the occur-
rence of overfitting effectively. KNN can exhibit high discriminative 
accuracy and is insensitive to outliers. ANN can possess strong distri-
bution processing capability. Specifically, the classification accuracy of 
the three models for different ratios of ZMS adulterated samples is only 
79.4 %, 57.0 % and 75.8 % (Fig. 2F), while for HAS adulterated samples, 
the classification accuracy is 83.0 %, 83.0 % and 84.2 % (Fig. 2G), 
respectively. Overall, it can be indicated from the classification results of 
machine learning algorithm that ZSS and its adulterants with different 
ratios cannot be accurately classified based on the information of raw 
spectra. However, the large number of variables in FT-NIR spectroscopy 
often results in the inclusion of instrument noise and irrelevant 

Fig. 1. The variations in L* (A), a* (B), and b* (C) values of ZMS and HAS with different adulteration ratios. The PCA score plots of ZSS compared with ZMS & HAS 
(D) and adulterants with different ratios (E) based on chromaticity characteristics. P* < 0.05, P** < 0.01 vs. A-0 % group (Abbreviations: ZSS, Ziziphi Spinosae 
Semen; ZMS, Ziziphi Mauritianae Semen; HAS, Hovenia Acerba Semen). 
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variables, which significantly disrupts the accuracy of classification and 
prediction model establishment. Therefore, further preprocessing of the 
raw spectra and selection of characteristic wavelengths are required to 
optimize the spectral information and extract Key variables to enhance 
the overall quality of model construction. 

3.3. Processing and optimization of FT-NIR raw spectral information 

3.3.1. Spectra preprocessing 
The raw spectra of ZMS and HAS samples with various adulteration 

ratios were subjected to optimization using 12 preprocessing methods, 

including SNV, MSC, SG, 1st-derivative, 2nd-derivative, and their 
combinations. The prediction accuracy and performance parameters 
were employed to evaluate the quality of the models, and the results are 
presented in Table 1. The model established based on the raw spectral 
data of ZMS adulterants achieved R2

C = 0.9587, R2
p = 0.9614, RPD =

5.23. After the SNV preprocessing method was applied, the R2
C and R2

p 
of the model improved to 0.9777 and 0.9766, respectively. The RMSEP/ 
RMSEC ratio was 0.99, and RPD increased to 7.04, outperforming other 
preprocessing methods. These results indicated that the SNV method is 
most suitable for preprocessing the raw spectra of ZMS samples with 
different adulteration proportions. In the case of adulterated samples 

Fig. 2. Raw FT-NIR spectra of all pure and adulterated samples (A). FT-NIR spectra of ZMS adulterants samples preprocessed by SNV (B) and HAS adulterants 
preprocessed samples by 1d + SG (C). The PCA score plots of pure ZSS compared with pure ZMS & HAS (D) and ZMS & HAS with different adulteration ratios based 
on raw spectrum of FT-NIR(E). The confusion matrices and model score of SVM, KNN and ANN for ZMS (F) and HAS (G) adulterants based on raw spectrum of FT-NIR 
(Abbreviations: ZSS, Ziziphi Spinosae Semen; ZMS, Ziziphi Mauritianae Semen; HAS, Hovenia Acerba Semen; SVM, Support Vector Machine; KNN, K-Nearest 
Neighbors; ANN, Artificial Neural Network.). 
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with HAS, the preprocessing method combining 1d + SG demonstrated 
the best performance with R2

C = 0.9793, R2
p = 0.9709, RMSEP/RMSEC 

= 1.12, and RPD = 6.26, outperforming other processing methods. 
Therefore, for subsequent analysis of the raw spectral data of ZMS 

and HAS adulterated samples, the SNV and 1d + SG methods were 
employed for preprocessing respectively. The optimized FT-NIR spectra 
were shown in Fig. 2B&C. It can be found that after spectral pretreat-
ment, the originally complex spectrum became clearer and more 
concise, which is convenient for follow-up analysis. 

Abbreviations: 1d, 1st-derivative; 2d, 2nd-derivative; SG, Savitzky 
Golay; MSC, Multiplicative Scattering Correction; SNV, Standard 
Normal Variate; R2

C, Calibration Determination Coefficient; R2
P, Predic-

tion Determination Coefficient; RMSEC, Root Mean Square Error of 
Calibration; RMSEP, Root Mean Square Error of Prediction; RPD, Rela-
tive Percent Deviation; 

3.3.2. Characteristic wavelength selection 
After preprocessing, the characteristic wavelength selection algo-

rithms were further used to extract the key spectral information. The 
prediction performance of samples with different adulteration ratios of 
ZMS and HAS was evaluated based on Full-PLS, ICO-PLS, CARS-PLS, and 
RF-PLS models. 

As shown by Table 4S, compared with Full-PLS, both ICO-PLS and 
CARS-PLS improved the prediction performance of the model with the 
different adulteration ratio of ZMS and HAS samples, while RF-PLS had 
no obvious improvement, and even the prediction parameters of its 
calibration set decrease, which showed that the key wavelength 
extracted by ICO and CARS wavelength selection algorithms was 
effective. However, it was worth noting that when CARS-PLS and RF-PLS 
models were used to predict and evaluate the adulteration ratio of HAS, 
the RMSEP/RMSEC values were 1.89 and 0.69 respectively, which was 
not in the appropriate range of 0.8–1.2, indicating that the above two 
models did not have a reasonable degree of fitting in this case, and the 
corresponding wavelength selection algorithms were not suitable for 
extracting key information from the spectra of HAS adulterated samples. 
For ZMS samples with different adulteration ratios, after processed with 
the CARS algorithm, the model achieved R2

C = 0.9945, R2
p = 0.9951, 

RMSEP/RMSEC = 1.02, and RPD = 13.9989. These results indicated 
that the model was reliable and exhibited good predictive performance 
as well as an appropriate level of fit. After processed with the ICO al-
gorithm, the R2

C, R2
p, and RPD parameters for adulterated HAS samples 

were superior to the results of the other three models. 
Therefore, it can be concluded that using the CARS and ICO algo-

rithms to extract characteristic wavelengths from ZMS and HAS samples 
with different adulteration ratios respectively produces the most desir-
able outcomes. 

3.3.2.1. The application of CARS algorithm for ZMS adulterants. CARS 
algorithm is a classical wavelength selection algorithm, which has been 
widely used in the field of food adulteration identification (Li et al., 
2017; Weng et al., 2020). Fig.3A represented the changing trend of 
number of sampled variables, RMSECV and regression coefficients path 
with the number of samplings runs respectively. The number of selected 
wavelengths decreased rapidly when the number of samplings runs in-
crease from 0 to 10, and then tended to be smooth, which reflected that 
CARS algorithm can not only extract the spectral data quickly, but also 
refine the spectral information on this basis. During the early stages of 
operation, the mistaken characteristic spectral information was elimi-
nated by the CARS algorithm. A decreasing trend followed by an in-
crease can be observed in the value of RMSECV. When the iteration 
count reached 53 times (corresponding to the blue line in Fig. 3A (3)), 
the RMSECV value reached its minimum. At this point, a total of 72 
characteristic wavelengths were extracted, which represented a signif-
icant reduction compared to the raw spectrum’s complex wavelength 
information (Fig. 3B), and the red squares indicated the characteristic 
wavelengths that had been extracted by the CARS algorithm. 

3.3.2.2. The application of ICO algorithm for HAS adulterants. In the 
iterative process of ICO algorithm, the weight coefficient of each 
wavelength interval changes with the increase of the number of itera-
tions. The more yellow the color is, the closer the weight coefficient 
value is to 1, the bluer the color is, the closer the weight coefficient value 
is to 0. If the color is between blue and yellow, the weight coefficient 
value is between 0 and 1 (Song, Huang, Yan, Xiong, & Min, 2016). As 

Table 1 
The results of different spectra preprocessing methods.  

Adulteration category Method LVs Calibration Prediction RMSEP/RMSEC RPD 

R2
C RMSEC R2

p RMSEP 

Adulterated with ZMS RAW 5  0.9587  0.2782  0.9614  0.2917  1.05  5.23 
SG 6  0.9693  0.2443  0.9697  0.2446  1.00  5.95 
1d 4  0.9940  0.1082  0.9381  0.3277  3.03  4.38 
1d + SG 2  0.9577  0.28901  0.9152  0.3549  1.23  3.71 
2d 1  0.7179  0.6722  0.0623  0.8855  1.32  1.53 
2d + SG 1  0.7411  0.6442  0.4886  0.7547  1.17  1.86 
SNV 5  0.9777  0.2090  0.9766  0.2068  0.99  7.04 
SNV + 1d 1  0.9023  0.4290  0.8727  0.4261  0.99  3.20 
SNV + 2d 1  0.7366  0.6396  0.2218  0.8281  1.29  1.78 
MSC 5  0.9763  0.2162  0.9756  0.2164  1.00  6.65 
MSC + 1d 1  0.9021  0.4291  0.8288  0.4714  1.10  2.86 
MSC + 2d 1  0.7366  0.6396  0.2218  0.8281  1.37  1.78  

Adulterated with HAS RAW 6  0.9755  0.2070  0.9669  0.3008  1.45  5.37 
SG 7  0.9748  0.2242  0.9716  0.2348  1.05  5.98 
1d 2  0.9553  0.2966  0.8646  0.4566  1.54  3.05 
1d þ SG 5  0.9793  0.1964  0.9709  0.2005  1.12  6.26 
2d 3  0.9065  0.1964  0.1321  0.9918  2.38  1.42 
2d + SG 3  0.7376  0.6603  0.4651  0.7613  1.15  1.77 
SNV 2  0.7294  0.6573  0.6175  0.7601  1.16  1.86 
SNV + 1d 1  0.8039  0.5901  0.7326  0.5947  1.01  2.27 
SNV + 2d 1  0.4960  0.8432  0.1195  1.0443  1.24  1.25 
MSC 5  0.9710  0.2328  0.97141  0.2414  1.04  6.47 
MSC + 1d 2  0.9567  0.2850  0.9366  0.3360  1.18  4.29 
MSC + 2d 1  0.6217  1.1760  0.2683  0.9293  0.79  1.54 

The bold font: Optimal data processing combination. 

M.-x. Li et al.                                                                                                                                                                                                                                    



Food Chemistry: X 20 (2023) 101022

7

Fig. 3. The results of wavelength selection with CARS algorithm for ZMS adulterants: (A) (1) changes in the number of selected variables, (2) variation of RMSECV, 
(3) path of variable regression coefficients. (B) Characteristic wavelength selection results. The results of wavelength selection with ICO algorithm for HAS adul-
terants: (C) Sampling weights for each feature interval in the optimization process. (D) Characteristic intervals selected by ICO algorithm (Abbreviations: CARS, 
Competitive Adaptive Reweighted Sampling; ICO, Interval Combination Optimization.). 

Fig. 4. The results of classification model after spectrum information processing: SVM (A), KNN (B) and ANN (C) model for pure ZSS and ZMS with different 
adulteration ratio; SVM (D), KNN (E) and ANN (F) model for pure ZSS and HAS with different adulteration ratio (Abbreviations: ZSS, Ziziphi Spinosae Semen; ZMS, 
Ziziphi Mauritianae Semen; HAS, Hovenia Acerba Semen; SVM, Support Vector Machine; KNN, K-Nearest Neighbors; ANN, Artificial Neural Network.). 
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shown by Fig.3C, took the fifth wavelength interval as an example, with 
the increase of the number of iterations, the weight coefficient was 
increased accordingly, and the weight coefficient reached 1 in the fifth 
iteration, so this wavelength interval was finally selected. At the same 
time, for the sixth wavelength range, with the increase of the number of 
iterations, the weight coefficient showed a downward trend, and most of 
the weight coefficients were between 0 and 0.5, so this interval was 
abandoned. On the contrary, the weight coefficient of the 16th wave-
length interval was improved with the increase of the iteration’s rounds, 
which was between 0.8 and 1, so it was selected. The final selected 
wavelength interval was shown in Fig. 3D. In the joint interval selected 
by ICO algorithm, the local search strategy was introduced to optimize 
the width automatically, and the total number of characteristic wave-
lengths selected was 630. 

3.4. Analysis of FT-NIR spectral after preprocessing and wavelength 
selection 

3.4.1. Qualitative discrimination based on machine learning algorithms 
After preprocessing and characteristic wavelength selection, the 

background noise and unrelated interference of FT-NIR raw spectra 
were eliminated and the key spectral information was extracted. Based 
on this, classification models were established again using machine 
learning algorithms for both the pure ZSS and the samples with various 
adulteration ratios of ZMS and HAS to visually demonstrate the effec-
tiveness and necessity of spectral preprocessing and wavelength 
selection. 

From Fig. 4 A–C, it can be observed that the SVM, KNN, and ANN 
models can accurately classify the pure ZSS and ZMS adulterants, which 
raw spectra was processed by the SNV + CARS method. The classifica-
tion accuracy of these three models reached 99.4 %, 97.0 %, and 97.6 % 
respectively, representing an improvement of 20.0 %, 40.0 %, and 21.8 
% compared to the classification results of raw spectra, indicating their 
strong discriminative capability. Moreover, the area under the ROC 
curves for all three models was 1.00 (Table 5S), further demonstrating 
the reliability and effectiveness of the models. Similarly, for both the 
pure ZSS and HAS adulterants processed with 1d + SG + ICO method, 
the aforementioned three models also demonstrated excellent discrim-
inative ability, with classification accuracies improved to 97.6 %, 99.4 
%, and 94.5 %, respectively (Fig. 4 D–F). The areas under the ROC 
curves were all 1.00 (Table 5S), indicating that the established classifi-
cation models were suitable and exhibit high discriminative accuracy. 

The above results indicated that preprocessing and wavelength se-
lection of FT-NIR raw spectra contribute to extracting valuable bands 
from complex spectral information, thereby improving the classification 
accuracy of ZSS samples with different adulteration ratios. This not only 

provided data processing technical support for the rapid and accurate 
differentiation of adulterated samples but also validated the necessity of 
spectral preprocessing and characteristic wavelength selection. 

3.4.2. Quantitative prediction for adulteration ratio based on PLSR model 
After pretreatment and characteristic wavelength selection, the 

optimized FT-NIR spectra of ZMS and HAS adulterated samples were 
obtained. On this basis, the samples with different adulteration ratios 
were quantitatively predicted and analyzed. Generally, if the sample is 
closely distributed near the regression line, it means that the establish-
ment of the regression model is successful and has good prediction 
ability. In the quantitative prediction model based on FT-NIR spectros-
copy (Fig. 5 A & B), the sample points were closely clustered around the 
regression line, with R2

C = 0.9924, R2
p = 0.9920 (for ZMS adulteration) 

and R2
C = 0.9965, R2

p = 0.9952 (for HAS adulteration). This further 
confirmed the reliability of the PLSR content prediction model based on 
FT-NIR spectra, indicating its strong performance in quantitatively 
predicting adulteration ratios, it also provides a positive technical for 
the quantitative prediction of ZSS adulteration ratio. 

4. Conclusion 

In this study, FT-NIR was first combined with multivariate algo-
rithms to explore a new approach to address the increasingly severe 
issue of adulteration in ZSS. By preprocessing the NIR raw spectra and 
selecting wavelengths, the qualitative classification accuracy of adul-
terated samples and the quantitative prediction ability of adulteration 
ratios were improved, ultimately enabling a green and rapid evaluation 
of ZSS adulterants. 

Compared to the observation of naked eyes, although chroma 
extractor can objectively quantify the chroma of adulterated samples 
and determine the changing trend, but relying solely on chromaticity 
features can only preliminarily determine whether ZSS is adulterated, 
with certain limitations in accurately identifying different adulteration 
ratios. FT-NIR spectra contains numerous physicochemical information 
and can reflect the absorption and vibrations of hydrogen-containing 
groups such as X-H (X = C, N, O), which includes the composition and 
molecular structure of most types of organic compounds. Typically, FT- 
NIR spectroscopy can provide specific spectral information of a sample 
within a few seconds, indirectly reflecting its chemical composition. 
Based on this, the potential of FT-NIR in identifying and quantitatively 
predicting the adulteration ratios were explored. After obtaining the raw 
spectral information, 12 preprocessing methods and 3 wavelength se-
lection methods were used for optimization and comparison. Finally, the 
SNV + CARS method was applied to optimize the spectral information of 
ZMS adulterants samples, with the RMSEP/RMSEC ratio of 0.99 and an 

Fig. 5. Scatter plots between the predicted and reference values: Regression model Prediction for ZMS (A) and HAS (B) adulteration ratio based on FT-NIR (Ab-
breviations: R2

C, Calibration Determination Coefficient; R2
P, Prediction Determination Coefficient). 
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RPD value of 7.04. The 1d + SG + ICO method was applied to optimize 
the spectral data of HAS adulterants samples, with the RMSEP/RMSEC 
ratio of 1.12 and an RPD value of 6.26. Both two optimization methods 
exhibit good reliability and applicability. Compared to the raw spectra, 
the average classification accuracy of machine learning models for 
different adulteration ratios samples increased from 77.06 % to 97.58 % 
after spectral processing. Both two PLSR models achieved R2 values 
exceeding 0.99 for the calibration and prediction sets, indicating good 
linearity and precision of the regression curves, based on the latest 
research advancements (Zhang et al., 2023), this study further achieves 
precise classification and discrimination of different counterfeit ratios. 
Additionally, quantitative prediction of the counterfeit ratio is accom-
plished. Compared to previous studies, this research achieves a balance 
between low cost and high accuracy. 

In summary, compared to traditional FT-NIR detection methods, 
incorporating multiple algorithms such as spectral preprocessing and 
wavelength selection allowed for more accurate and comprehensive 
monitoring of adulteration in ZSS, enabling rapid tracking of adultera-
tion and ensuring the authenticity of ZSS, which provided a beneficial 
solution to maintain stability in food consumption market and safeguard 
the interests and health of consumers. With the development of modern 
bionic technology, technologies such as e-nose and e-eye have been 
preliminarily applied in the food industry, but currently limited to the 
use of conventional chemometrics for the analysis of raw data (Fei et al., 
2022; Fei et al., 2021). In the future, further development of charac-
teristic data processing algorithms can enhance the application accuracy 
of bionic technology. In future practical applications, further emphasis 
should be placed on the lightweight design of instruments and the uni-
versality research of counterfeit detection, to address the increasingly 
severe issue of counterfeiting with non-destructive, convenient, and 
accurate detection. 
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