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Abstract
Rare variants, in particular renal salt handling genes, contribute to monogenic forms of hypertension and hypotension syndromes
with electrolyte abnormalities. A study by Ji et al (2008) demonstrated this effect for rare loss-of-function coding variants in SLC12A3
(NCCT), SLC12A1 (NKCC2), and KCNJ1 (ROMK) that led to reduction of ∼6mmHg for SBP and ∼3mmHg for DBP among carriers
in 2492 European ancestry Framingham Heart Study (FHS) subjects. These findings support a potentially large role for these variants
in interindividual variation in systolic and diastolic blood pressure (SBP, DBP) in the population. The present study focuses on
replicating the analyses completed by Ji et al to identify effects of rare variants in the population-based Atherosclerosis Risk in
Communities (ARIC) study.
We attempted to replicate the findings by Ji et al by applying their criteria to identify putative loss-of-function variants with allele

frequency <0.001 and complete conservation across a set of orthologs, to exome sequencing data from 7444 European ancestry
participants of the ARIC study.
Although we failed to replicate the previous findings when applying their methods to the ARIC study data, we observed a similar

effect when we restricted analyses to the subset of variants they observed.
These results simultaneously support the utility of exome sequencing data for studying extremely rare coding variants in

hypertension and underscore the need for improved filtering methods for identifying functional variants in human sequences.

Abbreviations: AA=African-American, AAF= alternate allele frequency, ANNOVAR= annotate variation, ARIC= Atherosclerosis
Risk in Communities, BCM-HGSC =Baylor College of Medicine Human Genome Sequencing Center, BMI = body mass index, BP=
blood pressure, CHARGE =Cohorts for Heart and Aging Research in Genomic Epidemiology, DBP = diastolic blood pressure, EA =
European-American, ExAC= Exome Aggregation Consortium, FHS= FraminghamHeart Study, GWAS= genome-wide association
study, HTN = hypertension, HWE = Hardy-Weinberg Equilibrium, KING = Kinship-based INference, LOF = loss-of-function, NFE =
non-Finnish European, PANTHER = Protein ANalysis THrough Evolutionary Relationships, PolyPhen-2 = Polymorphism
Phenotyping v2, SBP = systolic blood pressure, SD = Standard deviation, SIFT = sorts intolerant from tolerant, SKAT =
sequence-kernel association test, SNV = single nucleotide variant, WES = whole exome sequencing.
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1. Introduction

Hypertension (HTN) is a major risk factor for cardiovascular
disease and affects ∼30% of adults worldwide.[1,2] Recently,
genome-wide association studies (GWAS) have identified
common variants at ∼166 loci associated with systolic blood
pressure (SBP), diastolic blood pressure (DBP), and essential
HTN, but these variants explain <5% of the phenotypic
variance.[3–27] In contrast, rare variants in ∼20 genes involved
in renal salt handling and water balance have been implicated in
monogenic forms of either HTN or hypotension with electrolyte
abnormalities.[28,29] However, the contribution of these genes to
population level interindividual variation in SBP and DBP is
generally unknown. As the existing GWAS loci do not include
any of the 20 known HTN or hypotension syndromic genes, it is
reasonable to infer that common variation in these genes do not
contribute greatly to interindividual BP variation. The question
is, why?
In 2008, Ji et al[29] examined the effects of rare variants in

SLC12A3, SLC12A1, and KCNJ1 on BP in the European
ancestry Framingham Heart Study (FHS) subjects. The authors
chose these ion channel genes because homozygotes for loss-of-
function (LOF) variants in these diuretics targets lead to recessive
renal salt-wasting hypotension syndromes [Bartter (prevalence
∼1/1,000,000[29,30]) and Gitelman (prevalence ∼1/
40,000[29,31])], so that, consequently, LOF heterozygotes in
these genes could reduce BP substantially and be protective
against HTN. Ji et al[29] identified 18 not previously validated
and potentially LOF missense variants in SLC12A3, SLC12A1,
and KCNJ1 in the FHS offspring cohort and demonstrated a
significant protective effect (�6.3mm Hg for SBP and �3.4mm
Hg for DBP) in their carriers in all ages between 25 and 60 years.
The expected rate of carriers for these genes is ∼1% of the
population; the study by Ji et al[29] identified such carries in
∼1.5% of their sample.
We attempted to investigate SLC12A3, SLC12A1, andKCNJ1

using identical methods but using whole exome sequence (WES)
data on 7810 European ancestry subjects from the population-
based Atherosclerosis Risk in Communities (ARIC) cohort. Like
the FHS, ARIC is a longitudinal study with BP measurements
over time and, therefore, allows for identical analyses as in the
study by Ji et al.[29] Success in such studies could motivate
genome-wide screens for genes with analogous effects.
2. Methods

2.1. Study participants

The ARIC (Atherosclerosis Risk in Communities) study is a
population-based, prospective study on 15,792 individuals,
including 11,478 European and 4266 African ancestry US
subjects from Forsyth County, NC, Jackson, MI, Minneapolis,
MN, and Washington County, MD.[32,33] There have been 5
visits, with individuals in the first visit (1987–1989) aged between
45 and 64 years. Subsequent visits occurred in 1990 to 1992,
1993 to 1995, 1996 to 1998, and 2011 to 2013. The data from
the first 4 visits were used in this study. SBP and DBP were
measured thrice at each of the first 3 visits, and twice at the fourth
visit, using a random zero sphygmomanometer; the average of the
(final) 2 measurements at each visit were used for analysis. In this
study, exome sequence data from 7444 European–Americans
(EAs) were analyzed (see below). All participants provided
written consent, and approval was obtained from the appropriate
institutional review boards.
2

2.2. Whole exome sequencing, variant calling, and quality
control

ARIC samples were sequenced at the Baylor College of Medicine
Human Genome Sequencing Center (BCM-HGSC), as part of a
larger set of CHARGE[34] samples. The exome sequencing
protocol, variant calling, and quality control procedures are
described elsewhere (Yu et al).[35] Among 14,443 CHARGE
samples in the final cleaned set, which had mean depth of 78x
coverage, there were 7810 EA and 3180 African–American (AA)
ARIC subjects. Only the 7810 EA samples were utilized in our
analysis for replication.
We then applied additional stringent filters to the data from

these 7810 individuals, and the following observations were
culled: individuals with <90% call rate; variants with >10%
missing genotype calls among samples; and variants failing
Hardy–Weinberg Equilibrium (P<1�10�6). We used genome-
wide genotype data to estimate the genetic relationships among
the remaining 7767 individuals using KING,[36] retaining only
those individuals with third-degree or more remote relationships.
This provided a final dataset comprising 7444 individuals.
2.3. Annotation to identify variants of interest

Annotation of variants in SLC12A3, SLC12A1, and KCNJ1,
with respect to their predicted deleterious effects, was carried out
using ANNOVAR[37] with refGene annotations, to identify
putative LOF missense variants (“nonsynonymous”) in the
selected transcripts used in the downstream analyses.
2.4. Phenotypes

Longitudinal SBP and DBP phenotypes were calculated on the
basis of previously described methods,[29,38] using the first 4 visits
from the ARIC study. Briefly, SBP and DBP were adjusted in a
cubic regression on age within each age group (<35, 35–44, 45–
54, 55–64, 65–74, and 75+ years) for the 7444 individuals, and
then used to adjust their measurements for those visits that were
taken while on antihypertensive medications. Although all SBP
measurements were used, DBP measurements were restricted to
those taken at age 55 years and below, as DBP is known to decline
with increasing age beyond this point.[39] Subsequently, these
residuals were adjusted for mean age in a linear regression,
separately by sex; in our study, this was done with all individuals
with at least 1 visit, regardless of the time span between the first
and last visits. This differs from previously described methods in
the study by Levy et al[38] where at least 4 examinations were
required with a minimum time span of 10 years between the first
and final examinations in the FHS and at least 3 examinations in
the FHS Offspring Cohort studies. The resulting standardized
residuals were used as phenotypes, and the mean of the
nonstandardized residuals among carriers of analyzed variants
is presented as the effect size in Figs. 1 and 2.

2.5. Transcripts, orthologs, and paralogs selection and
alignment

Methods for ortholog and paralog selection were as previously
described[29]; they are briefly restated here emphasizing pertinent
differences, summarized in Table S1, Supplemental Digital
Content, http://links.lww.com/MD/C403. In the original study,
the representative transcripts NM_000339 (SLC12A3),
NM_000338 (SLC12A1), and NM_000220/NM_153764-7

http://links.lww.com/MD/C403


Figure 1. Age- and sex-adjusted SBP residuals for 121 carriers of 65 single nucleotide coding variants depicting the mean effect of carriers.

Figure 2. Age- and sex-adjusted DBP residuals for 62 carriers of 39 single nucleotide coding variants depicting the mean effect of carriers.
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(KCNJ1) were analyzed; in our study, we analyzed the same
transcripts for SLC12A3 and SLC12A1, and analyzed the
transcript NM_153766 for KCNJ1. This KCNJ1 transcript
encodes an identical protein sequence to those encoded by other
transcript variants NM_153764 and NM_153767, and pre-
sented with maximum positional similarity through multiple
alignment to variants listed as conserved in Ji et al,[29] as
compared with the canonical transcript, NM_000220.
The orthologs analyzed in the study by Ji et al[29] for SLC12A3

were from human, mouse, rat, rabbit, dog, cow, chicken,
zebrafish, and winter flounder. In our study, the obsolete record
XP_871112 from cow was replaced with NP_001193107. The
SLC12A1 orthologs analyzed in their study were from human,
mouse, rat, rabbit, dog, chicken, zebrafish, and Tetraodon. The
record NP_062007 from rat was removed from Refseq records,
as it is a nonsense-mediated mRNA decay (NMD) candidate, and
the record XP_850426 from dog was removed from Refseq
records as part of standard genome annotation processing
(SGAP). These orthologs were dropped in our study as well.
Finally, the orthologs studied forKCNJ1 in the study by Ji et al[29]

were from human, mouse, rat, dog, chicken, cow, frog, zebrafish,
fugu, Caenorhabditis elegans, sea urchin, and Drosophila
melanogaster. In our study, XP_546403 from dog and
XP_425795 from chicken were dropped from Refseq records
for SGAP, XP_684541 from zebrafish was replaced with the
updated record NP_001092204, XP_585917 from cow was
replaced with the updated record NP_0011179136, and the
human protein NP_722450 was used, corresponding to the
selected transcript for KCNJ1.
The paralogs analyzed for SLC12A3 and SLC12A1 (SLC12A

family) in both studies were from SLC12A1, SLC12A3, and
additionally, SLC12A2, SLC12A4, SLC12A5, SLC12A6, and
SLC12A7. The paralogs analyzed for KCNJ1 (KCNJ family) in
their study include KCNJ2, KCNJ3, KCNJ4, KCNJ5, KCNJ6,
KCNJ8, KCNJ9, KCNJ10, KCNJ11, KCNJ12, KCNJ13,
KCNJ14, KCNJ15, and KCNJ16. In our study, as for the
orthologs, we used the human protein NP_722450 in accordance
with the KCNJ1 transcript analyzed as stated above, and
additionally, NP_733838 from KCNJ14 was removed due to
inadequate support for its transcript, NM_170720.1 (http://
www.ncbi.nlm.nih.gov/nuccore/).
Multiple alignments were performed with ClustalW v2.1[40,41]

with default parameters for all orthologs per gene, and all
paralogs per gene family (1 for the KCNJ family and 1 for the
SLC12A family), with 5 alignments in total. This differs slightly
from the original alignment procedure described in Ji et al,[29] in
which it was stated that pairwise alignments were used in
addition tomultiple alignments to determine conserved positions.
While the many pairwise alignments may have some differences
to a multiple sequence alignment, this difference is not expected
to lead to any significant change in our downstream assessment of
overall conservation of residues.
Table 1

Clinical characteristics of 7444 ARIC subjects analyzed in this study

Visit/Phase Age (SD) BMI (SD) SBP unadjusted (SD) SBP a

1 54.288 (5.665) 26.967 (4.815) 118.204 (16.487) 121.
2 57.223 (5.64) 27.285 (4.887) 119.754 (17.299) 124.
3 60.289 (5.609) 27.91 (5.141) 122.597 (17.696) 128.
4 63.095 (5.592) 28.25 (5.209) 125.916 (18.187) 133.

Of 7444 individuals (53.76% female), SBP residuals were calculated for 7443 and DBP residuals were
BMI = body mass index, DBP = diastolic blood pressure, SBP = systolic blood pressure.

4

2.6. Selection criteria and “validation” annotation:

We studied missense variants only because no nonsense variants
ultimately met the filtering criteria of frequency or conservation.
The criteria used by Ji et al[29] to identify putative LOF missense
variants included allele frequency <0.001 and complete
conservation across the selected orthologs. The exceptions to
this were variants that were conserved in orthologs, but with the
mutant residue present in paralogs, as these were thought to be
sustainable within the species. Also, as in their study, we further
annotated the analyzed variants from ARIC and the SNVs from
FHS using PANTHER[42] (v9.0), SIFT[43] (with GRCh37/
Ensembl 63), and PolyPhen-2[44] to determine predicted
deleterious effects of variants.
2.7. Statistical analyses

All individuals in this study were unrelated or related more
remotely than third-degree relatives. Standard 1-tailed t tests,
under the assumption that the alternate alleles are blood pressure
(BP)-lowering, were carried out on standardized residuals as final
phenotype to compare carriers with noncarriers, assuming equal
variance for both groups. Noncarriers were defined as those who
have nonmissing genotypes for all 65 variants; those with missing
genotypes for any of the 65 were excluded from all calculations.
2.8. Protein plots

Protein plots in Figures S1–S3, Supplemental Digital Content,
http://links.lww.com/MD/C403, were created with the Protter
software.[45]
3. Results

We examined rare missense variants in 7444 EA ARIC subjects
with WES data. The phenotypic (BP) and risk factor (age, sex,
BMI) characteristics for these individuals are summarized in
Table 1. We identified a total of 216 missense variants (rate of
0.029 per individual) in the cleaned exome sequence data for
SLC12A3, SLC12A1, and KCNJ1. To assess their properties, we
aligned these genes to their orthologs and paralogs as described in
the Methods section with ClustalW2, and discovered overall
conservation (protein sequence identity) of 41.5%, 40.6%, and
18.3% across orthologs of SLC12A3, SLC12A1, and KCNJ1,
respectively, across all species considered in each of the multiple
alignments. Of these, 65 variants (46, 17, and 2 for SLC12A3,
SLC12A1, and KCNJ1, respectively) had alternate allele
frequencies (AAFs) <0.001 in the 7444 ARIC EA samples.
These occurred at highly sequenced bases (median depth 75X;
range: 27–196X in 7810 ARIC EA individuals) demonstrating
high data quality.
We annotated these 65 variants with SIFT, PANTHER, and

Poly-Phen2, which confirmed that their vast majority (57, or
.

djusted (SD) DBP unadjusted (SD) DBP adjusted (SD) % medicated

848 (19.649) 71.765 (9.678) 73.055 (10.416) 18.8
107 (21.135) 71.356 (9.698) 73.096 (10.379) 20.6
491 (22.436) 70.779 (9.932) 74.032 (10.908) 25.6
533 (23.517) 70.048 (9.823) 73.092 (10.587) 30.9

calculated for 3835 subjects.

http://www.ncbi.nlm.nih.gov/nuccore/
http://www.ncbi.nlm.nih.gov/nuccore/
http://links.lww.com/MD/C403


Table 2

Comparison of analyzed SNVs in extracellular, intracellular, and
transmembrane domains across the SLC12A3, SLC12A1, and
KCNJ1 proteins for ARIC and FHS.

Number of variants ARIC FHS Total

No. of var extracellular 16 5 21
No. of var intracellular 31 15 46
No. of var Transmembrane 18 8 26
Total 65 28 93

ARIC = Atherosclerosis Risk in Communities, FHS = Framingham Heart Study .
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86.2%) were predicted to be pathogenic by all three prediction
programs (Table S2, Supplemental Digital Content, http://links.
lww.com/MD/C403). We also used these versions of the software
programs to obtain updated annotations for the 28 FHS SNVs,
enabling comparisons between the 2 sets of variants (Table S3,
Supplemental Digital Content, http://links.lww.com/MD/C403).
All but 3 variants (89.3%) were predicted to be pathogenic by all
three programs. Further, allele frequencies of the 65 ARIC
variants in non-Finnish Europeans from the Exome Aggregation
Consortium (ExAC) are shown in Table S4, Supplemental Digital
Content, http://links.lww.com/MD/C403, and those for the 28
FHS SNVs are presented in Table S5, Supplemental Digital
Content, http://links.lww.com/MD/C403. There are 40 of 65
ARIC variants (∼61.5%) and 17 of 28 FHS SNVs (60.7%) with
nonzero non-Finnish ExAC allele frequencies, providing similar
evidence for the existence of these genotype calls across the 2
studies [Fisher exact test in R reported as P=1 (due to rounding)].
Figure 3. Age- and sex-adjusted SBP residuals for 10 FHS single nucl
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Further, examining the variant distributions across the 3 genes
(Figures S1–S3, Supplemental Digital Content, http://links.lww.
com/MD/C403) shows them to be evenly distributed across the
domains in both studies (Fisher exact test P= .80, Table 2).
Longitudinal SBP and DBP values were then analyzed by

standard 1-tailed t tests to test for differences between carriers
and noncarriers of the variants. The standardized residual
phenotype values of carriers, modeled after Fig. 2 in Ji et al,[29] are
shown in Figs. 1 and 2 for SBP and DBP, respectively. The mean
effect was -0.745mmHg for SBP (t test P= .36) considering all 65
variants in 121 carriers and 6750 noncarriers, and 1.177mm Hg
for DBP (t test P= .83) considering 39 variants in 62 carriers and
3478 noncarriers. As only DBPmeasurements under the age of 55
years were analyzed in this study (see Methods), there were fewer
variants in fewer individuals analyzed. Thus, these results neither
show a prominent direction of effect, nor are they statistically
significant.
We also examined a set of 10 variants from the 28 FHS SNVs

that were also present in the ARIC exome sequencing dataset. Of
these, 9 met the conservation and AAF criteria within ARIC
(except the proline at position 348 in SLC12A1 has an alanine
substitution inDanio rerio). Standardized residuals for carriers of
all 10 variants are shown for SBP, and for carriers of the subset of
8 variants with DBP measurements available under age 55, in
Figs. 3 and 4, respectively. These figures indicate that the primary
positive effect sizes among this small subset of variants are from
the P254A and G741R variants. Overall, these results clearly
replicate those for the 30 variants in the study by Ji et al[29] with
similar mean effect sizes among carriers (SBP: �6.888mm Hg,
P= .02; DBP: �3.120mm Hg, P= .11).
eotide coding variants in ARIC depicting the mean effect of carriers.

http://links.lww.com/MD/C403
http://links.lww.com/MD/C403
http://links.lww.com/MD/C403
http://links.lww.com/MD/C403
http://links.lww.com/MD/C403
http://links.lww.com/MD/C403
http://links.lww.com/MD/C403
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Figure 4. Age- and sex-adjusted DBP residuals for 8 FHS single nucleotide coding variants in ARIC depicting the mean effect of carriers.
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4. Discussion

We attempted to apply criteria identical to Ji et al[29] to data from
ARIC exome sequencing to identify putative LOF variants within
the Bartter and Gitelman syndrome SLC12A3, SLC12A1, and
KCNJ1 genes. Although we failed to demonstrate an overall BP-
lowering effect of all rare, coding LOF variants we did replicate
the LOF effect in our data of several specific rare variants
analyzed in the study by Ji et al.[29] Thus, deleterious variants, or
at least some specific alleles, in these genes are protective against
essential HTN in the general population. Nevertheless, the lack of
overall replication merits further discussion, as it demonstrates
that not all alleles annotated as deleterious indeed are so. This is
not surprising, but the problem may be more widespread than is
acknowledged.
It is usually expected that identical computational genomic

analyses should return similar, if not identical, results; however,
many inadvertent differences can occur. First, there are differ-
ences in the sequence versions of the orthologs and paralogs used
in the 2 studies because many records were either updated or
dropped from the NCBI Refseq records over the past 9 years. We
had 18% to 42% sites conserved across all species in the multiple
alignments, while Ji et al[29] state 18% to 24% conservation rate
for each of the 3 genes. Sequence and ClustwalW software
version differences, as well as differences in calculation methods,
are likely to have led to some discrepancies. In our multiple
alignments, 21 of 28 FHS SNVs are completely conserved, of
which 17 are listed in Table 1 of the study by Ji et al[29] as
completely conserved (the remaining 4 are listed as conserved in
vertebrates in their study). In addition, dropping sequence
records that were obsolete by the time we conducted this study
6

likely contributed to the higher percentages of conserved sites in
the species studied, though these positions still represent a
conserved set.
The 2 studies also used different variant detection methods: we

used exome sequencing, whereas Ji et al[29] used temperature
gradient capillary electrophoresis (TGCE) with confirmation by
polymerase chain reaction (PCR) amplification and Sanger
sequencing from the original DNA sample. The original study
stated a “high” sensitivity of detection, having identified known
single nucleotide variants (SNVs) in FHS, buttressed by a high
concordance with frequencies in previous studies. Follow-up
studies state that the vast majority (14 of 18, with conflicting
results for an addition 2 variants) of the variants in their study
were shown in Xenopus laevis oocytes and HEK293 cells to be
LOF.[46–48] We use WES data in this study, at high sequencing
depths that are in the range of previous estimates deemed
sufficient for detection of the vast majority of heterozygous
variants.[49–51] However, even greater accuracies may be
warranted for genotype-phenotype correlation studies using rare
variants. It should also be noted, however, that large-scale
sequencing data often contain both false positives and false
negatives,[52,53] despite a low error rate, for the rarest of variants.
Our annotation of the 65 analyzed ARIC variants and the 28 FHS
SNVs analyzed in the study by Ji et al[29] with the software
programs SIFT, PANTHER, and PolyPhen support the predicted
pathogenicity of both variant sets, and similar fractions of
variants in both sets were present in the ExAC non-Finnish
European population, demonstrating high concordance with
their properties. However, it is not necessarily surprising for
sequencing errors to also display this profile of pathogenicity due
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to the increased probability that rare variants are sequencing
errors and that the analyzed variants were specifically chosen at
sites preselected for their conservation among a set of species.
Despite these differences, the carriers of the subset of variants

from the study by Ji et al[29] that were also in the ARICWES data
present similar effect sizes for SBP (10 variants) and DBP (8
variants) as in the studyby Ji et al,[29] andnearly all passed the same
selection criteria in ARIC. As the distributions of variants in both
studies seem to show no distinct or study-specific patterns or
differences, it remains possible that only certain LOF variants at
mechanistically specific locations are essential for BP regulation.
This replication is especially notable because the FHS offspring
cohort is younger in their visits as compared to ARIC individuals,
who were minimum 45 years of age at baseline, and the age
difference affects the proportion of individuals whose measure-
ments necessitated adjustment for medication use. Further, the
methods detailed in Levy et al[38] indicate that the effects reflect a
longer time span of measurements, as they required samples to
have at least 3 to 4 visits over at least 10 years, while our samples
had a maximum of 4 visits over 12 years. These differences can
affect analyses, but in this case the effect is still visible.Additionally,
this represents a replication of the effects of rare variants with very
low minor allele counts, which demonstrates the utility of exome
sequencing data for study of such rare variants, though greater
study is required to determine more appropriate filtering methods.
In summary, our attempt to replicate the methods in the study

by Ji et al[29] to detect rare and potentially LOF variants in
SLC12A3, SLC12A1, and KCNJ1 reducing SBP and DBP in
variant carriers as compared with noncarriers using WES data
provided important lessons. Although the 2 studies are
comparable in numerous ways, there are also pertinent differ-
ences that can lead to their discrepant outcomes. Regardless of
this, we successfully replicated the reduction effects in SBP and
DBP with a subset of variants from the study by Ji et al[29] that
were present in the ARIC study, which upholds the use of such
sequencing data for the study of very rare variants and confirms
that SLC12A3, SLC12A1, and KCNJ1 are indeed genes
protective of HTN in the general population. Though HTN is
a common disease, as the particular renal salt wasting syndromes
of interest in this study (Bartter and Gitelman) are rare, the
method is applicable for identifying rare LOF variants in other
rare diseases. Nevertheless, our study highlights the need for
improved methods for predicting variants effects and functional
tests to identify them equivocally.
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