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Abstract: In the present review, we would like to draw the reader’s attention to the polymer-based
hybrid materials used in photocatalytic processes for efficient degradation of organic pollutants
in water. These inorganic–organic materials exhibit unique physicochemical properties due to the
synergistic effect originating from the combination of individual elements, i.e., photosensitive metal
oxides and polymeric supports. The possibility of merging the structural elements of hybrid materials
allows for improving photocatalytic performance through (1) an increase in the light-harvesting
ability; (2) a reduction in charge carrier recombination; and (3) prolongation of the photoelectron
lifetime. Additionally, the great majority of polymer materials exhibit a high level of resistance against
ultraviolet irradiation and improved corrosion resistance. Taking into account that the chemical and
environmental stability of the hybrid catalyst depends, to a great extent, on the functional support,
we highlight benefits and drawbacks of natural and synthetic polymer-based photocatalytic materials
and pay special attention to the fact that the accessibility of synthetic polymeric materials derived
from petroleum may be impeded due to decreasing amounts of crude oil. Thus, it is necessary to
look for cheap and easily available raw materials like natural polymers that come from, for instance,
lignocellulosic wastes or crustacean residues to meet the demand of the “plastic” market.

Keywords: photoactive hybrid materials; photocatalyst; biopolymers; synthetic polymers; water/air
detoxification; metal oxides

1. Introduction

In recent years, the interest in photocatalysis as a green and eco-friendly method for pollution
remediation [1,2], energy conversion [3,4] or chemical synthesis [5] has been increasing. However,
the proficient application of photocatalysis is restricted to the fabrication of advanced nanostructured
materials consisting of various types of semiconductors [6–11]. Current research in this field mainly
concentrates on the development of hybrid materials containing photoactive metal oxides [9–13],
quantum dots, or perovskites [14,15] to enhance the efficiency of photocatalytic systems [16]. In order
to understand the main restrictions of photocatalytic performance, we have to know the main
photochemical and photophysical mechanisms leading that process (Figure 1) [16–20]. It is worth
mentioning that correlation between semiconductors and light plays a crucial role in the case of
photocatalysis [12,16]. The absorption of photons with a specific energy allows for excitation of
electrons from the valence band to the conduction band, producing hole–electron pairs responsible
for redox processes. However, oxidation and reduction processes can be inhibited due to charges
and radical recombination or back electron transfer processes [21,22]. Consequently, the employed
photonic power is much higher than desirable rate of the desired chemical transformation, which is
the main limitation of photocatalytic performance [23].
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Significant features which can extensively improve photocatalytic efficiency and light absorption
capability, are strongly correlated to size and structure of photocatalytic materials, their specific surface
area, or crystalline phase [7,24]. Taking into consideration the fact that the required physicochemical
characteristics are a consequence of various features of the main components and interaction
between them [25,26], the enhancement of photocatalytic performances could be obtained through
an organic–inorganic hybrid complex made of a semiconductor and suitable support [25]. Multiple
material combinations provide synergistic effects that are able to create and improve properties of
nanomaterials [27–29] which are beneficial for enhancing the efficiency of photocatalytic reactions.
The synergistic effect originating from the combination of individual elements is clearly evident in the
case of polymer-based hybrid photocatalysts. A great majority of polymer materials exhibits a high level
of resistance against ultraviolet irradiation and improved corrosion resistance as well as environmental
stability [30,31]. Compared with semiconductor oxides, the great majority of polymeric supports are
chemically inert, mechanically stable, inexpensive and easily available. Additionally, the hydrophobic
nature of polymer gives an advantage to congregate the organic pollutants on the surface and raise
the efficiency of adsorption and subsequent degradation reaction rates [32]. Therefore, in recent years
polymer-based hybrid materials have been emerging as promising device in the photocatalytic field.
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Figure 1. Photochemical and photophysical processes over photon-activated semiconductors, where:
(p) is photogeneration of electron/hole pair, (q) is surface recombination, (r) is recombination in the
bulk, (s) is diffusion of acceptor and reduction on the surface of semiconductor and (t) is oxidation
is oxidation of donor on the surface of semiconductor particle. Reprinted from [31] with permission
from Elsevier.

Nowadays, plastic production is based mainly on feedstock derived from petroleum refineries.
A wide range of synthetic or semisynthetic polymerization products are obtained from oil and gas,
which undergo chemical processing [33]. As inputs for plastic manufacturing, refinery olefins (mainly
propylene and less quantities of ethylene or butylenes) are produced from alkane transformations [34].
Unfortunately, there are difficulties with the discovery of new oil deposits, and some sedimentary
basins that contain crude oil have already been explored. The oilfields which still have not been
explored are located in inaccessible regions of the world [35]. Taking into consideration the fact that
the plastic production is based mainly on feedstock derived from oil refinery, it is necessary to look
for cheap and easily available raw materials like highly abundant biopolymers in nature. In this
state-of-the-art review, we focus on synthetic and natural polymers, and highlight the main benefits
and limitations coming from polymer materials which could be used as support for the fabrication of
photocatalytic hybrid materials.
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2. Synthetic and Natural Polymers

According to IUPAC (International Union of Pure and Applied Chemistry) nomenclature,
the word “polymer” refers to substances composed of macromolecules with high relative molecular
mass. However, this term could be also be applied to polymer substances, polymer blends or
polymer molecules [36]. Additionally, polymers include a wide class of materials which can be
grouped according to source, functionalities, structure, thermal behavior, polymerization mechanism
or preparation techniques (Figure 2) [37,38]. In this mini-review, we mainly focus on synthetic and
natural polymers, which can find applications in photocatalysis, taking into consideration factors
related to the photocatalytic properties, including stability, biodegradability, and biocompatibility with
inorganic materials as well as following recent progress on the synthesis of hybrid materials.
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Synthetic and semisynthetic polymers originating from crude oil have had a huge impact on
modern science and technology due to their physicochemical properties. In many cases, chemical,
physical and biological resistance play crucial roles in the selection of a desirable polymer for
determined function. However, with respect to most synthetic materials, the affected time-resistant
properties of polymeric wastes can lead to the release of toxic degradation products during
decomposition which is not acceptable from an eco-friendly point of view [38]. Owing to concerns
about the natural environment and shortages of non-renewable sources, the interest in polymers
derived from natural sources like starch, lignocellulose or proteins is still increasing [34]. Biodegradable
polymers that can be obtained from renewable resources (Figure 3) have emerged as environmentally
friendly substitutes for non-biodegradable materials. It is worth mentioning that some of them exhibit
similar or superior mechanical properties to petroleum-based polymers [39]. However, in many
cases they possess inferior physical feature in terms of stability and strength and lots of them require
high-cost production [33]. Additionally, in comparison with synthetic polymers, several natural
polymers cannot be processed into a wide range of shapes, due to the fact that the high processing
temperature destroys their structure [40]. Consequently, the design of new eco-friendly and highly
efficient and stable photocatalytic biopolymer hybrid materials is challenging.
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2.1. Photocatalytic Hybrid Materials Based on Synthetic Polymers

Various types of synthetic polymer shave been reported as photocatalytic supports in the
literature, namely: polyethylene (PE) [42], polypropylene (PP) [43], polystyrene (PS) [44], polyethylene
terephthalate (PET) [45], polyvinyl chloride (PVC) [46], polyvinyl alcohol (PVA) [47], polycarbonate
(PC) [48] and so on. To our best knowledge, the first attempt to produce polymer hybrid materials
was made in 1995 by Tennakone [49]. Titanium oxide with polyethylene films as support was used
for the photocatalytic decomposition of phenol with a high degradation ratio (50% after 2.5 h of
illumination). Further, experimental studies on polypropylene non-woven with zinc oxide nanorods
indicate that this kind of photocatalytic materials exhibited not only excellent catalytic activity but
also high stability [50,51]. Hence, these hybrid materials can be successfully used for water treatment
processes by acting as photocatalysts and filters at the same time [52]. Additionally, the synergetic
effect of the combination of metal oxide and polymers allows for protection of the polypropylene fiber
against surface cracks and limits the well-known photocorrosion process of zinc oxide [52,53]. Similar
photoactive hybrid materials based on polybutylene terephthalate (PBT) polymer fiber mats were
used for photocatalytic dye degradation. These studies confirmed that the catalyst supported on the
polymer mat could be reused without a particular recovery step [54]. They also pointed out the fact that
the combination of proper fabrication methods allows for better photocatalytic performance (Table 1,
Entry 1) [55]. Another example of synthetic polymer hybrid materials, which have applications in
water treatment processes, are polyethersulfone or polyvinylidene fluoride membranes with various
types of metal oxides (e.g., titanium, zinc or chromium) displaying good antifouling performance,
including photo-catalysis, self-cleaning, and filterability properties [55,56]. Our special attention
gives merit to hybrid materials based on conjugated organic polymers (COPs) like polyaniline
(PANI) [57] (Table 1, Entry 2), poly(pyrrole) (PPy) [58], polythiophene (PT) [59], polyacetylene
(PA) [60], poly(methyl methacrylate) (PMMA) [61], polythiopene (PT) [62], polyparaphenylene
(PPP) [63], polyparaphenylenevenylene (PPV), poly(3,4-ethylenedioxythiophene) (PEDOT) [63] or
poly(O-phenylenediamine) (POPD)) [64]. The conjugated organic polymers are mostly p-type
semiconductors, due to their electrical and optical properties. Specifically, their high electron
mobility or high photon absorption coefficient under visible spectra has attracted increasing interest
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for photocatalytic applications, e.g., degradation of pollutants or hydrogen generation by water
splitting [65]. In terms of water treatment processes, another interesting perspective solution offered
by polymeric support is the possibility of fabricating a floatable photocatalyst, the concept of which
is shown in Figure 4. These kinds of materials are able to maximize illumination utilization and
oxygenation processes of the photocatalyst by approaching the air/water interface, which in the end
can result in higher rates of radical formation and oxidation efficiencies [66].

Polymeric supports possess different morphologies and can exist in the form of sheets [67],
nanospheres [68], or nanoparticles [69]. Of course in all these cases, polymer materials contribute to an
increase the photocatalytic activity of inorganic–organic materials. However, contact surface area of
the hybrid photocatalyst, which has a significant influence on their activity, is lower for fiber polymeric
supports. Selected examples of catalysts based on polymeric fibers with high photocatalytic activity
are shown in Table 1.
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It is worth mentioning that in the open literature a new class of hybrid materials, represented by
coordination polymers (CPs) and composed of metal clusters with organic ligands (Figure 5), can be
used in photocatalysis. These crystalline materials possess high dispersion of active sites, tuneable
adsorption properties, appropriate pore size and topology [71]. Additionally, the effective solar light
absorption properties can be obtained through modifying the composition of the metal cations and
organic linkers. The possibility to connect the light-harvesting and catalytic components allows for
conversion of solar energy to chemical energy by artificial photosynthesis [72]. Materials based on
coordination polymers provide crucial information about synergistic effects derived from multiple
elements of hybrid materials and allow for understanding the fundamental principles about light
harvesting and energy transfer phenomena, schematically explained in Figure 6. In spite of some
examples of CP-based heterogeneous photocatalytic systems [73], until now the CP-based soluble
complexes have mainly been used in homogenous catalytic processes which is a serious limitation for
broad industrial application due mostly to the problem of photocatalyst filtration after the process.
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Figure 6. (a) the components of the MOF structure; (b) conceptual schematic for photo-catalyzed
water oxidation or reduction using a MOF in the presence of an acceptor or donor; (c) light harvesting
accomplished by an organic linker; (d) generation of a charge separated state and quenching of h+ by a
donor; (e) electron transfer to the metal oxide node and subsequent proton reduction (SBU: secondary
building units). Reproduced from reference [73] with permission of The Royal Society of Chemistry.
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Table 1. Selected photocatalytic hybrid materials based on synthetic polymers used for degradation of organic contaminants.

Entry Polymer Hybrid Materials Target Contaminant Light Source Fabrication Method Photocatalytic Behavior Ref.

1 ZnO nanorods on polybutylene
terephthalate (PBT) polymer fiber mats Azo organic dye (acid red 40)

Ultraviolet (UV) radiation in
the range of 320–390 nm
providing 79 mW/cm2 of
energy flux.

Thin films formed by low temperature
vapor phase atomic layer deposition
(ALD) and hydrothermal growth of ZnO
nanorod crystals on a seed layer.

Degradation ratio ~90% of the dye within
2 h. The combination of ALD and
hydrothermal method allow to obtain the
best performance of the photocatalyst and
may be also used for other crystal growth
systems, such as TiO2, Fe2O3, SnO2 and
V2O5, where high area and ready solution
access are desired.

[55]

2 ZnO nanoparticles on wool and
polyacrylonitrile (PANI) fibers

Methylene blue (MB) and eosin
yellowish (EY) dye

High-pressure mercury lamp
covers illumination spectrum
ranging from ultraviolet to
visible (200–800 nm).

Impregnation of polymeric fibers using
sol-gel process at ambient temperature.
ZnO-sol is based on the method
described in the literature with minor
changes in details.

There is 77% MB dye degradation after 6 h
upon ZnO/PANI and 80% upon ZnO/wool
fibers, which is 4-fold more in comparison
to bare fibers. Similar results of degradation
were obtained for EY dye, where the
degradation ratios equal 64% and 50%,
respectively.

[57]

3 CeO2-ZnO-polyvinylpyrrolidone (PVP) Rhodamine B (RhB) UV lamp (8 W) with emission
wavelengths at 254 nm.

The electrospinning technique was
followed by thermal treatment to obtain
CeO2–ZnO nanofibers. The nonwoven
mat was prepared from the precursor
solution of
PVP/Ce(NO3)3/Zn(CH3COO)2.

After 3 h of irradiation, only 17.4% and
82.3% of Rhodamine B was decomposed
catalyzed by pure CeO2 and ZnO fibers,
respectively, whereas almost 98% was
decomposed applying the
CeO2–ZnO-composite fibers.

[74]

4 ZnO nanowires on polyethylene (PP) Methylene blue (MB) UV light source (6 W)

ZnO nanowires were grown from seed
ZnO nanoparticles affixed onto the
commercially available fibers by
hydrothermal method.

After 2.5 h of irradiation, ZnO/polyethylene
fibers degraded 83% of the MB, whereas the
fibers without ZnO degradate only 32%.
24% of MB was found undergo
self-degradation under the same UV light
without using polyethylene fibers.

[75]

5 ZnO/SnO2-polyvinylpyrrolidone (PVP) Rhodamine B
High-pressure mercury lamp
(50 W) with main emission
wavelength at 313 nm.

A simple combination method of sol-gel
process and electrospinning technique.
The electrospun composite nanofibers
was obtained by the precursor solution
of PVP/ZnCl2/SnCl2.

After 50 min, the degradation efficiency of
RhB was equal to 75, 35, and 85% for ZnO,
SnO2, and TiO2 fibers, respectively.
However, the time for complete
decolorization of dye solution over the
ZnO/SnO2-nanofibers was 30 min.

[76]

6

Reduced graphene oxide/titanium
dioxide filter (RGO/TiO2) and reduced
graphene oxide/zinc oxide filter
(RGO/ZnO) on polypropylene(PP)
porous filter

Methylene blue (MB) Halogen lamp (150 W)

The polypropylene (PP) porous filter
was incorporated with reduced
graphene oxide (RGO) and metal oxides
via a simple hydrothermal approach.

The combination of RGO and the metal
oxide compounds on the filters shows more
than 70% of MB adsorption in 20 min
compared with those consisting of
individual materials, degradation after
120 min 99%.

[50]
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2.2. Photocatalytic Hybrid Materials Based on Natural Polymers

Natural polymers derived from renewable resources or waste products can also serve as
a desirable organic support for inorganic semiconductor metal oxides [77–79]. Polysaccharides,
lignin, cellulose, hemicellulose, chitin, chitosan, starch or xylan, possess excellent sustainability,
biodegradability and can be used as abundant industrial raw feed stock to synthesize photocatalytic
hybrid materials [80–82]. Natural polymers (see structures in Figure 7) are mainly obtained by
extractions from wood, plants or even residues of living organisms [83], that make them more
attractive in comparison with synthetic polymers. Natural fibers are frequently used as a reinforcing
composite for producing hybrid materials because they exhibit advantages, like recyclability and
eco-friendliness, over their synthetic counterparts [84]. Additionally, natural fibers possess a higher
volume fraction, and thus a larger loading capacity [85]. For these reasons they are widely used to
produce composite materials, especially in the field of photocatalysis. For instance, depositing titanium
dioxide on cellulose fiber surface allows for obtaining hybrid materials with a high degradation ratio
of organic compounds like organic dye or phenolic contaminants [86] (Table 2, Entry 1). Yu et al.
obtained cellulose-templated TiO2/Ag nanosponge composites with enhanced photocatalytic activities
for the degradation of RhB; the synthetic procedures for this material are shown in Figure 8 [86].
The polymeric nanocomposite membranes with cellulose fibers can be also used for gas separation
processes (e.g., hydrogen recovering, nitrogen generation or carbon dioxide separation) [87,88].
However, due to the fact that cellulose consists of monosaccharide units (Figure 7a), it is hydrophilic
and exhibits a rather poor interaction with most of the non-polar compound. Many efforts have been
done to obtain uniform dispersion of the fibers within the matrices. Furthermore, it is worth noting
that plant fibers like cellulose possess relatively low processing temperatures (<200 ◦C), and for this
reason, researchers have used low-temperature techniques (e.g., sol-gel method, hydrothermal method,
dip coating method, etc.) to coat natural fibers [89]. Despite this, in the open literature we can find
successfully completed examples of many attempts to modify surface properties of natural fibers
(see Table 2).
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In contrast to hemicellulose and cellulose, lignin possesses rather a complex structure due to
the different types of linkages connecting the phenylpropanoid-based units [90] (Figure 7b) and
is seen as a product with little intrinsic value but potentially, for instance, can serve as a stable
biopolymeric support for hybrid materials [91]. It should be noted that lignin can be used for the
synthesis of functional hybrid materials with antimicrobial properties [92] as well as adsorptive
properties for the removal of inorganic compounds from aqueous solutions [93]. However, the stability
of biopolymers based on lignin under photocatalytic conditions is not high. Some critical review
reports pointed out that photocatalytic methods can be used also to degradate lignin and lignin-based
phenolic compounds [94]. From this point of view, it is interesting to study if lignin, which consists
of phenylpropanoid-based structures, can be used as a support for the fabrication of stable hybrid
photocatalysts with the aim of being applied for mineralization of organic contaminants in water.

Chitin (Figure 7c) represents the next most plentiful natural polysaccharide and is source of
chitosan which is obtained by partial deacetylation of chitin. Due to the presence of various functional
groups, chitosan can be applied as an adsorbent for the removal of different kinds of pollutants [95,96].
Additionally, this polymer can be used in the wide range of form, e.g., hydrogels [97], nanofiber
mats [98], and nano-beads as well as powders [99]. Chitosan may have a high specific surface area as a
bead or fiber, and thus exhibits strong adsorption capacities. However, all of these forms depend on
the fabrication method. The formation of a highly specific surface area requires mainly specialized
methods like electrospinning [100]. In the open literature, one can find the description of many other
facile methods to obtain hybrid catalysts like those based on titanium dioxide [100], zinc oxide [101]
(Table 2), and niobium oxide [102] among others, combined with chitosan, which can be used for
water treatment processes. However, chitosan, as well as other polysaccharides have some limitations
associated with wastewater treatment application, namely: they possess high swelling capacities and
low resistance, especially in extreme wastewater conditions (e.g., acid medium), which may result in
significant leaching. Consequently, the catalyst based on these natural polymers cannot be stable and
may promote the expansion of organic matter in wastewater [103].
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Table 2. Selected photocatalytic hybrid materials based on natural polymers used for degradation of organic contaminants.

Entry Polymer Hybrid Materials Target Contaminant Light Source Fabrication Method Photocatalytic Behavior Ref.

1 Titanium dioxide (TiO2)
immobilized in cellulose matrix Phenol

UV (6 W) light at wavelength of
254 nm was used. The mean light
intensity equal to 0.56 mW/cm2.

Composite films have been
prepared via a sol-gel method.

The composite films exhibited high degradation
ratio (90% after 2 h of irradiation) without
remarkable loss of photocatalytic activity after
three times.

[85]

2 ZnAc/cellulose acetate (CA)
composite nanofibers Rhodamine B and phenol Ultraviolet lamps (PHILIPS 365 nm)

as the irradiation source.
Electrospinning technique in
combination with calcination.

Almost 100% of Rhodamine B and 85% phenol
(after 24 h) was decomposed in the presence of
TiO2/ZnO composite nanofibers under
mild conditions.

[104]

3 ZnO/cellulose hybrid nanofibers Methylene blue (MB) and eosin
yellowish (EY) dye

Tungsten lamp (500 W) was used as
the visible light source.

A novel method that combines
electrospinning and
solvothermal techniques

Nearly 50% of Rhodamine B was decomposed
after 24 h of irradiation under visible light. [105]

4 Photoactive TiO2 films on
cellulose fibers

Methylene blue (MB) and
heptane-extracted bitumen fraction
(BF) containing a mixture of heavy
aromatic hydrocarbons

Reproducible solar light
(50 mW/cm2). Sol-gel method

The degradation ratio of MB reached 90% after
20 h and 90% for BF fraction after 9 h without
loss of activity after three illumination cycles.

[106]

5 Rice-straw-derived hybrid
TiO2–SiO2 structures Methylene blue (MB)

UV-A (8 W) lamps (300–450 nm)
providing an irradiation power flux
of 2.0 mW/cm2.

Impregnation method. The photocatalytic decomposition of methylene
blue after 90 min obtained was 100%. [107]

6 Chitosan (CS)-encapsulated TiO2
nanohybrid Methylene blue (MB) UV light at a wavelength of 365 nm.

Nanohybrid materials was
prepared by chemical
precipitation method.

The catalyst showed high photocatalytic activity
of 90% degradation after 3 h of irradiation and
without losing photocatalytic activity after five
recycle tests.

[100]

7 Fe3O4/chitosan/TiO2
nanocomposites Methylene blue (MB) Illumination with UV light. Facile and low-cost method by

solvents thermal reduction.

The degradation rate of methyl blue was 93%
after 30 min for Fe3O4/CTS/TiO2
nanocomposites.

[108]
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3. Summary and Future Perspectives

The selected studies in this short overview serve as clear examples that both natural and synthetic
polymers can be successfully used in the field of hybrid innovative materials for heterogeneous
photocatalysis in the context of pollutant degradation. The organic–inorganic hybrid materials exhibit
significantly better photocatalytic properties than the separate components, due to the synergistic
effect coming from the intrinsic properties of a photoactive semiconductor and polymers. Several key
advantages can be expected from polymeric support, such as: (a) an increase of the specific surface
area which consequently allows for adsorption of higher amounts of target pollutants [109–111],
and (b) an improvement of the photocatalytic performance by promoting reduction of the charge
carriers recombination and prolongation of the photoelectron lifetime [112]. In this mini-review, the
highlighted benefits and drawbacks of natural and synthetic polymer-based photocatalytic materials
will exponentially increase in importance due to the fact that accessibility of synthetic polymeric
materials derived from oil, gas and carbon (non-renewable sources) will be impeded because of the
decreasing amount of fossil resources. Thus, this fact turns on the alarm to look for cheap and easily
available raw materials like bio-polymers that come from sources such as lignocellulosic wastes or
crustacean residues to cover the increasing demand of the market for plastics. Currently, the scientific
world indicates that polymer materials are the key promising components of the next generation of
photocatalytic hybrid materials for water and air treatment processes [113,114]. However, there are
still some limitations on this topic (Table 3) that should be studied extensively.

Table 3. The main pros/cons of using synthetic polymers and biopolymers for photocatalytic
hybrid materials.

Synthetic Polymers Biopolymers

Availability Decreasing High
Physicochemical resistance High Low

Thermal stability High Low
Large-scale applications Possible Difficult
Environmental-friendly No Yes

Cost of production Low High
Sustainability Low High
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