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Abstract

Squamous cell carcinoma of the oral cavity mucosa grows under conditions of poor oxygen-

ation and nutrient scarcity. Reprogramming of lipid biosynthesis accompanies tumor growth,

but the conditions under which it occurs are not fully understood. The fatty acid content of

the serum, tumor tissue and adjacent tumor microenvironment was measured by gas chro-

matography in 30 patients with squamous cell carcinoma grade 1–3. Twenty-five fatty acids

were identified; their frequencies and percentages in each of the environments were

assessed. Nineteen of the twenty-five fatty acids were found in tumor tissue, tumor adjacent

tissue and blood serum. Of them, 8 were found in all thirty patients. Percentages of C16:0

and C18:1n9 were highest in the tumor, C18:1n9 and C16:0 were highest in tumor adjacent

tissue, and C16:0 and C18:0 were highest in blood serum. The frequencies and amounts of

C22:1n13, C22:4n6, C22:5n3 and C24:1 in tumor adjacent tissues were higher than those

in blood serum, independent of the tumor grade. The correlations between the amount of

fatty acid and tumor grade were the strongest in tumor adjacent tissues. The correlations

between particular fatty acids were most prevalent for grade 1+2 tumors and were strongest

for grade 3 tumors. In the adjacent tumor microenvironment, lipogenesis was controlled by

C22:6w3. In blood serum, C18:1trans11 limited the synthesis of long-chain fatty acids. Our

research reveals intensive lipid changes in oral cavity SCC adjacent to the tumor microenvi-

ronment and blood serum of the patients. Increase in percentage of some of the FAs in the

path: blood serum–tumor adjacent microenvironment–tumor, and it is dependent on tumor

grade. This dependency is the most visible in the tumor adjacent environment.

Introduction

Primary squamous cell carcinoma (SCC), which originates in the mucosa of the oral cavity,

develops via many non-lethal DNA disturbances in somatic cells that accumulate into a loss

of control over cell proliferation, growth and differentiation. During the multiple stages of
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carcinogenesis, cells develop signals that increase proliferation and growth, prevent cell death

and activate angiogenesis, invasion and metastasis. The functions described by Hanahan and

Weinberg [1] might be found in the tumor microenvironment (TME) as a result of the repro-

gramming of energy metabolism and the avoidance of the immune response. Cancer cell

development depends on the production of lipids that are necessary for cell membrane forma-

tion, protein modification and the transmission of oncogenic signals. Inhibition of lipogenesis

by fatty acid synthase (FASN) inhibitors raises the possibility of limiting neoplasm develop-

ment [2].

De novo lipogenesis in cancer cells, which takes place in the presence of exogenous fatty

acids (FAs), has been studied using isotope-labeled exogenous palmitic acid (C16:0) or free

FAs in panels of aggressive or non-aggressive human breast cancer, ovarian cancer, prostate

cancer, or melanoma cells. Cancer cells take advantage of exogenous acids to promote prolifer-

ation and lipid signaling [3]. A general increase in the exogenous FA content causes metabolic

alterations that underlie the aggressive behavior of cancer cells. In vitro and in vivo incorpo-

ration of exogenous FAs into cancer cells is associated with a redirection of the FAs away from

energy metabolism and towards the generation of structural and signaling glycerophospholi-

pids, sphingolipids and other products of lipid metabolism. During oncogenesis, there is a

decrease in the creatine phosphokinase (CPK) and oxidative pathways and the use of FAs for

energy is inhibited; instead, these FAs are increasingly used as building materials for inten-

sively proliferating cancer cells.

FASN is the enzyme responsible for the endogenous synthesis of saturated FAs from long-

chain acetyl-CoA and malonyl-CoA precursors. FASN is overexpressed in many human can-

cers, such as prostate cancer, breast cancer, bladder cancer, liver cancer, lung cancer and SCC

of the oral cavity. Reduced FASN expression occurs simultaneously with decreased SCC prolif-

eration [4].

Guo et al. assessed the synthesis of endogenous FAs with regard to oral cavity mucosa can-

cer and its surrounding environment: subcutaneous adipose tissue, the sternocleidomastoid

muscle, the parotid gland and the submandibular lymph nodes [5]. Based on 14C incorpo-

ration studies, the FA content was highest in oral cavity mucosa cancers and lowest in muscle

tissues. FASN activity in tumor-adjacent tissue was much lower than that in the tumor itself.

Menendez et al. [6] demonstrated an increase in FASN expression at pre-invasive and inva-

sive cancer sites. Increased synthetic FASN expression was preceded by hypoxia, acidification

and cell malnutrition at the site. FASN expression was diminished or prevented by disrupting

the oncogenic and circulating FAs cascade. The metabolic products of FASN from endogenous

FAs participate in cancer evolution by influencing the expression, activity and location of the

proteins produced by cancer cells. This process is characteristic of both the transformation of a

tumor from benign to malignant as well as tumor progression. An especially important role in

carcinogenesis is played by the omega 3 long-chain fatty acids, LA, EPA, DPA and DHA, and

omega 6 long-chain fatty acids, AA, DTA and nervonic acid.

Since 1995, the term TME has been used to collectively define cancer cells, stromal cells,

various types of mesenchymal cells and the extracellular matrix. The progression of head and

neck cancer has been attributed to carcinoma-associated fibroblasts (CAFs) and is associated

with increased production of growth factors, cytokines, chemokines, matrix metalloprotei-

nases and inflammatory mediators that enable tumor growth. Therefore, the TME influences

the development of cancers and their metastases. The interaction of the TME influences the

development of cancers and their metastases. The interaction of the microenvironment and

cancer is bidirectional; each interaction partner affects the regulation of gene expression in the

other partner or, at least, exerts a selective pressure. Thus, each interaction partner influences

the phenotype of the other partner. Cancerous cell interactions with microenvironment
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components are key indicators during the decision-making process whereby cancerous cells

develop into metastases, stay dormant or disappear completely [7,8]. Reflecting the specific

features of breast cancer in histologically-normal cancer-adjacent tissue [9] and the prevalence

of the wound response signature in histologically normal tissue adjacent to breast cancer [10]

inclines for the assessment of this tissue role in cancerogenesis.

To the best of our knowledge, no reports have been published on the quantitative or quali-

tative relationship of the FAs content in SCC of the oral mucosa, in the adjacent tumor micro-

environment (ATME) and in the blood serum. The ATME is the tumor margin, a tissue

adjacent to the affected area. Therefore, we sought to assess the FA content in the tumor,

ATME and serum of patients with SCC of the oral mucosa and compare the results among

these three compartments and with tumor grade. We recorded increase in the frequency and

percentage of some of the 25 FAs on the path: blood serum–ATME–tumor. In case of some of

the FAs, the increase was dependent on tumor grade. In ATME, the dependency of FAs per-

centage from tumor grade was the most visible.

Materials and methods

We obtained the approval of the Bioethical Committee of the Pomeranian Medical University,

Szczecin, Poland to conduct the research (Resolution No. KB-0012/01/12 by the Bioethical

Committee of Pomeranian Medical University, Szczecin, Poland from 13. February 2012).

Patients and tissues

We analyzed FAs content in tumor tissue, in the adjacent tumor microenvironment (ATME)

and in the blood serum of 30 patients who underwent surgical resections of oral SCC. The

research and surgical treatment were performed within the period between March 2012 and

March 2013. We provided a standard dietary survey, that is routinely used in patients in

Poland before being admitted to the ward. The questionnaire asked whether patients need any

special diet (gluten-free, non-dairy, vegan) and whether they apply supplements in their diet.

All patients used the usual diet and did not use supplements. Patients taking dietary supple-

ments, patients with coexisting second neoplasm outbreaks, and patients with secondary local

neoplasms were excluded from the study. All of the patients participating in the research were

informed about the aims and intention of using the results in scientific publications. The

authors obtained both oral and written consents from all of the participating patients. All of

the patients were adult and aware of the medical procedures on which they were suitably

informed. Table 1 shows the clinicopathological details of the 30 patients.

Chemicals and materials

Chloroform (cat no. 34854), methanol (cat no. 1.06018) and acetic acid were purchased from

Merck. Boron trifluoride in methanol (cat no. B1252), NaCl (cat no. S3014) and 2,6-Di-tert-

butyl-4-methylphenol (BHT) (cat no. B1378) were supplied by Sigma-Aldrich. Double-dis-

tilled water was obtained from a Milli-Q Water System (Millipore, Billerica, MA, USA). Fatty

acids standards were bought form Sigma-Aldrich, Neochema (Germany) and Cayman.

Blood serum and tissue collection

Blood samples were collected from patients into a clean 10 ml polypropylene tube and were

allowed to clot at room temperature for up to 2h. After that, the clot were removed by

centrifuging at 1,000–2,000 x g for 10 minutes in a refrigerated centrifuge. The separated

serum was collected into Eppendorf tubes and stored at—70˚C until analysis.
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Tumor tissues with healthy tissue margins were fixed in 10% buffered formalin and embed-

ded in paraffin. Sections were stained with hematoxylin and eosin for histopathological diag-

nosis. In addition, a tumor fragment of approximately 7 mm in diameter and a fragment of a

similar size from the macroscopically healthy margins (7 mm from the tumor and 7 mm from

the line of incision) were preserved at -70˚C for FA extraction. Two pathologists indepen-

dently assessed the tumor and margin specimens.

FAME extraction

FAs were extracted based on the protocol published by Folch [11] with minor modifications.

For serum samples (0,5 ml) and up to 50mg of the tissue samples, crushed in liquid nitrogen

(handheld homogenizer), was added 2,5 ml of Folch mixture (chloroform: methanol: v/v 2:1)

and 100 μl of BHT and 100 μl of internal standard C21:0. This mixture was additional mixed

by 20 min. by using incubator shaker (New Brunswick Scientific, Excella E24 Series). The sam-

ples were then centrifuged at 15 000 rpm for 15 min. (Eppendorf, Centrifuge 5804R). Serum

and tissue extract (1 ml) was saponified with 1 ml of 2 M KOH methanol solution at 70˚C for

20 min and then methylated with 2 ml of a 14% solution of boron trifluoride in methanol

(Sigma-Aldrich, Germany) under the same conditions. Two milliliters of n-hexane and 10 ml

of saturated NaCl solution were added. After completely separating the upper (n-hexane

phase) and lower layers, the n-hexane phase (1 ml) was collected.

Gas chromatography (GC) analysis

GC was performed using an Agilent Technologies 7890A GC System equipped with a SUPEL-

COWAX 10 Capillary GC Column (L × I.D. 15 m × 0.10 mm, df 0.10 μm; Supelco, cat no.

24343). The temperature was increased from 60˚C at a rate of 40˚C/min up to 160˚C;

increased at a rate of 30˚C/min to 190˚C for 0.5 min; increased at a rate of 30˚C/min to 230˚C

for 2.6 min; and maintained for an additional 4.9 min. The total analysis time was 8 min and

the gas flow rate was 0.8 ml/min with nitrogen as the carrier gas.

FAs were identified by comparing their retention times with those of highly purified mix-

ture of 25 single standards (Sigma-Aldrich, and Neochema, Cayman Islands) by using

Table 1. Characteristics of 30 patients surgically treated due to oral cancer, including tumor data.

Age 62,2 ±17,4

Gender 10 F, 20 M

Tumor grade No. of patients

G1 2

G2 21

G3 7

Clinical stage

T2 7

T3 12

T4 11

Location

Floor of mouth 11

Oral tongue 9

Gums 4

Retromolar trigone 2

Hard palate 2

Buccal mucosa 2

https://doi.org/10.1371/journal.pone.0218246.t001
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ChemStation Software (Agilent Technologies, Cheadle, UK). To control of the fatty acid reten-

tion times C21:0 was used as the internal standard. The results are presented as the percentage

of the individual fatty acids in the total mass of fatty acids from the examined tissue. These

fatty acids are as follows: decanoic acid–C10:0, dodecanoic acid–C12:0, tridecanoic acid–

C13:0, tetradecanoic acid–C14:0, myristoleic acid–C14:1, pentadecanoic acid–C15:0, palmitic

acid–C16:0, palmitoleic acid–C16:1, heptadecanoic acid–C17:0, stearic acid–C18:0, oleic acid–

C18:1n9 (OA), vaccenic acid–C18:1trans11 (VA), linoleic acid–C18:2n6 (LA), gamma linole-

nic acid–C18:3n6 (GLA), α linolenic acid–C18:3n3 (ALA), stearidonic acid–C18:4, arachi-

donic acid–C20:4 (ARA), eicosapentaenoic acid–C20:5 (EPA), behenic acid–C22:0, erucic

acid–C22:1n13, tricosanoic acid–C23:0, docosatetraenoic acid–C22:4n6 (DTA), docosapentae-

noic acid–C22:5n3 (DPA), docosahexaenoic acid–C22:6n3 (DHA), nervonic acid–C24:1.

The fatty acid content was calculated as follows: sum of the omega3 fatty acids (n3) =

C18:3n3+C18:4+C20:5+C22:5n3+C22:6n3; sum of the omega6 fatty acids (n6) = C18:2n6

+C18:3n6+C20:4+C22:4n6; saturated fatty acids (SFAs) = C8:0+C10:0+C12:0+C14:0+C15:0

+C16:0+C17:0+C18:0+C22:0+C23:0+C26:0); monounsaturated fatty acids (MUFAs) =

C14:1+16:1+C18:1n9+C18:1trans11+C22:1n13 +C24:1, poly-unsaturated fatty acids

(PUFAs) = 18:2n6+C18:3n6+C18:3n3+C18:4+C20:4+C20:5+C22:4n6+C22:5n3+C22:6n3.

Unsaturated fatty acids UFAs were the sum of the MUFAs and PUFAs.

Statistical analyses

All continuous variables were evaluated for the normality of distribution using the Kolmogo-

rov-Smirnov test. The continuous variables were described by means, standard deviations,

medians, quartiles and minimum and maximum values. Differences between two groups were

analyzed using Student’s t-test or the Mann-Whitney U test. For multiple-group comparisons,

analyses of variance (ANOVAs) and/or Kruskal-Wallis tests were performed. Differences of

p< 0.05 were considered significant for all of the performed tests.

All statistical analyses were performed using STATA 11 software (2009). Significant correla-

tions between the analyzed fatty acids were described according to the scheme proposed by

Dallal [12].

Correlation analysis and the illustration of Pearson’s coefficients.

Pearson’s correlation coefficients were calculated on the correlation analysis. The R package

Corrgram was used to display the correlations between the analyzed parameters as a correlo-

gram or a coefficient eigenvector plot43. A correlogram is a direct visual display of the matrix

of Pearson’s coefficients.

Correlogram analyses

Correlograms were plotted for the analyzed data using the Corrgram R package (http://cran.r-

project.org/web/packages/corrgram/index.html) [13]. Pearson’s correlation coefficients were

calculated using the cor.test function in r and p-values. Significant correlations with p-

values� 0.05 were considered significant and were visualized as red or blue dots on the corre-

logram, depending on the direction of the correlation. The dot size in the correlation matrix is

proportional to the strength of the correlation.

Results

Frequency of fatty acids in tumor, ATME and blood serum

We identified 25 FAs in 30 patients treated surgically due to oral squamous cell carcinoma.

Only 8 of these FAs (C14:0, C16:0, C16:1, C18:0, C18:1n9, C18:2n6, C20:4, C22:6n3) were
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found in all three environments, i.e. in tumor, ATME and blood serum, in 30 of the patients,

i.e. in 100% of all cases. In 29 of the patients 1 FA (C13:0) was recorded only in blood serum.

Another 11 FAs were found in tumor, ATME, and in serum in various percentage of the

patients. Furthermore, 5 FAs, not present in serum, were found in tumor and ATME in vari-

ous percentage of the patients.

Higher frequency in tumor than in ATME was recorded for 6 FAs (C15:0, C17:0, C18:3n6,

C20:5, C22:1n13, C24:1) and frequency of three FAs (C14:1, C18:1t11, C18:3n3) decreased in

tumor in comparison with ATME. The most significant decrease was recorded for FA C18:3n3

(60% vs. 87%).

Altogether 9 FAs were found more often in ATME than in serum. The greatest increase in

frequency in ATME in comparison with serum was noted for the following FAs: C24:1,

C14:1, C22:4n6, C22:5n3 (93% vs. 0%, 100% vs. 10%, 90% vs. 3%, 100% vs.20% respectively).

By contrast, frequency of 6 FAs (C12:0, C13:0, C15:0, C17:0, C18:1t11, C18:3n6) decreased in

ATME as compared to serum. The most significant decrease was recorded for C13:0 (0%

vs.97%).

Lack of some FAs in serum, increase of other FAs frequency in ATME in comparison with

serum, and decrease in frequency of some other FAs in tumor in comparison with ATME

point to ATME as the environment which is extremely active in lipid metabolism which

accompanies neoplasia. Table 2 shows the data on frequency of all indentified FAs.

Fatty acids content percentage in tumor, ATME and serum

Medium chain and long chain FAs with the shortest chains, i.e. C10:0, C12:0, C13:0, C14:1,

C15:0 constituted most often less than 1% of FAs detected in the environments studied. FA

C16:0 accounted for the greatest percentage in tumor (27%), C18:1n9 in ATME (35%) and

C16:0 in serum (37%).

Increased percentage of FAs in tumor in comparison with ATME was recorded for

11 FAs, and the greatest one involved C24:1 (1.31% vs. 0.36%). Percentage of 11 FAs was

higher in ATME than in serum and the biggest difference was seen for C22:4n6 (0.39% vs.
0.01%).

Decrease in FAs percentage in tumor in comparison with ATME was detected for 6 FAs

with the biggest one involving C18:3n3 (0,27% vs. 0,69%). Decrease in FAs percentage in

ATME in comparison with serum was found for 11 FAs. The biggest difference concerned

C18:3n6 (0,01% vs. 0,39%).

Increase in percentage from serum through ATME to tumor was recorded for 2 long-chain

FAs: C22:4n6 and C22:5n3. The increase was greater in case of C22:4n6 (from 0.01%, through

0.39%, to 1.10%) than C22:5n3 (from 0.10%, through 0.57%, to 1.02%).

Table 2 shows the data on percentage of FAs content in tumor, ATME and serum.

Percentage of content of FAs groups: SFA, UFA, MUFA, PUFA, series n6

and n3 of PUFA and ratios C18:2n6/C18:3n3, C20:4/(C20:5+C22:6n3) in

tumor, ATME and blood serum

Percentage of UFA was the highest (>50%) among the assessed FAs in ATME and tumor.

PUFAs constituted about 1/5 of all FAs in tumor and serum. The ratio n6/n3 was significantly

lower in tumor than in serum (5,51 vs. 7,18). The ratio C20:4/ C20:5+C22:6n3 was the lowest

in serum, and the highest in tumor. Table 3 contains detailed information on percentages of

content of particular FAs groups in three environments examined.
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Percentage of FAs content in tumor, ATME and blood serum vs. tumor

grade

Percentage of content of only 11 FAs in tumor, ATME and serum showed statistically signifi-

cant differences between tumors G1+G2 vs. G3 (p<0.05). The following FAs constituted

higher percentage of total FAs content in grade 3 than in grade 1+2 tumors: C23:0 in tumor

and ATME, C10:0 and C20:5 in serum, and C18:0, C22:0, C22:1n13, C22:6n3 in ATME. The

following FAs constituted lower percentage of total FAs content in grade 3 than in grade 1+2

tumors: C10:0 and C12:0 in tumor and ATME, C18:1n9, C18:2n6, C18:3n3 in ATME. Detailed

data on content percentages of particular FAs in tumor, ATME and serum with regard to

tumor grade is supplied in S1 Table.

In summary, analysis of these differences showed following associations. In tumor, percent-

age of C23:0 correlated positively and percentages of C10:0 and C12:0 correlated negatively

with tumor grade. In ATME, percentages of C18:0, C22:0, C22:1n13, C23:0, and C22:6n3 cor-

related positively with tumor grade, however percentages of C10:0, C12:0, C18:1n9, C18:2n6,

and C18:3n3 correlated negatively with tumor grade. In serum percentages of C10:0 and C20:5

Table 2. Frequency of fatty acids (%) and percentage of fatty acids content (%) in tumor, ATME, and blood serum.

Fatty acid Frequency Mean % Frequency Mean % Frequency Mean % Differences

Tumor ATME Blood serum

C10:0 53 0.58±0.7 50 0.18±0.5 60 0.15±0.1 1,2,3

C 12:0 63 0.13±0.2 73 0.18±0.2 100 0.41±0.2 2,3

C13:0 0 0±0.0 0 0±0.0 97 0.12±0.0 2,3

C14:0 100 1.99±2.1 100 2.12±1.6 100 1.39±0.3 1,2

C14:1 80 0.17±0.2 100 0.27±0.2 10 0.01±0.0 1,2,3

C15:0 100 0.38±0.2 93 0.27±0.2 100 1.10±0.3 1,2,3

C16:0 100 26.86±4.8 100 25.55±5.9 100 37.26±2.1 2,3

C16:1 100 3.03±1.6 100 5.43±3.0 100 1.48±0.7 1,2,3

C17:0 100 0.42±0.1 80 0.28±0.3 100 0.54±0.1 1,2,3

C18:0 100 18.61±9.3 100 11.21±10.6 100 20.03±3.0 1,2,3

C18:1n9 100 21.40±9.7 100 35.03±13.9 100 16.56±3.1 1,2,3

C18:1t11 77 3.01±2.0 83 3.05±1.6 100 1.74±0.3 2,3

C18:2n6 100 9.47±3.0 100 9.96±2.8 100 12.09±2.0 2,3

C18:3n6 17 0.03±0.1 10 0.01±0.0 93 0.39±0.1 1,3

C18:3n3 60 0.27±0.3 87 0.69±0.5 83 0.43±0.3 1,2,3

C18:4 13 0.03±0.1 17 0.04±0.1 0 0±0.0 1,2,3

C20:4 100 7.04±3.1 100 2.66±2.5 100 4.21±0.8 1,2,3

C20:5 100 0.30±0.2 90 0.17±0.1 80 0.47±0.3 1,2,3

C22:0 77 0.29±0.3 57 0.15±0.2 0 0±0.0 2,3

C22:1n13 100 0.27±0.2 80 0.17±0.3 0 0±0.0 1,2,3

C23:0 57 0.55±0.6 57 0.48±0.6 0 0±0.0 2,3

C22:4n6 90 1.10±1.1 90 0.39±0.3 3 0.01±0.1 1,2,3

C22:5n3 100 1.02±0.4 100 0.57±0.2 20 0.10±0.2 1,2,3

C22:6n3 100 1.70±0.7 100 0.78±0.6 100 1.52±0.4 1,3

C24:1 97 1.31±1.5 93 0.36±0. 6 0 0±0.0 1,2,3

1—difference between tumor and ATME

2—difference between tumor and blood serum

3—difference between ATME and blood serum

P for all differences < 0.05, except for C10 and C18:4 where differences were not significant

https://doi.org/10.1371/journal.pone.0218246.t002
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correlated positively with tumor grade. Relation between percentage of C10:0 and tumor grade

depended on the environment: being positive in serum and negative in ATME and tumor.

ATME was the environment in which the greatest number of FAs (i.e. 10 of 11) showed differ-

ences in percentage content between G1+2 and G3 tumors and these differences were the

largest.

Percentage of content of FAs groups: SFA, UFA, MUFA, PUFA, series n6

and n3 of PUFA and ratios C18:2n6/C18:3n3, C20:4/(C20:5+C22:6n3) in

tumor, ATME and serum vs. tumor grade

Of all FAs groups studied in tumor tissue there was only a negative correlation between C20:4/

(C20:5+C22:6n3) ratio and tumor grade (the ratio lower in grade 3 than in grade 1+2 tumors).

In ATME there was a positive correlation between percentage of SFA content and tumor

grade and negative correlations between percentage of content of UFA, MUFA, rates of

PUFA/SFA, MUFA/SFA, UFA/SFA and tumor grade. High tumor grade was associated with

higher percentage of SFA and with lower percentage of UFA in ATME. In serum we found

only a positive correlation between percentage of n3 PUFAs content and a negative correlation

between n6/n3 ratio and tumor grade. High grade was associated with higher percentage of n3

PUFAs and lower percentage of n6 PUFAs in serum. S2 Table presents detailed data on the

analyzed associations.

Percentage ratio of particular FAs in tumor/ATME, ATME/serum and in

tumor/serum vs. tumor grade

The ratios of percentage contents of particular FAs in tumor/ATME, ATME/serum and in

tumor/serum were calculated. Tumor/ATME, ATME/serum and tumor/serum ratios lower

than 1 were observed for FAs C12:0, C13:0 and C18:4 irrespective of tumor grade. Similarly,

ATME/serum and tumor/serum ratios were lower than 1 for FAs C15:0, C16:0, C17:0,

C18:3n6, C20:5, C22:0, C22:1n13 and C23 irrespective of tumor grade.

Table 3. Percentage of content of FAs groups: SFA, UFA, MUFA, PUFA, series n6 and n3 of PUFA and ratios C18:2n6/C18:3n3, C20:4/(C20:5+C22:6n3) in tumor,

ATME and blood serum.

FAs groups Tumor mean % ATME mean % Serum mean % Differences

SFA 49.86±12.8 40.44±15.5 60.99±5.2 1,2,3,

MUFA 29.18±11.7 44.31±16.7 19.79±3.9 1,2,3

PUFA 20.95±6.0 15.26±3.7 19.22±3.0 1,2,3,

n6 17.63±5.1 13.01±3.1 16.70±2.5 1,2,3

n3 3.32±1.2 2.24±0.8 2.52±0.8 1,3

n6/n3 5.51±1.3 6.21±1.6 7.18±2.0 1,2

C18:2n6 /C18:3n3 17.48±19.2 15.91±15.2 22.81±14.0 2

C20:4/(C20:5+C22:6n3) 3.55±1.0 2.58±0.9 2.28±0.7 3

UFA 50.14±12.8 59.56±15.5 39.01±5.2 1,2

PUFA/SFA 0.45±0.2 0.42±0.1 0.32±0.1 2,3

MUFA/SFA 0.68±0.4 1.37±0.8 0.33±0.1 1,2,3

UFA/SFA 1.13±0.5 1.78±0.9 0.65±0.1 1,2,3

1—difference between tumor and ATME

2—difference between tumor and blood serum

3—difference between ATME and blood serum

P for all differences < 0.05

https://doi.org/10.1371/journal.pone.0218246.t003
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Tumors G1+G2 exhibited tumor/ATME rations higher than 1 for 16 FAs, ATME/serum–

for 9 FAs and tumor/serum for 10 FAs whereas in tumors G3 tumor/ATME rations were

higher than 1 for 11 FAs, ATME/serum–for 7 FAs and tumor/serum for 9 FAs. This means

that percentage content of 16 FAs in tumors G1+G2 and 11 FAs in tumors G3 was increased

in tumor tissue as compared to ATME respectively. Furthermore, percentage content of 9 FAs

in tumors G1+G2 and 7 FAs in tumors G3 was increased in ATME as compared to serum

respectively. Finally, percentage content of 10 FAs in tumors G1+G2 and 9 FAs in tumors G3

was increased in tumor as compared to serum respectively.

This growth of particular FAs percentage between serum and ATME, ATME and tumor

was recorded for the majority of FAs, irrespective of tumor grade. Statistically significant,

positive association of tumor grade with ATME/serum ratio of FA percentage content was

recorded for C17:0 (p = 0.0462) and C18:0 (p = 0.0133), with tumor/serum ratio for FA C20:5

(p = 0.0194), and with tumor/ATME ratio for FA C23:0 (p = 0.0003). Statistically significant,

negative association of grade with tumor/ATME ratio was observed for C10:0 (p = 0.0091),

with each of the calculated ratios [tumor/ATME (p = 0.0061), ATME/serum (p = 0.0024),

tumor/serum ratios (p = 0.0028)] for C12:0, and with tumor/ATME ratio for C18:0

(p = 0.0226). Detailed data on percentage ratio of content of particular FAs in tumor/ATME,

ATME/ serum and in tumor/serum vs. tumor grade is supplied in S3 Table.

Correlations of FAs percentage in tumor, ATME and blood serum

including tumor grade

Correlations between percentage of FAs in tumor, ATME and serum including tumor grade

were found and compared. Only statistically significant (p< 0.05), strong, and very strong cor-

relations (0.7 < r< 0.9) were considered. Figs 1A, 1B, 2A, 2B, 3A and 3B show all of the statis-

tically significant correlations. Correlations between percentage content of particular FAs

within the same environment differed depending on the grade of the tumor.

Fig 1. Correlations of FAs percentage in tumor. A. SCC grade 1+2. B. SCC grade 3. Red or blue dots on the correlogram, depending on the direction

of the correlation, the dot size in the correlation matrix is proportional to the strength of the correlation.

https://doi.org/10.1371/journal.pone.0218246.g001
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In tumor tissue, there were 7 strong mutual FAs correlations recorded for grade 1+2

tumors, and 22 strong and very strong mutual FAs correlations for grade 3 tumors. Among

the strongest positive correlations in grade 3 tumor tissue were the following: C20:4 with

C22:5n3 (r = 0.93) and C20:4 with C22:6n3 (r = 0.93), whereas the strongest negative

correlation was the one between C22:0 and C18:3n3 (r = -0.93). The strongest correlation in

Fig 2. Correlations of FAs percentage in ATME. A. SCC grade 1+2. B. SCC grade 3. Red or blue dots on the correlogram, depending on the direction

of the correlation, the dot size in the correlation matrix is proportional to the strength of the correlation.

https://doi.org/10.1371/journal.pone.0218246.g002

Fig 3. Correlations of FAs percentage in blood serum. A. SCC grade 1+2. B. SCC grade 3. Red or blue dots on the correlogram, depending on the

direction of the correlation, the dot size in the correlation matrix is proportional to the strength of the correlation.

https://doi.org/10.1371/journal.pone.0218246.g003
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tumor grade 1+2 was a positive correlation between C24:1 and C20:5 (r = 0.85). Fig 1A and

1B show all statistically significant (p <0.05) correlations between percentages of FAs in

tumor.

In ATME there were 8 strong mutual FAs correlations observed in grade 1+2 tumors and

33 strong and very strong mutual FAs correlations in tumors grade 3. Within grade 3 tumors

the strongest positive correlation in ATME was detected between C16:1 and C18:1n9 (r =

0.96) and the strongest negative correlation between C18:1n9 and C22:6n3 (r = -0.96). The

strongest correlation in ATME within grade 1+2 tumors was a positive correlation between

C20:4 and C20:5 (r = 0.89). Fig 2A and 2B show all statistically significant (p <0.05) correla-

tions between percentages of FAs in ATME.

In blood serum of patients with grade 1+2 tumors, there were 14 strong mutual FAs corre-

lations and with grade 3 tumors– 16 strong or very strong mutual FAs correlations. The stron-

gest positive correlation was correlation between C15:0 and C17:0 (r = 0.93); The strongest

negative correlation was correlation between C17:0 and C18:1trans11 (r = -0.93). The afore-

mentioned correlations accompanied tumor grade 3. The strongest correlation in serum for

tumor grade 1+2 was a negative correlation between C18:1n9 and C18:1trans 11 (r =-0.91).

Fig 3A and 3B show all statistically significant (p<0.05) correlations between percentages of

FAs in blood serum.

All of the statistically significant correlations are indicative of close relations between par-

ticular FAs. The number of strong and very strong mutual correlations between FAs in

tumor and ATME was higher in grade 3 than grade 1+2 tumors. The correlations indicate

that in tumors grade 3 lipogenesis in tumor tissue coexisted with inflammation and in tumors

grade 1+2 lipogenesis was modulated by EPA. The correlations found in ATME adjacent to

tumor grade 3 suggest the dependence of FA C18:1n9 percentage (major FA in this environ-

ment) on supply in diet and natural limitation of this FA by DHA (tumor grade 3), and in

tumor grade 1+2 accumulation of EPA as an answer to inflammation. In blood serum, the

calculated correlations suggest C18:1trans11 as a FA limiting the frequency and percentage

of the following FAs: C15:0 and C17:0 (in tumor grade 3), as well as FA C18:1n9 (in tumor

grade 1+2).

Discussion

Changes to lipid organization that result in cancer initiation and progression contribute to the

understanding of carcinogenesis and identification of potential therapeutic targets. The activ-

ity of enzymes that participate in the synthesis and endogenous changes of fatty acids, probably

created for a fast growing tumor, is higher in the tumor than in healthy tissues. The increased

de novo synthesis of fatty acids is a feature of intensive tumor growth [5].

Lipid metabolism in rapidly proliferating cancerous cells is based on redirecting the carbon

from energy production into membrane biosynthesis and signal particles. Phosphatidylcho-

line, phosphatidylethanolamines, sterols, sphingolipids and lysophospholipids make up the

majority of cell membrane lipids. All of them originate with acetyl-CoA and many of them

contain fatty acids that originate with external sources or in de novo synthesis. While healthy

human cells use exogenous fatty tissues, tumor cells synthesize de novo fatty acids. Decreasing

the accessibility of fatty acids through the use of chemical inhibitors of lipid enzymes slows

down the growth of some cancers [14].

Increased expression of lipogenic enzymes, such as acetyl-CoA-carboxylase (ACC), fatty

acid synthase (FASN) and ATP citrate lyase (ACLY), accompanies the phenotypic changes in

the majority of tumors. The overexpression of FASN forecasts a poor prognosis in cancer

patients [15].
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Redistribution of individual FAs in tumor, ATME and in blood serum

In the margin free of tumor invasion (macroscopically and microscopically) the amount of

C18:1 was higher than that of C18:0. This finding suggests the overexpression of FASN. We

did not measure FASN expression directly; instead we used an increase in the percentage of

C18:1 in the ATME as indirect evidence for FASN expression. Interestingly, C18:1 content in

the serum was relatively low, which supports the theory of increased acid synthesis in the

microenvironment (rather than obtaining fatty acids from the circulation). A site which has

not been transformed is tuned into carcinogenesis because it produces fatty acids associated

with the promotion of tumors.

Among the 25 FAs, there were three, i.e. C16:0, C18:0, C18:1n9, which were found in 100%

of the patients and represent the greatest percentage in the researched environments of tumor,

ATME and serum. The percentage of C16:0 and C18:0 in ATME in comparison with serum

was significantly lower, however, it was greater in tumor than in ATME. The percentage of

C18:1n9 was greater in ATME than in tumor or serum.

It is probable that tumor growth is associated with another metabolism of the FAs in tissues

adhered than in healthy tissues and it can indicate to the increased activity of FASNs as well as

stearoyl-CoA desaturates (SCDs) [16, 17].

It has been shown that a microenvironment rich in oleic acid supports gastric cancer pro-

gression and migration of cancer cells, through the induction of AMP-activated protein kinase

(AMPK) by oleic acid [18].

We have found that microenvironment adjacent to SCC was also enriched with oleic acid

(C18:1n9) and in addition with other FAs such as C14:1, C16:1, C18:3n3, C22:4n6, C22:5n3

and C24:1. This finding suggests that oleic acid (and some other FAs) may have a role in pro-

gression of SCC of oral cavity.

The percentage of FAs C18:1n9 and C18:3n3 contained in tumor was lower in comparison

with the content of FAs in healthy oral cavity mucosa; the percentage of C18:0 was greater

than the norm [19].

Our findings concerning oleic (C18:1n9), linoleic (C18:2n-6), and stearic (C18:0) acids per-

centages in SCC vs. ATME are in partial consent with those of Askari et al [20] who reported

that oleic acid and linoleic acid levels in oral cancer tissues were significantly lower than those

in healthy tissues and that stearic acid levels were highest in tumor tissues. In our findings the

stearic acid level was third in volume in the tumor after palmitic acid and oleic acid.

Redistribution of particular FAs between the serum and the ATME and between the ATME

and the tumor are interesting. Among 8 FAs found in all of the examined environments

(tumor, ATME and serum) in all of the patients, percentage of 3 FAs: C14:0, V16:1, C18:1n9

was significantly higher in ATME than in tumor and serum. Percentage of 2 other FAs: C18:0

and C20:4 was significantly higher in tumor than in ATME. Oleic acid (C18:1n9) was the FA

of which the highest percentage in ATME, was the highest percentage among all isolated FAs,

and it was lower in tumor than in ATME.

We wanted to know why the levels of endogenous fatty acids were higher in the ATME

than in the blood serum. The early activation of fatty acid synthase compensates for the lack of

oxygen and exogenous fatty acids associated with a lack of angiogenesis [21]. This amazing

metabolic situation serves the high proliferation rate of the cells that survive the absence of

exogenous fatty acids. Whether the balance between particular exogenous fatty acids and fatty

acid synthase producing endogenous fatty acids decides the development and malignancy of a

neoplastic change was investigated by Menendez et al. who found that: ‘A recent identification

of cross-talk between FASN and well-established cancer-controlling networks begins to delin-

eate the oncogenic nature of FASN-driven lipogenesis’ [22]. These data show that FASN-
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dependent endogenous lipogenesis controls the metastatic phenotype promoted by cysteine-

rich 61, (Cyr61/CCN1) [23].

Here, the presence of 5 FAs (i.e., C18:4, C22:0, C22:1n13, C23:0, and C24:1) in the ATME

that had levels below detection limit in the blood serum is of note. The content of the FAs

(except for C18:4) in the TU was higher than in the ATME. In the ATME, the content of 4 FAs

(i.e., C18:3n3 GLA, C20:5 EPA, C22:4n6 DTA, and C22:5n3 DPA) was higher than in the BS

with the exception of C18:3n3, which was higher in the BS than in the TU. These data suggest

that the ATME creates a favorable environment for the generating FAs not supplied by the BS

and for increasing the amounts of FAs supplied by the BS that are needed for growing the

tumor.

DPA and DTA in tumor, ATME and serum

The levels of C22:5n3 (DPA) increased from the serum, through the ATME to the tumor inde-

pendent of tumor grade. The values of all the assessed ratios (tumor/ATME, ATME/serum,

and tumor/serum) were greater than 1. C22:5n3 correlated positively with C10:0 in the serum

when the tumor grade was 3 and it correlated positively with C10:0 and C12:0 in the ATME

when the tumor grade was 1+2.

Docosapentaenoic acid (DPA) is rarely the main subject of a research study; it is usually

presented as an agent between eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)

in the n-3 PUFA synthesis pathway. DPA is an important biologically active anti-inflammatory

fatty acid that reduces the aggregation of platelets and improves the lipid profile of the blood

serum [24]. Sprecher, Berquin and Artenburn [25–27] emphasize the role of DPA in lipid tran-

sitions in mammals that cannot synthesize de novo n3 and n6 PUFAs. According to Yazdi

[28], DPA may act as a reserve for the majority of n-3 fatty acids. DPA is a strong inhibitor of

angiogenesis and carcinogenesis because it suppresses VEGF expression (vascular endothe-

lium growth factor) [29]. Anti-proliferative and pro-apoptotic effect of DPA on colorectal car-

cinoma cells has been shown in vitro [30].

Despite of expected anticancer effect, independent from tumor grade increase of DPA per-

centage, in serum, through ATME to tumor, and especially dependent from tumor grade nega-

tive correlations with FAs which are a source of energy, mainly in pathologic conditions such

as inflammation which accompanies cancer [31, 32], should incline to recognize this FA as an

actively involved in lipid changes that accompany the tumor.

Our results show DTA as a FA present in serum very rarely and in minor quantities. Its fre-

quency and percentage increased from serum through ATME up to tumor, independently

from tumor grade. In the tumor, DTA correlated positively with C22:0; in the ATME–with

C14:1.

DTA, also known as adrenic acid, is created through the elongation of arachidonic acid

chain, or chain elongation and desaturation of essential fatty acid—linoleic acid. DTA is pres-

ent in adrenal glands, brain, kidneys, and blood vessels. Its metabolites regulate blood flow in

adrenal glands blood vessels [33].

DTA has not been studied in the SCC of oral cavity. Ghebremeskel [33] emphasized the

increase of DTA level and increase of DPA/DTA ratio in serum of Korean pregnant women,

suggesting that the increase is a response to mobilization of ARA and DHA from mothers’ red

blood cells membrane to meet the growing fetal needs.

Positive mutual correlations of DTA and C14:1 in ATME estimated by our team may be

caused by significantly higher percentage of C14:1 in ATME than in serum, as it may happen

in response to tissues malnutrition and beta-oxidation [34]. Similar correlations with C22:0,
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FA which increases cholesterol level [35], may be associated with lowered cholesterol level

which accompanies cancer [36]. DTA may be the one FA which contributes to supplementa-

tion of FAs deficiencies caused by tumor growth.

Tumor grade vs. individual FAs and FAs groups

We observed differences in the percentages of fatty acids in the tumor, ATME and serum that

were dependent on tumor grade. The most numerous correlations were found in ATME;

among the positive ones, there was a correlation with DHA, among the negative ones, there

were correlations with: C18:1n9, C18:2n6 and C18:3n3. Less numerous correlations were

observed in tumor, and they involved C10:0 and C12:0—negative correlation, C23:0—positive

correlation. In the serum, C10:0 and EPA positively correlated with tumor grade. Thought-

provoking are positive correlations with DHA and EPA, which influence is assessed as poten-

tially anticancer [37, 38, 39], and negative ones with C18:1n9, C18:2n6 (FAs which may

increase tumor growth [40]) with tumor grade. Reports on tumor grade influence on lipids

level indicate decreased level of lipids in serum, independently on tumor grade [41], or men-

tion statistically non-significant dependence on tumor grade [42–45].

Groups of FAs, MUFAs and PUFAs found by our research team in blood serum repre-

sented the lesser percentage than in healthy patients [46], however, SFAs were reported in our

patients in greater percentage.

We have established that the greatest differences in FAs groups were present in ATME, and

they were dependent on tumor grade. UFAs and MUFAs were negatively correlated with

tumor grade, whereas the SFAs were positively correlated with tumor grade. Zhao [47] assess-

ing data from epidemiological meta-analysis of endometrial cancer risk formulated similar

statements. We have calculated that n3 FAs in the serum were positively correlated with tumor

grade, the n6/n3 ratios in the serum were negatively correlated with tumor grade, and that

C20:4/(C20:5+C22:6n3) ratio in the tumor was negatively correlated with tumor grade.

We were surprised by a positive correlation of n3 FAs with tumor grade, because these FAs

are perceived more often as anticancer or lowering cancer risk [48]. According to Mansara

[49], an increase intake n3 FAs supply may help prevent and/or cure cancer; however, the vari-

ation in the n6/n3 FA ratio influences the modulation of signals that can regulate cell growth.

Engagement of particular FAs and FAs groups in lipid changes accompanying prostate and

breast cancer growth is predictable [50–52] however, it is sometimes different from the

expected.

Observations by Zhang et al. [53] concerning FAs in serum in the patients treated due to

polyps and cancer of large intestine, on positive correlations of n-3 PUFAs, C22:6 n-3, total n-

6 PUFAs, C18:2 n-6, ratio C20:4 n-6 and (C20:5 n-3 +C22:6 n-3) with tumor, and on negative

correlations of these FAs and C20:4 n-6 and (C20:5 n-3 +C22:6 n-3) ratio with polyps led the

Authors to the conclusion that n3 FAs played a controversial role both in polyps creation and

carcinogenesis.

Juxtaposition of the data on n3 PUFAs contribution to carcinogenesis allowed Baracos [54]

to present a thesis that n-3 PUFA have an influence on cancer at all stages of initiation, promo-

tion, progression, and neoplastic transformation. It is possible thanks to n3 PUFAs ability to

change the balance between pro- and antiapoptotic activity of Bcl-2 protein in favor of cancer

cell death [55], thanks to EPA ability to suppress cell division through translation initiation

suppression [56], thanks to the mechanisms of attenuation of wasting by n-3 PUFA centre

largely around catabolic signal transduction by cytokines, eicosanoids and tumour-derived

proteolysis-inducing factor [57], through antiangiogenic [58] and antimetastatic [59] activity

of n3 PUFAs. In patients with advanced cancer thanks to n3 PUFAs supplementation it was
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possible to suppress pro-inflammatory response accompanying cancer, and obtain body mass

gain positively correlating with EPA level in serum [60].

Accordingly to our beliefs, n3 PUFAs participate in cancerogenesis through decrease of

inflammation in tumor, lipogenesis in ATME limiting, and egzogenic FAs in serum supply

limitation.

Mutual correlations between individual FAs

Correlations estimated by our research team between the percentage of FAs in tumor, ATME

and serum indicated to the presence of distinct associations for each of the environments, in

addition, dependent on tumor grade. Whereas the strongest correlations were observed in

tumor grade 3, they could be assigned partly to the small number of the researched patients.

However, in comparison to grade 1+2, the correlations concerned lesser number of the FAs.

The results along with scientific literature data enabled to create the image of changes accom-

panying the tumor which are present in the researched environments.

In the existing tumor with accompanying inflammation the strongest correlations showed

support for the inflamed condition [61–64], decrease in energy production [32, 65], as well as

pro-apoptotic effect limitation [66]. Our research team did not research the condition of

inflammation; it only can be concluded on the basis of the presence or increased number of

pro-inflammatory FAs which are the precursors of pro-inflammatory eicosanoids, prostaglan-

dins and tromboxanes.

In ATME, microenvironment adhered to the tumor, macroscopically and microscopically

free from cancerous infiltration, correlations between FAs showed the possibilities of suppress-

ing the progression of the already existing cancer promotion [67–69], limitation of inter-cellu-

lar communication and energy production [65], initiation of the response to progressing

inflammation in tumor [70–75].

In blood serum, on the one hand there were the correlations between FAs concerning FAs

included in diet and not engaged in lipogenesis in favour of tumor, however, used in this pro-

cess due to energy demand, of which they may be the source [65, 76, 77]; on the other hand,

they announced lipogenesis promotion in favour of tumor and limitation the anti-cancerous

activity [78].

Conclusions

In conclusion, the results point to ATME as the microenvironment which is extremely active

in lipid metabolism accompanying SCC of the oral cavity. This is reflected by high content of

certain FAs mainly in ATME and decrease in frequency of some other FAs in tumor in com-

parison with ATME. ATME was the environment in which the greatest number of FAs showed

differences in percentage content between G1+2 and G3 tumors and these differences were the

largest. Primary role of tumor grade in these changes was revealed mainly in ATME although

in all three environments, i.e. tumor, ATME and serum, tumor grade influenced the number

and magnitude of associations between particular FAs.

Moreover, significant differences in FAs content between G1+2 vs G3 SCCs suggest that

different FAs may play a role in metabolism of lower (G1+G2) and higher grade (G3) tumors

and high content and frequency of certain FAs in grade 3 tumors suggest FAs significance in

the process of tumor progression. The results show that relation between percentage of certain

FAs and tumor grade may be positive or negative depending on the microenvironment.

Finally, correlations between percentage content of particular FAs within the same microenvi-

ronment differed depending on tumor grade. The correlations suggest that in tumors grade 3
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lipogenesis in tumor tissue coexisted with inflammation and in tumors grade 1+2 lipogenesis

was modulated by EPA.
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