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Abstract

Background: Previous extreme heat and human health studies have investigated associations either over time (e.g.
case-crossover or time series analysis) or across geographic areas (e.g. spatial models), which may limit the study
scope and regional variation. Our study combines a case-crossover design and spatial analysis to identify: 1) the
most vulnerable counties to extreme heat; and 2) demographic and socioeconomic variables that are most strongly
and consistently related to heat-sensitive health outcomes (cardiovascular disease, dehydration, heat-related illness,
acute renal disease, and respiratory disease) across 67 counties in the state of Florida, U. S over 2008-2012.

Methods: We first used a case-crossover design to examine the effects of air temperature on daily counts of health
outcomes. We employed a time-stratified design with a 28-day comparison window. Referent periods were
extracted from +7, £14, or + 21 days to address seasonality. The results are expressed as odds ratios, or the change
in the likelihood of each health outcome for a unit change in heat exposure. We then spatially examined the case-
crossover extreme heat and health odds ratios and county level demographic and socioeconomic variables with
multiple linear regression or spatial lag models.

Results: Results indicated that southwest Florida has the highest risks of cardiovascular disease, dehydration, acute
renal disease, and respiratory disease. Results also suggested demographic and socioeconomic variables were
significantly associated with the magnitude of heat-related health risk. The counties with larger populations working
in farming, fishing, mining, forestry, construction, and extraction tended to have higher risks of dehydration and
acute renal disease, whereas counties with larger populations working in installation, maintenance, and repair
workers tended to have lower risks of cardiovascular, dehydration, acute renal disease, and respiratory disease.
Finally, our results showed that high income counties consistently have lower health risks of dehydration, heat-
related illness, acute renal disease, and respiratory disease.

Conclusions: Our study identified different relationships with demographic/socioeconomic variables for each heat-
sensitive health outcome. Results should be incorporated into vulnerability or risk indices for each health outcome.
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Introduction

The frequency of heat waves has increased in Europe,
Asia, and Australia [1, 2]. Meehl and Tebaldi (2004) and
Beniston et al. (2007) also projected that future heat
waves will be more intense, more frequent, and longer
lasting in Europe and North America [3, 4]. Multiple
studies reported that extreme heat elevates the mortality
and morbidity risk from cardiovascular [5-7], respiratory
[8, 9], heat-related [10, 11], and renal disease [12, 13].
With an increase in the total number of older adults
worldwide, the impact of heat waves is predicted to get
worse in the future.

Heat stress is not only influenced by heat exposure,
but also by demographic factors and social determinants
of health (SDOH). Demographic factors, such as age
[14-17], sex [18-20], and race/ethnicity [21, 22], influ-
ence the adaptive capacity of individuals to extreme heat
exposure through physiological processes or socioeco-
nomic status. SDOH also affect the impact of heat waves
on human health. Financial assets (e.g. money, vehicles,
housing), human capital (e.g. education), and social cap-
ital (e.g. churches, neighborhood associations, friend
groups, etc.) readily influence people’s well-being and
vulnerability [23-25]. For example, employment status
(e.g. unemployment rate, labor force) and occupation
type (e.g. agriculture and construction) are highly associ-
ated with vulnerability to heat waves since it could rep-
resent the amount of human and financial capital and
the magnitude of heat exposures during hazards [26].

Historically, almost all extreme heat and human health
studies have examined associations either over time (e.g.
case-crossover or time series designs) or across geo-
graphic areas (e.g. spatial analysis). This analytical choice
sometimes narrowed research scopes and areas due to
limited health outcomes and patient information re-
stricted by health information privacy. In case-crossover
designs, each case serves as his or her own control,
which strengthens causal inferences [27]. Although the
case-control study design implicitly controls for time-
invariant individual confounders (e.g. age, sex), it pro-
vides limited information about heat vulnerability be-
tween geographic areas. In addition, only a very limited
number of variables such as age, sex, and race/ethnicity,
excluding most socioeconomic variables (e.g. occupation,
income, education), were studied due to privacy issues.
Instead of focusing on time, geographic studies often
map extreme heat vulnerability using a combination of
pre-selected SDOH. In general, this technique can iden-
tify areas with disproportionately high heat-related mor-
tality and morbidity rates [28, 29]. However, validation
studies suggest some of the pre-selected SDOH are not
consistently associated with health outcomes [30, 31].

Our study examines the relative importance of SDOH
for five different heat-related health outcomes
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(cardiovascular disease, dehydration, heat-related illness,
acute renal disease, and respiratory disease) over 2008—
2012. The study sequentially combines a case-crossover
design and spatial analysis to identify the counties in
Florida most vulnerable to extreme heat and the stron-
gest and most consistent SDOH related to heat-sensitive
health outcomes. This methodology attempts to address
research gaps by providing more insight into SDOH heat
sensitivities and increasing the accuracy of vulnerability
mapping.

We first calculate the increase in likelihood of health
outcomes when temperature rises through a case-
crossover design for 67 counties in the state of Florida.
Many case-crossover studies in the past averaged results
over an entire state or multi-county region. Then, the
study regresses SDOH on the case-crossover odds ratios
(ORs) to identify the most consistent and strongest
SDOH metrics. This alternative method of identifying
place-based risk factors may be more accurate than vul-
nerability indices created with pre-selected risk factors.
This research may increase the accuracy of vulnerability
mapping and help identify high risk groups who can fur-
ther benefit from public health interventions.

Methods

Study location and period

The study area included all 67 counties in the state of
Florida, U.S. The analysis period only included the warm
season (May through September) from 2008 to 2012.
Our analytic framework used weather, health, and demo-
graphic and socioeconomic variables in Florida. Below,
we detail each component of our analytic framework as
it was applied to measure SDOH vulnerability at the
county level.

Weather data

We utilized model-derived weather data, North America
Land Data Assimilation System phase 2 (NLDAS-2) data.
Observational data may be more accurate than model-
derived data. However, this data type might not be ideal
for studying broad areas, such as state and country, due
to limited observational network coverages. For example,
there were 92 weather stations for the research period in
Florida, which only covered 40 out of 67 counties (Glo-
bal Surface Summary of the Day; https://gis.ncdc.noaa.
gov/maps/ncei/cdo/daily). In addition, weather station
data have different systematic errors depending on wea-
ther station networks [32].

On the other hand, the NLDAS-2 data provide
spatially and temporally consistent model-derived wea-
ther data from 1979 to the present. Even though coastal
areas tend to have higher biases, up to - 1.48 °C for max-
imum temperature, no significant biases were found
from heat island effects and land cover (water fraction)
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[33]. The data also produce a wide range of atmospheric
variables, including temperature, humidity, pressure,
wind, and precipitation, based on a 12-km spatial and
hourly temporal resolution. The NLDAS-2 data were
originally interpolated from North American Regional
Reanalysis data, which had a 32-km spatial resolution
and 3-h temporal frequency [34].

We considered daily maximum, mean, and minimum
temperature from NLDAS-2 to find the association be-
tween heat exposure and daily number of emergency de-
partment (ED) visits and hospital admissions. We also
employed daily maximum Heat Index (HI) using Eq. 1
with some adjustments [35, 36]. To increase the repre-
sentativeness of heat exposure in the analysis, we devel-
oped population-weighted heat exposure metrics using
ZIP code centroids and 2010 census block level popula-
tion data. More details can be found in Jung et al. [37].

HI = -42.379 + 2.049015T
+ 10.143331R-0.224755TR-6.83783
x 1073 T? - 5.481717 x 1072R?
+1.22874 x 1073T?R + 8.5282
x 107*TR*- 1.99 x 10 °T?R? (Eq.1)
, where T is air temperature (°F) and R is relative hu-
midity (%).

Health data

The Agency for Health Care Administration (AHCA) is
Florida’s principal health policy and planning entity that
administers Medicaid, licenses health care facilities, and
distributes healthcare data. AHCA provided deidentified
ED visit and hospital admission data which contained
primary and secondary diagnoses and billing information
at the individual level. Based on the International Classi-
fication of Diseases Clinical Modification 9th revision,
we selected all ED and hospitalization data for cardiovas-
cular disease (390-459), dehydration (276.51), heat-
related illness (992, E900.0, E900.1, E900.9), acute renal
disease (584.5-584.9), and respiratory disease (460—519).
We then removed subsequent visits by the same patient
in the following 7 days (dehydration, heat-related illness,
respiratory disease) or 28 days (cardiovascular disease
and acute renal disease) to increase independence be-
tween illnesses with deidentified (masked) SSNs. The
Florida Department of Health Human Subjects Commit-
tee approved the project (# 2020-033-UW).

Demographic and socioeconomic data

Publicly available rolling five-year ACS data (2008—2012)
and U.S. Decennial Census data (2010) provided demo-
graphic and socioeconomic data. The U.S. Census Bur-
eau conducts nationwide surveys with different
purposes. U.S. Decennial Census data count the number
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of people for the purpose of congressional apportion-
ments every 10 years. ACS data are designed to measure
the annual changes in socioeconomic characteristics of
the U.S. Population [38]. These datasets share similar
questions on demographic (e.g. age, sex, race/ethnicity),
social, economic, and housing characteristics. The sur-
veys follow different residence rules. Whereas U.S. De-
cennial Census data follow a “usual residence” rule, ACS
data use a “current residence” rule. In addition, the time
of year when data are collected varies in the datasets.
While ACS data use all 12 months of data, the U.S. De-
cennial Census data describe the data collected from
March through June (when census mail returns are
received).

Based on previous papers on SDOH, we selected a
total number of 30 demographic and socioeconomic var-
iables which include age, sex, race/ethnicity, employ-
ment, wealth, education, housing, single-parents family,
and urbanicity (Table 1) [39, 40]. We primarily used
ACS data to avoid potential uncertainties and errors
from combining two different data sets. Only two vari-
ables, percent of population who are 65 and over in
nursing facilities and percent of population living in
rural block groups, were attained from U.S. Decennial
Census data, since ACS did not collect this information.
More details on variable selection can be found in sup-
plemental material.

Analytic approach

Our analytic framework can be largely divided into two
steps. First, we respectively calculated the county level
ORs up to 10days lag for five heat-related health out-
comes (i.e. cardiovascular disease, dehydration, heat-
related illness, acute renal disease, and respiratory dis-
ease) with daily ED visits and hospital admissions using
a case-crossover design. Next, we investigated the rela-
tionship between the derived ORs at lag 0 (concurrent
day) and social determinants using either multiple linear
regression (MLR) or spatial lag models at the county
level. Our models used the ORs as a dependent variable
and demographic and socioeconomic variables as inde-
pendent variables.

Case-crossover analysis

We employed a semi-symmetric bidirectional time
stratified case-crossover study design to investigate the
impact of extreme heat on daily number of ED visits and
hospital admissions. This design is especially useful
when studying transient effects (e.g. extreme heat and
air pollution) on the risk of acute health events. We
compared the temperature metrics when a patient vis-
ited the ED or hospital (case) with the temperature met-
rics when the patient did not seek healthcare (control)
within a 28-day comparison window. We extracted
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Table 1 List of demographic and socioeconomic variables at the county level. All data are downloaded from ACS data except for

two variables using U.S. Decennial Census data (marked with *)

Description

Unit

Age Median age

Under 5 years

Over 65 years

*QOver 65 years in nursing facilities
Sex Female

Race/
Ethnicity

Non-Hispanic White

Non-Hispanic Black

Year

Percent

Percent

Percent

Non-Hispanic other races (American Indian, Asian, Native Hawaiian, or other races)

Hispanic

Employment Labor force

(16 years and

older) Unemployment rate

Farming, fishing, mining, and forestry
Construction and extraction
Installation, maintenance, and repair
Services
Wealth (assets,
capital) Median household income
Median gross rent
Median house value
Households earning $10,000 or less
Households earning $200,000 or more
Households receiving food stamps/SNAP
Population 16 years and older below poverty level
Housing units with no automobile

Education

Average income earned per person (Per capita income)

Population 25 years or older with less than a high school diploma

Percent

Dollar

Percent

Percent

Population 5 years and older speaking English as a second language with limited English proficiency (those who speak

English not very well or not at all)
Housing Median year structure built
Housing units that are mobile homes
One-parent Children under 18 years living in one-parent families

Urbanicity *Population living in rural block groups

Year
Percent
Percent

Percent

controls from +7, £14, or + 21 days to address the weekly
and seasonal cycles of health outcomes. Because each
case acts as his/her own control, all time-invariant con-
founders were controlled for by design.

We used conditional logistic regression models to de-
termine ORs for health outcomes per unit change (°C) at
the county level. An OR significantly greater (less) than
1 indicates a unit change in temperature increases (de-
creases) the likelihood of health outcomes. After separ-
ately examining four types of heat exposure metrics
(maximum, minimum, mean temperature, and max-
imum HI) and temporal lags (0 to 10 days prior), we se-
lected a concurrent day mean temperature, which

exhibited the best fit and lowest AIC with health out-
comes (Supplemental Table 1).

Spatial SDOH analysis

The study examined the relationship between county
level case-crossover ORs and demographic/socioeco-
nomic variables (Table 1). We initially checked for po-
tential multicollinearity between the 30 demographic/
socioeconomic variables. Strong and consistent associa-
tions between two or more independent variables may
undermine the statistical significance of an independent
variable and give inflated or wrong coefficients. To avoid
multicollinearity, we deleted twelve variables with



Jung et al. BMC Public Health (2021) 21:1999

bivariate Pearson correlation coefficients >0.7: median
age, non-Hispanic White, median household income,
median gross rent, median house value, households
earning $200,000 or more, households receiving food
stamps/SNAP, population 16 years and older below pov-
erty level, population 25 years or older with less than a
high school diploma, population five years of age and
older speaking English as a second language with limited
English proficiency, housing units that are mobile
homes, and population living in rural block groups [41].
All Pearson correlation coefficients between independent
variables can be found in Supplemental Table 2.

With the remaining variables, we separately built ten
different statistical models for the five different health
outcomes of ED visits and hospital admissions. The
dependent variable was the ORs derived from case-
crossover results, and independent variables were the
remaining 18 demographic/socioeconomic variables.
Each model used a different set of independent variables
identified through a backward stepwise AIC variable se-
lection procedure. This selection process begins with a
full model which contains all 18 independent variables.
Then, the model sequentially removes any independent
variables which do not improve model fit based on AIC.
This removal process stops when there is no further
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model improvement, and the final model tends to con-
tain the lowest AIC value.

We considered both aspatial and spatial models to
control for residual spatial autocorrelation. Spatial auto-
correlation refers to geographically nearby values tend-
ing to have similar values. Spatial autocorrelation can
introduce biases or errors in a study of this type [42, 43].
We first started with aspatial MLR models to relate the
ORs for each health outcome and demographic/socio-
economic variables. We then checked for violations of
model assumptions, specifically in normality of residuals
using the Kolmogorov-Smirnov normality test and for
spatial autocorrelation using the Global Moran’s 1. Glo-
bal Moran’s I is a commonly used term to measure the
degree of clustering. In general, a value near 1, 0, and - 1
indicate clustering, random, and dispersion, respectively.
If spatial autocorrelation was found in the model resid-
uals or if spatial models had better AICs than aspatial
model, we employed spatial lag models. Otherwise, we
used aspatial MLR models.

For spatial lag models, we used a basic first-order
queen contiguity-based approach to define neighbor-
hood weights without row standardization. Spatial lag
models can estimate the impact of local (direct impact),
spillover (indirect impact, neighbor), and total impact.
We only reported global average total impacts and p-

Table 2 Total number of cases and a summary of mean temperature for cases and controls at lag 0. ED and HSP respectively stand

for emergency department visits and hospital admissions

Total cases Minimum (°C) Average (°C) Maximum (°C)

Cardiovascular disease ED Case 1,908,926 124 276 33.7
Control 5,726,778 12.1 274 33.7

HSP Case 2,330,824 124 276 337

Control 6,992,472 121 274 33.7

Dehydration ED Case 120,432 13.1 276 33.7
Control 361,296 122 273 337

HSP Case 251,649 124 276 337

Control 754,947 12.1 274 337

Heat-related illness ED Case 13,708 186 284 337
Control 41,124 126 278 33.7

HSP Case 2849 17.8 285 335

Control 8547 15.1 279 335

Acute renal disease ED Case 10,135 14.0 277 335
Control 30,405 12.2 274 33.7

HSP Case 337,879 124 276 337

Control 1,013,637 121 274 337

Respiratory disease ED Case 1,528,839 124 275 337
Control 4,586,517 12.1 273 337

HSP Case 1,206,701 124 276 337

Control 3,620,103 12.1 274 337
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values since the purpose of the model was controlling
for residual autocorrelation as opposed to providing
insight into spatial processes. All calculations were done
with the R (V. 3.6.2) statistical analysis and computing
program. Spdem and spatialreg packages were used to
create spatial lag models and to calculate Moran’s I
Monte Carlo estimated p-values. Because of the limited
number of cases, we were not able to make statistical
models for heat-related illness hospitalization and acute
renal disease ED visits for the second step.

Results

Descriptive summaries

Table 2 displays the total number of cases and a sum-
mary of daily mean temperature for cases and controls
at lag 0. Overall, cardiovascular disease and respiratory
disease had the highest number of cases, followed by de-
hydration, acute renal disease, and heat-related illness.
The number of hospitalizations was higher than ED
cases for cardiovascular illness, dehydration, and acute
renal disease, while the opposite was observed for heat-
related illness and respiratory disease. Cases tended to
have slightly higher average and minimum values of
daily mean temperature than controls throughout five
illnesses. In particular, heat-related illness showed the
greatest difference of 0.6°C in average values of daily
meant temperature for both ED visits and hospitaliza-
tions. In addition, we observed a relatively large differ-
ence from the minimum value of daily mean
temperature for heat-related illness (ED: 6.0°C;
hospitalization: 2.7 °C). Otherwise, there were no large
differences in maximum values of daily mean
temperature.

Table 3 summarizes the average heat vulnerability fac-
tors at the county level. Note that the average of risk fac-
tors at the county level is not equivalent to the average
for the entire state. Median age ranged from 29.6 to 63.0
with an average of 42.0years. Vulnerable people aged
under 5 and over 65, respectively, was 5.6 and 18.3% of
the total county population. The female population
(48.7%) was slightly smaller than male population. Non-
Hispanic White (79.3%) comprised the highest portion
of the population, followed by non-Hispanic Black
(14.5%), and non-Hispanic other races (6.2%). Even
though the county level average Hispanic population
was 12.5%, some counties such as Miami-Dade (64.6%),
Hendry (49.0%), and Osceola County (45.8%) showed a
higher proportion of Hispanic people (Supplemental
Table 3). On average, at least 10% of the people in a
county worked outside, including workers in agriculture,
fishing, mining, and forestry (2.5%) and construction and
extraction (7.8%). Median household income was
$44,269, with 8.2 and 2.5% of households earning less
than $10,000 and more than $200,000 respectively.
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Approximately 10 % of people used food stamps, and
16.0% of people were below the federal poverty level.
More detailed information by county can be found in
Supplemental Table 3.

Spatial distribution of ORs

Figure 1 shows the spatial patterns of county level ORs
at lag 0. Southwest Florida clearly showed higher ORs
compared to the rest of Florida for cardiovascular and
respiratory illness (Fig. 1 A, B, L, J). ORs for dehydration
hospitalization and acute renal disease hospitalization
were also higher in southwest Florida (Fig. 1 D, H) and
the Florida Panhandle and southwest Florida had higher
ORs for heat-related illness (Fig. 1 E, F). However, we
were not able to observe any patterns from dehydration
ED and acute renal disease ED (Fig. 1 C, G). Sensitivity
analyses up to 7 lag days showed similar spatial patterns
(Supplemental Fig. 1). All diseases were most sensitive
to the concurrent day’s temperature compared to all
other seven lag days.

The relationship between concurrent ORs and SDOH

To find the relationship between the concurrent ORs
and SDOH, we tested both aspatial (MLRs) and spatial
models (spatial lag model). Based on residual spatial
autocorrelation and AIC, we selected spatial lag models
for cardiovascular disease ED and respiratory disease
ED/hospitalization, and MLRs for cardiovascular disease
hospitalization, dehydration ED/hospitalization, heat-
related illness ED, Acute renal disease hospitalization.
Because of the limited number of cases, we were not
able to make statistical models for heat-related illness
hospitalization and acute renal disease ED visits. Each
model had its own unique set of independent variables
representing the lowest AIC.

Table 4 summarizes the regression coefficients and p-
values corresponding to each demographic/socioeco-
nomic variable and each health outcome. The relation-
ships were generally consistent across the analysis.
Counties having more vulnerable demographics includ-
ing those over 65 and over 65 years in nursing facilities
showed higher risks of illnesses. These demographic var-
iables were significantly related with cardiovascular dis-
ease (over 65 ED 0.001; over 65 hospitalization: 0.001;
over 65 in nursing facilities ED: 0.008). This suggests
that 1 % increase in those over 65 and those over 65 in
nursing facilities raised a cardiovascular disease ED and
hospitalization ORs by 0.001 and ED OR by 0.008 re-
spectively. Those over 65 and over 65 years in nursing
facilities were also positively associated with heat-related
illness (ED: 0.008), acute renal disease (hospitalization:
0.020), and respiratory disease (ED: 0.012), indicating in-
creases in heat-related illness ED OR, acute renal disease
hospitalization OR, and respiratory disease ED OR by
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Table 3 County summary statistics of demographic and socioeconomic variables

Variable Unit Mean SsD Max Min Range
Median age Year 420 59 63.0 296 334
Under 5 years Percent 56 10 8.0 24 56
Over 65 years 183 6.8 44.5 9.5 350
Over 65 years in nursing facilities 04 0.2 1.2 0.0 1.2
Female 48.7 3.7 525 356 16.8
Non-Hispanic White 79.3 10.1 934 370 56.3
Non-Hispanic Black 14.5 9.5 55.5 29 526
Non-Hispanic other races (American Indian, Asian, Native Hawaiian, other races) 6.2 3.1 20.1 20 18.0
Hispanic 125 12.0 64.6 2.1 62.5
Labor force 53.7 83 688 26.2 426
Unemployment rate 12.6 2.5 20.6 7.5 13.1
Farming, fishing, mining, and forestry 2.5 45 232 0.0 231
Construction and extraction 78 2.2 14.7 29 11.7
Installation, maintenance, and repair 4.1 1.1 83 1.7 6.6
Services 20.5 34 355 144 21.1
Average income earned per person (Per capita income) 1000 23.1 59 37.0 13.7 234
Median household income Dollar 443 75 627 317 310
Median gross rent 0.8 0.2 13 0.5 0.7
Median house value 169.8 704 5039 75.7 4282
Households earning $10,000 or less Percent 82 28 15.8 4.1 1.7
Households earning $200,000 or more 25 1.7 8.1 0.1 8.0
Households receiving food stamps/SNAP 9.7 4.0 185 38 14.7
Population 16 years and older below poverty level 16.0 49 276 85 19.1
Housing units with no automobile 6.3 1.9 11.2 30 82
Education (less than a high school diploma) 178 7.0 40.1 72 329
English proficiency 36 44 223 0.2 221
Median year structure built Year 1986.1 4.7 2000.0 1975.0 250
Housing units that are mobile homes Percent 228 149 572 1.5 557
Children under 18 years living in one-parent families 343 6.0 583 186 39.7
Population living in rural block groups 386 339 100.0 0.0 100.0

0.008, 0.020, and 0.012 respective with 1 % increase of
these populations. The percent of female population
showed mixed results, having a positive relationship with
dehydration (ED: 0.004, hospitalization: 0.003) and a
negative relationship with cardiovascular disease
(hospitalization: — 0.001) and heat-related illness (ED: —
0.010).

Outdoor workers tended to show positive relationships
with heat-related health outcomes, while indoor workers
exhibited negative relationships. For example, the per-
cent of people engaged in farming, fishing, mining, and
forestry was positively related with dehydration (ED:
0.003). The percent of population employed in construc-
tion and extraction was also positively associated with
dehydration (hospitalization: 0.005) and acute renal

disease (hospitalization: 0.002). This exhibits that 1 % in-
crease in those employed in farming, fishing, mining,
and forestry and those employed in construction and ex-
traction, respectively, raised a dehydration ED OR, dehy-
dration hospitalization OR, and acute renal disease
hospitalization OR by 0.003, 0.005, and 0.002. On the
other hand, the percent of population working in instal-
lation, maintenance, and repair tended to show negative
relationships with cardiovascular disease (ED: - 0.003,
hospitalization: — 0.002), dehydration (hospitalization: —
0.009), acute renal disease (hospitalization: — 0.005), and
respiratory disease (hospitalization: —0.004), suggesting
decreased ORs in cardiovascular disease ED by - 0.003,
cardiovascular disease hospitalization by - 0.002, dehy-
dration hospitalization by -0.009, acute renal disease
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Fig. 1 County level ORs at lag 0. Counties having less than 30 cases were colored in white. ED and HSP, respectively, stand for emergency
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Table 4 Multiple linear regression/spatial lag model results. MLR, ED, and HSP, respectively, stand for multiple linear regression,

emergency department visits and hospital admissions. (* < 0.05)

Cardiovascular  Dehydration Heat-related Acute renal Respiratory
disease illness disease disease
ED HSP ED HSP ED HSP ED HSP ED HSP
Model type Spatial ~ MLR MLR MLR MLR - - MR Spatial ~ Spatial
lag lag lag
Under 5 years 0003* 0002 - - - - - - - -
Over 65 years 0.001*  0001* - - 0.008* - - - - 0.000
Over 65 years in nursing facilities 0.008* - - - - - - 0020 0012¢ -
Female - -0.001* 0.004* 0003* -0010* - - 0.001 - -
Non-Hispanic Black - - - - - - - - - 0.000*
Non-Hispanic other races (American Indian, Asian, Native - - - - - - - - - -
Hawaiian, other races)
Hispanic - - - - - - - - - -
Labor force - - - - 0.007* - - - - -
Unemployment rate -0001 - - - -0006 - - - - -
0.001* 0.002*
Farming, fishing, mining, and forestry - - 0003* -0001 - - - - - -
Construction and extraction - - - 0.005* - - - 0002* - -
Installation, maintenance, and repair —-0.003* - 0.005 -0.009* - - - - -0.002 -
0.002* 0.005* 0.004*
Services - -0001 0.004* - -0.005 - - - - -
0.001*
Average income earned per person (Per capita income) - - - -0.001* — - - - - -
0.006* 0.001* 0.001*
Households earning $10,000 or less - - - - - - - -0002* - -
Housing units with no automobile -0001* - - 0003 - - - - -0.001* -
Median year structure built - 0000  -0001 - - - - - - -
Children under 18 years living in one-parent families 0001* - -0.002* —-0.002* - - - - - -

hospitalization by -0.005, and respiratory disease
hospitalization by —0.004 with 1 % increase of these
populations. Somewhat unexpectedly, we found a nega-
tive relationship between unemployment rates and car-
diovascular disease (hospitalization: - 0.001) and acute
renal disease (hospitalization: — 0.002).

As for income, the higher average income per person
counties had lower risks of health outcomes (dehydra-
tion hospitalization: —0.001, heat-related illness ED: -
0.006, acute renal disease hospitalization: —0.001, re-
spiratory disease hospitalization: -0.001). In other
words, one unit increase ($1000) in average income per
person decreased dehydration hospitalization OR by -
0.001, heat-related illness ED OR by - 0.006, acute renal
disease hospitalization OR by -0.001, and respiratory
disease hospitalization OR by - 0.001. We also observed
negative associations between the percent of housing
units with no automobile and cardiovascular disease
(ED: -0.001) and respiratory disease (ED: —0.001). In
addition, the percent of one-parent families was posi-
tively associated with cardiovascular disease (ED: 0.001)

and negatively associated with dehydration (ED: - 0.002,
hospitalization: — 0.002). For comparisons of relative im-
portance of independent variables across health out-
comes, we created a table showing the full model
coefficients and p-values, which covers all 18 independ-
ent variables in Table 4 (Supplemental Table 4).

Discussion

This study illustrates the benefits of spatially analyzing
heat health sensitivities derived from a case-crossover
study design. Our identification of the strongest and
most consistent heat risk factors produced different
results than “all hazards” vulnerability mapping using
pre-selected risk factors. In our study, southwest Florida
displays the highest risks of cardiovascular disease, dehy-
dration, acute renal disease, and respiratory disease. The
higher proportion of adults over the age of 65, 24.7% ac-
cording to the U.S. Decennial Census (2010), was not-
ably higher than other regions (13.7 to 19.2%) and may
be partially responsible for increased risk. This spatial
pattern is notably different from Emrich et al. (2014)
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which suggested southeast Florida was the most vulner-
able areas to natural hazards [44]. Our study used em-
pirical morbidity data to calculate the health risks,
whereas Emrich et al. (2014)‘s vulnerability index is
based on pre-selected risk factors and not health out-
comes [44]. Our results suggest that a priori vulnerabil-
ity assessments can be improved by more explicitly
considering climate sensitive health outcomes. Social
vulnerability assessments frequently give equal weight to
individual or synthetic (e.g. principal component) risk
factors. In contrast, the regression beta coefficients de-
rived from the present study could be used as heat risk
factor weights.

In this study, we identified evidence to suggest that
demographic and socioeconomic variables influence the
magnitude of heat-related health risk. The percent of
adults over age 65 in nursing homes was one of the most
influential factors for cardiovascular disease, acute renal
disease, and respiratory disease. This result is consistent
with previous papers [45, 46]. These papers indicate that
institutionalized older adults are at higher risk than
those not living in institutions during heat waves. For
example, Stafoggia et al. (2006) found a higher OR from
those living in nursing homes (OR: 1.61, 95% CI: 1.41-
1.84) than any other age groups over 65 (65-74: 1.25,
1.12-1.38; 75-84: 1.36, 1.28-1.44; 85-94: 149, 1.37-
1.63; 95+: 1.58, 1.34—1.85) [45].

Our study also clearly showed differential heat-related
health impacts depend on occupation. When
temperature increases, the counties having more people
working in farming, fishing, mining, forestry, construc-
tion, and extraction tended to have higher risks of dehy-
dration and acute renal disease. This is consistent with
other research. Moyce (2016) reported that agricultural
workers are at high risk of acute kidney disease related
to work in hot conditions (adjusted OR 1.34, 95% CI:
1.04-1.74) [47]. High rates of chronic kidney disease
were also found from sugarcane workers in Central
America, and repeated exposure to heat stress has been
implicated as a potential cause [48]. Moreover,
temperature raises the risk of dehydration for farm
workers [49]. In contrast, the counties having larger
populations working in installation, maintenance, and
repair tended to have lower risks of cardiovascular, de-
hydration, acute renal, and respiratory disease. Accord-
ing to the U.S. Bureau of Labor Statistics, those
employed in installation, maintenance, and repair occu-
pations (43.0 h/week) had relatively shorter work hours
than mining (49.2) and construction (42.6) in 2019 [50].
The Central Statistics Office also reported that workers
in the agriculture, forestry, and fishing industries worked
50.4 h/week compared with the national average of 35.7
h/week in 2015 [51]. Those employed in farming, fish-
ing, mining, forestry, construction, and extraction spend
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a large proportion of time doing heavy physical work
outside (e.g. harvest, roofing), which can substantially in-
crease heat exposure. Furthermore, these jobs are more
physically demanding than other occupations, and
workers may not have control over their work condi-
tions to allow for adequate breaks and cooling.

Our result exhibited that high income counties con-
sistently have lower health risk of dehydration, heat-
related illness, acute renal disease, and respiratory dis-
ease. Hondula and Barnett (2014) also showed that a 1%
increase in the proportion of high-income residents
(weekly income > $1600) was associated with 8.5 fewer
heat-related hospitalizations in Brisbane, Australia [52].
Other papers support the negative relationships between
income and heat-related health risks [53—55]. The rela-
tion may exist because people with low incomes are
more likely to reside in poor indoor environments with
limited cooling [56], have limited access to healthy food
[57, 58], and not have health insurance [59, 60].

In addition, we consistently observed negative associa-
tions between health outcomes and unemployment rate
(cardiovascular disease and acute renal disease) and the
percent of housing units with no automobile (cardiovas-
cular disease and respiratory disease). We suspect these
factors may impact the number of health care visits
through limited health insurance coverage or limited ac-
cessibility to health care facilities. In the U.S., where
health insurance is frequently connected to employment,
healthcare usage is negatively associated with unemploy-
ment rate [61-63]. Comber et al. (2011) also presents
that car ownership is highly associated with assesses to
health care facilities, particularly in rural areas [64]. Fur-
thermore, we found the median building age may not be
a significant extreme heat risk factor in Florida for most
heat-related health outcomes. Kovach et al. (2015) and
Boroushaki (2017) also support that building year is not
a main factor after adjusting for population density, age,
poverty, and tree canopy [65, 66].

Finally, our novel methodology showed a couple of ad-
vantages over traditional methods. First, the approach
expands upon current research topics by providing a
way to connect heat-health associations with a wide
range of neighborhood demographic or socioeconomic
variables collected through various surveys such as
American Community Survey (ACS). Traditional strati-
fied analysis or models with interaction terms often only
examine a limited number of sociodemographic charac-
teristics, such as age, sex, race/ethnicity, due to limited
individual sociodemographic data availability. In
addition, our study provides the relative importance of
each sociodemographic data for different health out-
comes. Previous case-crossover analyses typically consid-
ered the interaction between heat and a composite
vulnerability index comprised of multiple
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sociodemographic variables. The vulnerability index pro-
vides less guidance to public health departments for in-
terventions due to less information on specific
sociodemographic risk factors. Furthermore, our ap-
proach can explicitly examine the local and neighboring
heat impact effect modification by SDOH, which could
benefit public health departments in understanding the
spatial processes of heat impacts. Traditional case-
crossover study designs, which control residual autocor-
relation using conditional Poisson regression, would pro-
vide limited information on spatial processes.

Our study design suffers from the same limitations as
other spatial ecologic studies. First, our study’s county
level correlations do not necessarily translate to
individual-level associations. For example, even though
we found a strong correlation between those over age 65
in nursing homes and cardiovascular disease, this does
not mean every individual over 65 in nursing homes has
a higher heat cardiovascular risk. Second, the results
may be contingent on the county analysis level. The
modifiable areal unit problem is commonly generated
when point data are aggregated into areal units. We
would anticipate somewhat different associations if the
same series of analyses were repeated at regional or ZIP-
code analysis levels. Finally, our demographic/socioeco-
nomic variables were from two different data sources.
Even though most of our data were from ACS, we still
included two variables from U.S. Decennial Census data.
Since there are differences regarding data collection
methods, some uncertainties and errors could be intro-
duced in the analysis.

Our study has several key policy implications for pub-
lic health practitioners and policy makers. First, our re-
sults show that each health outcome has a different
relationship with various demographic and socioeco-
nomic variables. Current warning systems and occupa-
tional health standards for heat waves (e.g. California,
Washington, Oregon State rules for heat waves) are
mostly based on a one-size-fits-all criteria (e.g. 100 °F
threshold). This study provides strong evidence that we
may need to devise an individual vulnerability or risk
index for each health outcome. Second, we provide the
relative importance of demographic and socioeconomic
variables for each health outcome. This information pro-
vides important background for determining the weights
of each variable when making vulnerability maps or in-
dexes. Given that previous maps and indexes typically
assumed equal weights without an objective way to as-
sign a weight to each variable, our results may improve
current vulnerability products. In addition, these results
could prioritize prevention efforts, prepare occupational
health and safety guidelines, and plan health care re-
source (e.g., emergency department and hospital access
and capacity planning [67]). Third, our method allows
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investigators to expand the scope of their research, and
test other possible mechanisms connecting health out-
comes and sociodemographic variables. Most previous
studies only investigated basic demographic variables
such as age, sex, race/ethnicity, due to limited individual
sociodemographic information contained in electronic
medical records. With our method, demographic and so-
cioeconomic data at various regional levels (e.g. county,
ZIP code) can be connected with health outcomes. Fi-
nally, our method provides more in-depth information
about the spatial processes of each demographic and so-
cioeconomic variable. Since each variable has a different
level of direct or indirect impacts with neighbors, differ-
ent strategies are needed for each variable. Our results
will improve health equity and reduce the overall public
health burden of negative health effects from heat
exposures.
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