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Abstract 

Cells are complex systems whose behavior emerges from a huge number of reactions taking place within and among different molecular districts. 
T he a v ailabilit y of bulk and single-cell omics dat a fueled the creation of multi-omics systems biology models capturing the dynamics within and 
betw een omics la y ers. Po w erful modeling strategies are needed to cope with the increased amount of data to be interrogated and the relative 
research questions. Here, we present MultiOmics Network Embedding for SubType Analysis (MoNETA) for fast and scalable identification of 
rele v ant multi-omics relationships between biological entities at the bulk and single-cells le v el. We apply MoNETA to show how glioma subtypes 
previously described naturally emerge with our approach. We also show how MoNETA can be used to identify cell types in five multi-omic 
single-cell datasets. 
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across all modalities. 
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he advancements in molecular biology and biotechnology
ave fostered the development of systems biology as an in-
erdisciplinary field that aims to characterize the complexity
f biological systems by integrating information from vari-
us levels of organization, ranging from molecular to cellu-
ar components. Understanding the intricate regulatory mech-
nisms governing biological processes and how they are af-
ected by human disease can facilitate advancements in med-
cal research, biotechnology, and personalized medicine ( 1 ).
he development of novel analytic approaches is facilitated
y the availability of large-scale datasets covering several
uman diseases, such as cancer, within international con-
orti such The Cancer Genome Atlas (TCGA) ( 2 ), the Hu-
an Genome Project ( 3 ) and the Clinical Proteomic Tumor
nalysis Consortium (CPTAC) ( 4 ). These community efforts
rovided researchers with an extensive array of cell pro-
les ( 5 ), greatly expanding our understanding of character-
stics underlying cellular activities. The increasing accessibil-
ty of this data has encouraged a growing interest in explor-
ng the intricate interplay of omics data to decipher emerg-
ng phenotypes, offering promising prospects across various
cientific domains ( 6–9 ). The plethora of data derived from
hese technologies enables a more refined exploration of the
ritical factors influencing disease subtyping and targeted
herapies ( 10 ). 

Statistical machine learning models can be used for the in-
egration of multi-omics data into a lower-dimensional space
s a means to gain a comprehensive visualization and under-
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standing of the data itself ( 6–9 ). Current methods for inte-
grating multi-omics data demand significant computational
resources. This is because they involve complex calculations
and storage of large intermediate structures, like distance ma-
trices and networks, that capture similarities between different
entities. These networks, originally termed Patient Similarity
Networks (PSN) ( 11 ), are a common approach. However, we
extend this concept to form an Entities Similarity Network
(ESN), recognizing its capacity to describe not only patients
but also cells, genes, proteins and other molecular entities. Fur-
thermore, multi-omics data can overcome several approaches,
such as monoplex networks ( 12 ), focused on a single molecule
layer by exploiting communications and interactions across
various biological layers. 

Here, we introduce a novel general-purpose method for
multi-omics integration called MoNETA (Multi-Omics Net-
work Embedding for SubType Analysis). This innovative ap-
proach facilitates identifying significant multi-omics relation-
ships in biological samples and individual cells, offering speed
and scalability. Our choice lies in adopting a biologically in-
formed multiplex network ( 13 ) for MoNETA, driven by three
key reasons: (i) networks are well-suited for describing entities
as nodes and expressing their similarity through edges; (ii) in-
cluding information related to biological relationships within
the multi-omics context improves the overall model’s efficacy,
merging all monoplex networks into a singular, comprehen-
sive multi-omics network; iii) heterogeneous networks allow
for the integration of entities even when they lack information
 27, 2024. Accepted: October 4, 2024 
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Figure 1. Representation of multi-omics data integration techniques. 
Fusion-based approaches unite diverse omics data into a singular model. 
Separation-based approaches build intermediate models for each omics, 
merging insights for a comprehensive analysis. Transformation-based 
approaches apply graph or kernel-dependent algorithms before 
integration, enhancing entity description. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Related works 

Multi-omics integration is an active research area, and many
methods have been proposed (see ( 7 ) for a review on PSN).
In general, we can classify these contributions according to
the phase of the process where the merging of the feature
takes place (Figure 1 ): Fusion-based , Separation-based and
Transformation-based . Fusion-based integration is executed
by concatenating different omics data sets. Separation-based
methods isolate distinct omics data sets for independent anal-
yses before subsequent integration, allowing focused explo-
ration of each data type’s unique characteristics before merg-
ing them. Transformation-based approaches apply transfor-
mations to individual omics data sets before their integration,
enhancing the compatibility and meaningful convergence of
diverse data sources. 

Fusion-based approaches involve constructing an unified
model for analyzing combined omics data. This integration
can occur through concatenation and blending methods. Con-
catenation ( 14 ,15 ) is a straightforward juxtaposition of multi-
omics data. Essentially, the data from different molecular pro-
filing platforms are combined side by side, creating larger ma-
trices that encapsulate the entirety of the information with
the drawback of not providing any dimensionality reduction.
Blending methods ( 16–19 ) utilize dimensionality reduction
techniques to merge multi-omics information. This process
retains the most crucial information for describing an entity
while significantly reducing the overall dimension of the data.
Although more intricate in implementation, blending meth-
ods are favored for their efficiency in managing data. Fusion
methods encompass a range of techniques, and one notable
approach is Multi-Omics Factor Analysis (MOF A / MOF A+)
( 20 ,21 ). This method tackles a challenge by deducing inter-
pretable (hidden) factors that capture biological and technical
variations. Specifically, MOFA utilizes Factor Analysis to re-
duce the dimensionality of the data. MOFA also aims to un-
tangle whether each factor is unique to a single type of data
or is evident in multiple types, thereby uncovering shared pat-
terns of variation across various omics layers. 

The separation-based approach ( 22–27 ) involves construct-
ing an intermediate model for each omics dataset and subse-
quently merging the outcomes for analysis using a joint model.
This method proves highly effective in elucidating relation- 
ships within individual omics datasets. By doing so, the ap- 
proach enables a more reliable feature selection process prior 
to the final integration. The results from these intermediate 
models are combined during the last integration step. The fi- 
nal phase of the analysis is then executed, utilizing various 
techniques such as majority voting ( 23 ). MDNNMD (Mul- 
timodal Deep Neural Network for Multi-dimensional Data 
integration) ( 25 ) is a separation-based approach that com- 
bines deep learning methodologies with a thorough analysis 
of molecular characteristics to enhance the diagnosis, treat- 
ment and prevention of breast cancer. This method consists of 
three autonomous models, each responsible for encoding spe- 
cific omics data types. The autonomy of these models enables 
a detailed exploration of the complex molecular landscape 
associated with breast cancer. In the final stage, MDNNMD 

merges the predictive scores generated by each independent 
model. 

Raw omics data remain unaltered in the previously dis- 
cussed methods, preserving their original structure. Contrast- 
ingly, transformation-based approaches ( 28–31 ) introduce 
the application of graph or kernel-dependent algorithms be- 
fore integration. These structural transformations are well- 
suited for describing entities and identifying potential patterns 
within the data. The investigation into optimal distance met- 
rics ( 11 , 32 , 33 ) or kernel functions ( 34–37 ) stands out as the
most crucial step in constructing these methods. While ker- 
nel functions demonstrate superior performance compared to 

network-based methods ( 7 ), the latter are more accessible to 

interpret and involve less time. When integrating multi-omics 
datasets, this becomes a significant consideration, especially 
in extensive analyses like pan-cancer or single-cell integra- 
tion, where matrices can become considerably large. The ef- 
ficiency and interpretability of network-based methods, even 

with potential performance trade-offs, make them a practical 
choice. Following this, a separation- or fusion-based approach 

could be employed to achieve the intended task. An exam- 
ple of transformation-based method is the weighted-nearest 
neighbor (WNN) analysis ( 38 ), available in the Seurat pack- 
age ( 39 ) for single-cell analysis. The key steps involve indepen- 
dently calculating nearest neighbors for each data modality to 

form k-nearest neighbor (KNN) graphs. Predictions for each 

cell molecular profile are made based on its neighbors in each 

modality, with accuracy comparisons determining modality- 
specific weights. These weights, reflecting the relative utility 
of each data type, are used to construct an integrated WNN 

graph for downstream analysis. 

Materials and methods 

MoNETA (Multi-omics Network Embedding for SubType 
Analysis) adopts a transformation-based methodology by 
defining networks for individual modalities and subsequently 
merging them into a comprehensive network. The output 
of this integration process is an embedding matrix that de- 
pends on all the omics layers. Our implementation of MoN- 
ETA prioritizes scalability, can face the complex nature of 
multi-omics data and can manage non-overlapping entity sets 
among omics-layers, i.e. does not require that a given en- 
tity is represented in all layers. MoNETA is implemented as 
an R package available at the following repository: https: 
// github.com/ BioinfoUninaScala/ MoNETA . 

https://github.com/BioinfoUninaScala/MoNETA
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atasets 

n order to evaluate our model, we use one tri-modal bulk
ataset, two bi-modal, two tri-modal, and one hepta-modal
ingle-cell datasets S1. 

an-glioma data 
 multi-omic cohort of glioma samples ( 40 ) was downloaded
sing TCGABiolink ( 41 ). The integrative supervised analysis
eported in ( 40 ) has classified glioma, both lower grade and
igh grade (Glioblastoma), into seven classes according to the
ethylation, expression, mutational, and copy number pro-
les. Here, we considered 788 TCGA cases based on RNA
equencing, copy number variation and methylation availabil-
ty. In particular, for each sample, we retrieved CNV profiles
or 24 776 genes, DNA methylation levels for 1300 glioma-
pecific CpG sites, and mRNA levels of 12 985 genes of the
ombined gene expression matrix ( 40 ). 

ingle-cell multi-omics data 
ntegrating multi-omics single-cell datasets aims to leverage
nformation from diverse omics layers, enabling the compre-
ensive characterization of distinct cell types and functional
tates. To test the ability of MoNETA to handle multi-omic
atasets, we considered five omics datasets ( Supplementary 
able S1 ). 
The first bi-modal dataset, generated by ( 42 ) using the

ITE-seq protocol on human PBMC and lung cells, included
0,470 cells with measurements of 33 514 RNA levels and 52
urface proteins. ( 43 ) developed another bi-modal CITE-seq
ataset focusing on human bone marrow (BM) mononuclear
ells. This comprehensive dataset comprises over 30 672 cells,
nnotated into 27 cell types, and includes 17 009 transcript
evels and 25 surface proteins. A tri-modal dataset of human
BMCs, created by ( 44 ) using the TEA-seq protocol, com-
rised 25 517 cells and featured 36 601 RNA levels, 128 853
ccessible chromatin A T AC-seq peaks, and 47 surface pro-
eins. ( 45 ) provided another tri-modal dataset, DOGMA-seq,
n human PBMCs. This dataset encompasses 13 763 cells, dis-
ributed across 27 cell types, with 36 495 RNA levels, 68 963
ccessible chromatin A T AC-seq peaks and 210 surface protein
bundances. The hepta-modal dataset, generated by ( 46 ) using
aired-TAG and Paired-seq protocols, includes 52 781 genes
nd 2 965 565 1000-length bins distributed among DNA ma-
rices as follows: 2 443 832 A T AC bins, 500 634 H3K4me1
ins, 1 144 963 H3K4me3 bins, 452 748 H3K27me3 bins,
71 509 H3K27ac bins and 519 186 H3K9me3 bins. Due
o the large number of cells, we performed subsampling, se-
ecting four out of the initial 22 cell lines. Each cell line
epresents a different macro-class: non-neuronal cells (Non-
eu), cortical (FC), inhibitory (InNeu) and hippocampal (HC)
eurons. The filtered dataset comprises 7556 cells, anno-
ated as follows: 2553 cells as BR.InNeu.CGE, 1463 cells
s BR.NonNeu.Microglia, 2046 cells as FC.ExNeu.PT and
495 cells as HC.ExNeu.Subiculum. Each cell includes tran-
criptomic data, with DNA-level data distributed as follows:
484 cells for A T AC, 1374 cells for H3K27ac, 835 cells for
3K27me3, 1513 cells for H3K4me1, 807 cells for H3K4me3

nd 1544 cells for H3K9me3. To enable the application of
ther integration methods, such as MOFA ( 20 ,21 ) and WNN
 38 ), we had to manipulate the omics matrices in order that all
atrices contain the same cells, eventually with empty values.
his manipulation is not necessary for the MoNETA pipeline.
Integrating multi-omics data through network 

embedding 

The MoNETA workflow, depicted in Figure 2 , begins with a
collection of L omic matrices denoted as M = { M α | α = 1,
…, L }. Each matrix M α ∈ R 

f α×n α contains measurements of f α
features for a subset n α of entities, which could be bulk sam-
ples or single-cells from a total cohort of n entities. The fun-
damental goal of the MoNETA approach is to derive a matrix
EM ∈ R 

n ×d , where d < < n , encapsulating a latent space rep-
resentation of the multi-omics molecular profiles embedded
within the input dataset. To construct this model, MoNETA
follows a sequence of four essential steps. It begins with the
retrieval the input data, basic preprocessing include filtering
for expression and scaling. Following this, individual omics
networks are computed. These networks are then integrated
to create a biologically informed multi-omics network. The
final step involves executing a Random Walker with Restart
procedure ( 47 ) to achieve the multi-omics embedding. 

Single omics networks computation 

For each omics matrix M α , MoNETA builds an Entity Sim-
ilarity Network, ESN α = ( V α , E α). Here, V α denotes a set
of nodes corresponding to entities, and E α represents a set
of edges connecting every entity with its nearest neighbors
within that specific omics layer. Selecting the nearest-neighbor
entities is a computationally expensive task that involves ex-
haustively scanning all data points for each entity. To address
this, we utilize the VP-tree (Vantage Point tree) method ( 48 ),
which avoids the need to compute the full n α × n α distance
matrix. This approach allows for the fast retrieval of a set of
closest neighbors for each entity and provides the flexibility
to choose distance metrics based on the nature of the omics
data. MoNETA uses the buildIndex function from the Bioc-
Neighbors package to construct a VP-tree. Subsequently, the
queryKNN function is utilized to extract a set of neighbors
for each entity. Two approaches can be employed to select the
neighborhood for each entity: the static kNN method, where
each entity is linked to its k closest neighbors, and the dynamic
neighborhood k 

* nn approach. In the latter, a variable number
of neighbors k 

* nn , ranging from 1 to a user-defined maximum
max k , is selected for each node by applying the k 

* nn algorithm
as defined in ( 49 ) that employs a greedy approach to deter-
mine the optimal set of neighbors for each node based on the
distances from its closest max k neighbor nodes. 

Multi-omics network integration 

Subsequently, the networks ESN α created for each omics are
merged into a multiplex graph G M 

= ( V M 

, E M 

). For each entity
i in each omics α, there is a corresponding node v αi in V M 

,
such that V M 

= { v αi , i = 1…n , α = 1…L }. The edge set E M

is the union of three distinct sets: E O 

, E S and E N 

. The set E O

consists of all edges within each ESN α : 

E O 

= ∪ αENS α

The set E S contains edges connecting the same entity across
different omics: 

E S = { (v αi , v βi ) , i = 1 . . . n, α, β = 1 . . . L, α � = β} 
The set E N 

includes edges connecting an entity in one omics
to the neighbors of the same entity in another omics: 

E N 

= { (v αi , v β j ) , i, j = 1 . . . n, α, β = 1 . . . L, α � = β, (v i , v j ) ∈ E α} 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
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Figure 2. MoNETA w orkflo w. MoNETA w orkflo w f or the analysis and visualization of multi-omics networks comprises four steps. The initial step involves 
data acquisition and pre-processing. The second step involves computing single omics networks to understand the underlying relationships between 
each omics data. This step is followed by multi-omics network integration, where individual networks are combined into a multiplex network. Random 

Walker is then applied to the multiplex network to identify nodes with similar attributes. The final step in the workflow involves embedding and 
dimensionality reduction of the data, which is necessary for visualizing high-dimensional data that highlights the underlying patterns and relationships in 
the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, the final edge set E M 

of the multiplex network is: 

E M 

= E O 

∪ E S ∪ E N 

These inclusions enrich the network with comprehensive
inter-omic relationships, offering a holistic view of the biolog-
ical system. This approach defines the structural components
of the multiplex graph, elucidating the intricate connections
between nodes that represent the same biological entity across
diverse omics layers. 

Dimensionality reduction 

The multiplex graph serves as a model representing the omics
neighborhood of each entity across various omics. From this
structure, the multi-omics neighborhood of each entity is de-
rived by computing the probability distribution of reaching
other nodes in the multi-omics network through a random
walk process originating from the entity node. MoNETA em-
ploys a modified version of the Random Walk with Restart
procedure defined in ( 47 ). This procedure involves a random
walker associated with each entity, starting from the entity-
associated node (seed node) in a randomly chosen layer. In
each step, the walker randomly: (i) moves to a neighbor node
on the same layer; (ii) shifts to the same node but on a dif-
ferent layer with a probability driven by an omics transition
probability matrix � ∈ R 

L ×L ; (iii) restarts from the seed with
probability r , randomly choosing among the different L lay-
ers, based on a vector of user-provided probabilities τ = [ τ1 ,
…, τL ]. Upon completion, the Random Walk with Restart al-
gorithm computes a matrix RW ∈ R 

n ×n containing the sta-
tionary probabilities distribution of visiting other nodes in the
multiplex network starting from each entity associated node.
MoNETA uses the L × L omics transition probability matrix
� as input, guiding the random walk process towards bio-
logically meaningful inter-layer passages and favoring associ-
ations between nodes in layers exhibiting stronger molecular 
interdependence (e.g. methylation-transcription or snv-cnv).
Each element �i , j represents a random walker’s probability of 
moving from layer i to layer j . MoNETA allows a data-driven 

creation of the matrix �. The underlying concept for the au- 
tomatic construction of � is to favor transitions between lay- 
ers where nodes share similar neighbors compared to layers 
where the same node has vastly different neighbors between 

two layers. �i , j is proportional to the Jaccard index between 

the sets of edges of layer i and layer j . 
The RW matrix is then fed into a dimensionality reduction 

algorithm to yield the ultimate embedded matrix, EM ∈ R 

n ×d ,
where d < < n , indicating the latent space dimensionality. Vari- 
ous dimensionality reduction algorithms are implemented, in- 
cluding Principal Component Analysis (PCA), Uniform Man- 
ifold Approximation and Projection (UMAP), t -distributed 

Stochastic Neighbor Embedding (t-SNE) or the multiVERSE 

algorithm ( 13 ,50 ). The multiVERSE algorithm is a rapid 

and scalable method for learning node embeddings, apply- 
ing the VERSE algorithm ( 50 ) to multiplex and multiplex- 
heterogeneous networks. Specifically, it tackles an optimiza- 
tion problem aimed at minimizing the Kullback–Leibler di- 
vergence between the graph similarity distribution and the 
embedding similarity distribution while updating the embed- 
dings. If the multiVERSE algorithm is chosen as dimension- 
ality reduction method, the resulting low dimensional matrix 

must be fed into one of the other three algorithms to visualize 
the nodes neighborhood on a two dimensional space. 

MoNETA R package 
MoNETA is distributed as an R package available on 

GitHub at https:// github.com/ BioinfoUninaScala/ MoNETA .
MoNETA provides a set of functions: (i) to import, normal- 
ize and filter omics data; (ii) to perform all the integration 

https://github.com/BioinfoUninaScala/MoNETA
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nd dimensionality reduction steps as defined above exploit-
ng multi-core execution; (iii) to produce interactive visu-
lizations of omics / integrated data and similarity networks
mended with user-provided entity annotations. Finally, the
ackage can be used throughout a Shiny-based web applica-
ion providing an interactive GUI ( Supplementary Figure S6 )
hat executes the main steps of loading, integration, visual-
zation, and clustering of multi-omics data. Additionally, it
s comprised within a Docker container, accessible at https:
/ hub.docker.com/ r/ bioinfouninascala/ moneta . 

enchmarking 

e compare the performance of MoNETA with MOFA
Multi-Omics Factor Analysis) and Seurat v4 ( 39 ) WNN
Weighted-nearest neighbor) method ( 38 ), using two key met-
ics: Normalized Mutual Information (NMI) score ( 51 ) and
ccuracy score. The NMI score quantifies the similarity be-

ween predicted and actual labels while considering the data
istribution. It normalizes the Mutual Information score, pro-
iding a robust measure of clustering accuracy independent of
he dataset scale. A higher NMI score indicates a more accu-
ate and consistent clustering. The predicted labels were as-
igned through the k-means clustering algorithm ( 52 ), with
 k ’—the number of clusters - equal to the number of actual
abels. To the sake of repeatability, we fixed the seed, and the
omputation of the NMI score was repeated 100 times. The
ccuracy score was computed by using the k -nearest neigh-
or (knn) classifier ( 53 ), included in the ‘class’ R package ( 54 ).
his method assigns to each sample / cell the most representa-

ive label among its k-nearest neighbors. The size of the neigh-
orhood was set equal to 20. 
The benchmarking evaluations were performed on MOFA
atrix, on MoNETA VERSE embedding, and on the PCA

mbedding of the weighted shared nearest neighbors (wsnn)
raph. This choice was made because the metrics need to be
omputed in Euclidean space, which UMAP does not provide.

esults 

lioma sub-typing 

 e applied MoNET A to characterize glioma subtypes across
arious omics layers. Gliomas, the most aggressive form of
rain tumors, are traditionally categorized based on molec-
lar, histological and clinical attributes ( 55 ). Previous inte-
rative supervised analyses ( 40 ) classified gliomas into seven
lasses, considering methylation, expression, mutational, and
opy number profiles. IDH-mutant gliomas segregate into
odel, G-CIMP-high and G-CIMP-low classes. The G-CIMP-

ow subtype was identified through supervised gene expres-
ion and DNA methylation analysis. Similarly, IDH-wildtype
liomas are divided into four groups, including the PA-like
ubgroup discovered based on clinical grade and copy num-
er profiles ( 40 ). 
Our study analyzed copy number, gene expression profiling,

nd DNA methylation of 788 TCGA cases (Figure 3 A). MoN-
TA was applied to obtain an integrated multi-omics simi-

arity matrix, revealing the natural segregation of molecular
ubtypes. Samples were separated based on IDH status, and
ithin the mutant samples, two main clusters emerged: Codel

nd non-Codel (G-CIMP-high and G-CIMP-low), evident in
-SNE, PC A, UMAP and VER SE spaces (Figure 3 B). G-CIMP-
ow, associated with poor survival among IDH-mutant cases,
clustered together, bordering the IDH-mutant cluster toward
the wild-type, often linked to recurrent Glioblastoma ( 56 ) and
subject to epigenetic reprogramming ( 57 ). Similarly, the PA-
like group, exhibiting the best survival among gliomas ( 40 ),
was positioned at the border of the IDH-wildtype group to-
ward mutants or even clustered together in the VERSE and
UMAP spaces. This analysis further confirms that these two
groups genuinely embody glioma subtypes with ‘outlier’ char-
acteristics, both from the clinical and molecular points of view.
At the same time, an unique omics platform cannot char-
acterize them. Overall, the biologically informed integrative
analysis performed by MoNETA can uncover complex and
non-trivial relationships between molecular layers. WNN in
UMAP space successfully distinguished the major groups and
subgroups, similar to MoNETA. However, it incorrectly clus-
tered the LGm6-GBM group with the IDH mutant cluster
(Figure 3 C), potentially leading to inaccuracies in subsequent
analyses. MOFA did not clearly separate these outlier sub-
types. For example, the t-SNE reduction partially merged the
IDH-wildtype group with the C-CIMP subgroup, resulting in
erroneous clusterization (Figure 3 D). 

We evaluated the algorithms based on structural preserva-
tion using both NMI and accuracy scores over single-omics,
MOF A, WNN and MoNETA embeddings. MOF A and WNN
exhibited lower NMI scores, while MoNETA, demonstrated
high accuracy and the highest NMI scores. This suggests that
our model effectively integrates multi-omics data, extracting
key features. Although methylation omics performed excep-
tionally well with the highest accuracy score, it did not yield
the highest NMI, as the classification presented by ( 40 ) is pre-
dominantly driven by methylation. It is worth noticing the G-
CIMP-low and the PA-like naturally emerge from the unbi-
ased analysis with MONETA. Finally, we compared the ex-
ecution times of the three considered algorithms, MoNETA
outperforms MOFA by an order of magnitude, whereas WNN
was the fastest method, since it was specifically developed for
single-cells large datasets ( Supplementary Table S2 ). 

Single-cell data integration 

We also assessed MoNETA on the task of integrating multi-
omics single-cell data. Here, the information from diverse
omics layers can be used to characterize distinct cell types
and functional states better. The integrated low-dimensional
latent space can serve this purpose. This scenario is character-
ized by a substantial volume of observations in the order of
thousands, low measurement quality, and a significant number
of missing variables. Network-based integration of such data
poses computational challenges, particularly when contrasted
with typical bulk sequencing experiments where the num-
ber of observations is usually hundreds. To evaluate MoN-
ET A’ s performance in integrating multi-omic datasets of this
nature, we used five distinct datasets: PBMC cells from var-
ious tissues assayed with bi-modal CITE-seq and tri-modal
single-cell sequencing protocols TEA-seq and DOGMA-seq,
CITE-seq dataset of human bine marrow (BM) mononuclear
cells, and cells from the frontal cortex and hippocampus ex-
tracted from Mus musculus composing a hepta-modal dataset
( Supplementary Table S1 ). The first dataset of from PBMC
and lung cells ( 42 ) uses the CITE-seq protocol ( 58 ). MoNETA
integration (Figure 4 A, Supplementary Figure S1 A), compared
to single omics views, consolidates observable patterns in each
layer, such as pDC, fibroblasts and epithelial cells from the

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
https://hub.docker.com/r/bioinfouninascala/moneta
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
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Figure 3. Glioma sub-t yping . Embedding of glioma data. Colors show glioma subtypes identified in ( 40 ) while shapes are associated with IDH sample 
status. ( A ) Single-omics embeddings. ( B ) MoNETA embeddings. ( C ) WNN embeddings. ( D ) MOFA embeddings. ( E ) Comparison of MOFA, WNN and 
MoNETA embeddings using accuracy and NMI scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADT layer. It also reveals patterns not evident in either layer,
such as the separation of T Treg and T CD EM from TCD4
cluster. This separation is not evaluable in MOFA projections
( Supplementary Figure S1 B), where T Treg, T CD EM and T
Prolif mix together, as do T CD4 and T CD8. In contrast, the
WNN UMAP shows this differentiation more clearly, though
the cell types are still very close in space, which could lead to
errors in clustering analysis ( Supplementary Figure S1 C). 

The second dataset is a bi-modal focusing on human bone
marrow (BM) mononuclear cells categorized into 27 cell types
( 43 ). All the integration methods compared were able to dis-
tinguish most of the cell types into distinct clusters, primar-
ily relying on ADT layer projection ( Supplementary Figure 
S2 ). Notably, MoNETA VERSE UMAP and WNN UMAP
more accurately identified CD8 Effectors from CD8 Memory,
whereas MOFA tended to merge these two groups. In general
the clusters are more distinct and compact, with a better dif-
ferentiation and less overlap between different cell types. 

The third dataset, from ( 44 ), involves PBMC cells from hu-
man blood using the tri-modal TEA-seq protocol. The inte-
grated map reveals cell groups that are only observable in
specific layers, such as the distinct separation of natural killer
cells from other groups. While naive and activated B cells are
clustered together in the integrated map, they show significant
distinctions compared to their distribution in individual layers
(Figure 4 B). These distinctions are also observable in MOFA
and WNN projections ( Supplementary Figure S3 ). However,
in WNN, T CD8 and T CD4 macro groups are clustered to-
gether, whereas in other projections, they are well separated.
Additionally, the MoNETA VERSE UMAP space divides T 

CD8 Naive and Mono CD14 into two smaller groups, sug- 
gesting that further analysis could be conducted to distinguish 

these cell types more specifically. 
The fourth dataset, another tri-modal on human PBMCs,

was processed using DOGMA-seq ( 45 ). This dataset includes 
13 763 cells categorized into 27 cell types, with data on 36 495 

RNA levels, 68 963 accessible chromatin A T AC-seq peaks,
and 210 surface protein abundances. All projections success- 
fully identified clusters of NK and B cells, clearly visible in 

the ADT layer and slightly in the RNA layer ( Supplementary 
Figure S4 ). All the clusters were homogeneously separated 

by all methods. MoNETA VERSE UMAP space further di- 
vided two clusters, one containing CD4 Naive, CD4 TCM,
Eryth and Treg, and another containing CD8 TEM and CD8 

Naive, into two subclusters each. This division likely reflects 
differences in the functional collaboration and cell communi- 
cation strategies within these subgroups. 

The Paired-Tag / seq datasets ( 46 ,59 ) posed the greatest 
challenge as they comprise 7556 cells with seven omics lay- 
ers. MOFA and WNN can handle it after adding missing 
value columns to the DNA omics matrices. MoNETA, on the 
other hand, can natively manage these complexities. Some lay- 
ers, such as H3K27me3, H3K4me3, H3K9me3 and A T AC,
do not show a clear separation of the four cell types (Fig- 
ure 4 C). In contrast, data from H3K27ac, H3K4me1 and 

RNA can distinguish these types effectively. This distinction 

is also clearly visible in MoNETA VERSE UMAP space,
which further divides these groups into smaller subgroups,

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
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Figure 4. Single-cell LUNG-CITE, PBMC-TEA and paired clustering. Plots comparing the projections of cells obtained using data from individual omics 
la y ers with the MoNETA multi-omics integration for: ( A ) lung derived single-cell PBMC bi-modal assay; ( B ) blood-derived PBMC tri-modal assay; ( C ) adult 
mouse-brain derived hepta-modal single-cell Paired assay. Colors show cell types as identified in their annotation. 
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uggesting internal divisions that could correspond to differ-
nt subtypes. Although MOFA and WNN successfully sepa-
ated the four main groups, they could not identify these finer
ubgroups, highlighting MoNETA superior ability to discover
ubtypes ( Supplementary Figure S5 A–C). MoNETA outper-
ormed both methods in terms of accuracy and NMI score
 Supplementary Figure S5 D). 

iscussion 

n the era of expanding multi-omics data, the need for inte-
rative models capable of deciphering complex relationships
mong diverse biological layers has never been more pressing.
oNETA, an integrative multi-omics model, exploits a multi-

lex network representation of the similarity between entities
t single layers. The data is then embedded using neighboring
nformation with a random walk procedure. We have evalu-
ted its performance on two different tasks: the stratification
f cancer using multiple molecular layers such as copy number,
ene expression, and DNA methylation. Compared to state-
f-the-art approaches such as MOFA ( 20 ,21 ) and WNN ( 38 ),
ur model exhibited better performances regarding the com-
actness of the clusters measured by the accuracy score and
imilarity with previously established semi-supervised classi-
cation. We have shown that the glioma subtypes described
n ( 40 ) naturally emerge with our unbiased approach. This is
lso true for the two classes, G-CIMP-low and PA-like, which
ere originally derived in a supervised procedure accounting

or variation of gene expression and methylation (G-CIMP-
low) and methylation and clinical grade and copy number
(PA-like). Moreover, MoNETA is scalable enough to be ap-
plied to single-cell datasets. We showcased how using multiple
molecular layers in a single-cell can be employed to character-
ize immune cell types better. We have seen that NK and B cells
are better clustered in the integrative embedding rather than
in single layers. Missing data often affect single-cell datasets,
requiring state-of-the-art methods to account for the possi-
bility that not all entities have corresponding data in every
omics layer. We demonstrated that MoNETA can natively
overcome this issue, successfully identifying granular subtypes
in a hepta-modal dataset. Finally, it is essential to point out the
limitations of our method. One limitation of MoNETA, which
is shared with similar approaches, is the limited explainability
due to the loss of information about the single features driv-
ing the clustering in the embedding space. This can be over-
come by post-hoc differential analysis between the clusters in
the combined space. Another limitation is that the network
building is fixed on a similarity network; more efforts will
be dedicated in the future to include prior network-encoded
knowledge such as pathways, gene regulatory networks, or
protein-protein interaction networks. 

Data availability 

MoNETA is accessible as an R package on GitHub at
https:// github.com/ BioinfoUninaScala/ MoNETA . Within this
package, the TCGA glioma dataset, integral to our analy-
ses, is readily available. A stable release was deposited on

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae141#supplementary-data
https://github.com/BioinfoUninaScala/MoNETA
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Zenodo at https:// zenodo.org/ records/ 13864141 . Our pack-
age offers a user-friendly Shiny-based web application fea-
turing an interactive GUI. The application is encapsulated
within a Docker container, accessible at https://hub.docker.
com/ r/ bioinfouninascala/ moneta . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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