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Processing in one sensory modality may modulate processing in another. Here we investigate how simply

viewing the hand can influence the sense of touch. Previous studies showed that non-informative vision

of the hand enhances tactile acuity, relative to viewing an object at the same location. However, it

remains unclear whether this Visual Enhancement of Touch (VET) involves a phasic enhancement of

tactile processing circuits triggered by the visual event of seeing the hand, or more prolonged, tonic

neuroplastic changes, such as recruitment of additional cortical areas for tactile processing. We recorded

somatosensory evoked potentials (SEPs) evoked by electrical stimulation of the right middle finger, both

before and shortly after viewing either the right hand, or a neutral object presented via a mirror.

Crucially, and unlike prior studies, our visual exposures were unpredictable and brief, in addition to being

non-informative about touch. Viewing the hand, as opposed to viewing an object, enhanced tactile spatial

discrimination measured using grating orientation judgements, and also the P50 SEP component, which

has been linked to early somatosensory cortical processing. This was a trial-specific, phasic effect,

occurring within a few seconds of each visual onset, rather than an accumulating, tonic effect. Thus,

somatosensory cortical modulation can be triggered even by a brief, non-informative glimpse of one’s

hand. Such rapid multisensory modulation reveals novel aspects of the specialised brain systems for

functionally representing the body.

& 2012 Elsevier Ltd. Open access under CC BY license.
1. Introduction

1.1. Two timescales for multisensory interaction

Strong multisensory interactions exist between vision and
touch. Studies in humans have emphasised perceptual (Ernst &
Banks, 2002) or attentional (Driver & Grossenbacher, 1996) links
that relate visual and tactile information to improve multisensory
representation of a common stimulus object. Single-unit record-
ings in animals have emphasised spatial overlap between visual
and tactile receptive fields (RFs) of bimodal neurons in association
areas of cortex, notably premotor and parietal areas (Graziano,
Yap, & Gross, 1994). Findings that the visual RFs can shift to
follow the hand have been taken to suggest a function of these
neurons in monitoring peripersonal space around the hand
(Graziano & Cooke, 2006). Importantly, the visual-tactile
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interactions in parietal bimodal neurons are highly temporally
specific: information from the two modalities must arrive within
a narrow time-window of a few hundred milliseconds in order for
these multisensory neurons to integrate their various inputs
(Avillac, Ben Hamed, & Duhamel, 2007) thereby creating a unified
percept (Di Luca, Machulla, & Ernst, 2009). This accords with the
notion that temporal summation of action potentials from lower-
level unisensory areas onto higher order neurons plays an
important role in multisensory interactions at the millisecond
timescale (Stein, Meredith, & Wallace, 1993).

A second distinct class of multisensory interactions involves
more tonic neuroplastic changes in representations within
sensory areas. One striking example of neuroplastic change is
the unmasking of latent connections between different sensory
cortices following sensory deprivation. Facchini and Aglioti found
that light-depriving healthy volunteers for 90 min increased their
tactile acuity, perhaps because absence of visual signals allowed
visual cortex to be activated for tactile processing by latent
somatosensory inputs (Facchini & Aglioti, 2003). The potential
access of tactile signals to visual cortex is further supported by
functional imaging studies in healthy volunteers (Sathian &
Zangaladze, 2002), and by findings that visual cortex is recruited
during tactile Braille reading in the blind (Sadato et al., 1996), and
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even in blindfolded volunteers (Merabet et al., 2008). Finally, such
neuroplastic changes in cortical processing may involve Hebbian
associative processes: repeated paired stimulation within a single
modality (Hodzic, Veit, Karim, Erb, & Godde, 2004; Stavrinou
et al., 2007), or cross-modal pairing between vision and touch
(Schaefer, Flor, Heinze, & Rotte, 2006; Zhou & Fuster, 2000) can
lead to changes in somatosensory cortical representation and
improved tactile perception. In summary, tonic neuroplastic
changes can underlie some visual-tactile interactions. Such multi-
sensory neuroplasticity will take place over timescales from
minutes up to the whole lifespan (Merabet & Pascual-Leone,
2010), quite unlike the more ‘phasic’ type of multisensory inter-
action we described earlier.

1.2. Visual enhancement of touch

We have identified one form of visual-tactile interaction
behaviourally in humans: simply viewing the body improves
tactile perception within the viewed skin region, relative to
viewing an object in the same location (Kennett, Taylor-Clarke,
& Haggard, 2001). Importantly, this Visual Enhancement of Touch

(VET) does not involve standard feedforward convergence of
visual and tactile information about a common object, since it
can even occur when vision is entirely non-informative about
touch, for example when the tactile stimulation itself cannot be
seen (Taylor-Clarke, Kennett, & Haggard, 2004). Instead, viewing
the body seems to provide a visual context that modulates tactile
processing. Moreover electroencephalographic (EEG) and Tran-
scranial Magnetic Stimulation (TMS) studies suggest that the
visual context of seeing the body can influence processing in
early somatosensory cortex (Cardini, Longo, & Haggard, 2011;
Fiorio & Haggard, 2005; Longo, Betti, Aglioti, & Haggard, 2009;
Longo, Iannetti, Mancini, Driver, & Haggard, 2012a; Longo,
Pernigo, & Haggard, 2011; Taylor-Clarke, Kennett, & Haggard,
2002). In particular, viewing the body appears to preset the tactile
circuits involved in tactile discrimination, perhaps via top-down
links from visual or multisensory areas into somatosensory
cortex.

The timing of such modulatory effects has not been studied,
yet is theoretically important. It remains unclear if they resemble
fast mechanisms of phasic multisensory integration operating
over seconds, or slower tonic mechanisms of neuroplastic change
operating over minutes or hours. One VET study showed that
viewing the hand enhanced tactile acuity after a 2 s dark interval,
and to a lesser, but still-significant degree after 10 s (Taylor-
Clarke et al., 2004). This study implies that VET can persist for at
least 10 seconds. However, either event-related, phasic multi-
sensory integration of a body context, or slower neuroplastic
changes could potentially have effects persisting over this time-
scale. Perhaps the most critical distinction between the two
potential types of mechanism arises in the time taken for the
VET effect to develop from the moment the body is viewed. Here,
the two multisensory mechanisms outlined above make different
predictions. If VET reflects phasic integration of visual context
with incoming tactile information, it should emerge very rapidly
after viewing the body. On the other hand, if VET depends on
plastic reorganisation of visual-tactile links following prolonged
co-occurrence of touch with vision of the body, then presumably
it should require at least some minutes (Facchini & Aglioti, 2003).
To date, the time required for VET to develop has not been
investigated.

Investigating this issue would clearly require an event-related
rather than a blocked design. In previous studies, the effects of
viewing the body or a neutral object were contrasted across
separate blocks, each lasting several minutes (Kennett et al.,
2001; Taylor-Clarke et al., 2002; Cardini et al., 2011). In blocked
designs, vision might influence touch either through fast or slow
mechanisms or both. Studies of VET using event-related poten-
tials (Cardini et al., 2011; Taylor-Clarke et al., 2002) nevertheless
still blocked the visual manipulation of whether the hand or an
object was viewed, and hence did not resolve the issue. Identify-
ing the time taken for viewing one’s own body to influence touch
clearly requires manipulating visual context as a discrete visual
event, rather than by prolonged blocks involving viewing the
body or a neutral object for several successive trials.

Accordingly we have measured tactile acuity on the fingertip
for somatosensory events during a dark interval that followed
immediately after a brief, randomized glimpse either of the
participant’s hand, or of an object appearing at the same location.
Vision of the hand or an object was unpredictably intermingled in
an event-related manner. By continuously recording somatosen-
sory evoked potentials, we investigated whether this rapid,
unpredictable switching of visual context modulates somatosen-
sory processing.
2. Methods

2.1. Participants

Thirty-three naı̈ve, paid healthy volunteers (age 21–37, mean 24.2, 18

females) participated. All were right-handed as assessed by the Edinburgh

Inventory (M: 81.6, range: 12.3–100). Data acquired from two further participants

were excluded due to technical difficulties with EEG recording. Procedures were

approved by the UCL research ethics committee and accorded with the principles

of the Declaration of Helsinki.

2.2. Stimuli and procedure

Participants sat in complete darkness with their right arm resting palm-up on

a table and looked into a semi-silvered mirror aligned with their parasagittal

plane. Their right hand was positioned behind the mirror, while a hand-size

wooden block (henceforth referred to as the ‘object’) was placed in front of the

mirror (Fig. 1(A)). Two computer-controlled LED arrays were suspended behind

the mirror above the hand, and in front of the mirror above the object,

respectively. When the LED array behind the mirror was illuminated, the mirror

functioned as a window and participants saw their right hand. When the LED

array in front of the mirror was illuminated, participants saw instead the wooden

object appearing at the hand’s location. Previous studies using these mirror-box

techniques (Longo et al., 2009; Longo, Musil, & Haggard, 2012b; Mancini, Longo,

Kammers, & Haggard, 2011; Ramachandran, Rogers-Ramachandran, & Cobb, 1995)

confirmed that they successfully induce illusions of location, so that the object in

front of the mirror is perceived to be behind the mirror. Participants were asked to

focus visual attention and gaze directly towards the location of the hand/object in

all conditions. We controlled for spatial attention by ensuring that the hand and

the object were actually seen in the same spatial location. To this aim before the

experimental session the experimenter verified their perceived spatial location

both on an individual level and also by monitoring the presence of any vertical or

horizontal eye movements in the EEG recording as soon as one or the other light

was switched on. In case any eye movement was shown, the objects location was

re-adjusted and eye movements were checked again by repeating the previously

described procedure.

Electrical stimulation was delivered through ring electrodes placed over the

distal phalanx of the right middle finger. A neurophysiological stimulator provided

a square-wave pulse for 0.2 ms, at an intensity 1.4 times each participant’s sensory

detection threshold as measured by an initial staircase procedure (Cornsweet,

1962), as follows. Briefly, participants were asked to report the presence or

absence of the electrical stimulus delivered to the finger by verbal ‘yes’ or ‘no’

responses. Shock intensity began at 0 mA increasing in steps of 10 mA until the

participant reported the presence of the stimulus. If the participant responded

‘yes’ three times consecutively, the shock intensity was reduced by 5 mA. If they

responded ‘no’, intensity was increased. Progressively smaller changes were made

until the participant was able to detect between 55% and 60% of shocks delivered

to the finger. The mean threshold was 54 mA (SD 18 mA). These parameters

ensured that electric stimulation corresponded to the same somatotopic location

as the tactile perception task (see later), but did not interfere with tactile

perception.

On each experimental trial, participants first received a train of either 10 or 20

electrical stimulations at 1.4x threshold in darkness. Electrical stimuli were

delivered at 4 Hz. This relatively high stimulation rate was chosen to allow

enough trials in each condition to produce a clear ERP average despite the



Fig. 1. (A) Schematic depiction of experimental setup. Depending on illumination, participants either saw their right hand behind the semi-silvered mirror (dashed lines),

or saw a reflection of a neutral object placed in front of the mirror (solid lines). (B) Schematic depiction of an experimental trial. In complete darkness participants were

electrically stimulated several times on the right middle finger. Then either the hand or object was illuminated for 1 s at random. After illumination a second train of

shocks was presented. Finally, a robot applied an oriented tactile grating to the middle finger, and participants verbally reported grating orientation.
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relatively weak stimulation. Then, one of the two LED arrays selected at random

illuminated the hand or object for 1 s. 600 ms after illumination ceased, a further

train of either 10 or 20 shocks was presented in darkness. Finally, a tactile grating

(Van Boven & Johnson, 1994) was applied by a robotic apparatus to the right

middle fingertip. The number of electrical stimulations was randomly varied (10

or 20) to make the timing of vision and the timing of touch delivered by the robot

unpredictable, thereby forcing participants to maintain attention continuously.

There were 1040 stimuli in each experimental condition.

Tactile stimulation began immediately after the last shock, and lasted for

200 ms. Participants made unspeeded forced-choice verbal judgements regarding

whether the grating ran along or across the finger (Fig. 1(B)). The tactile grating

was selected to be just above each participant’s discrimination threshold. The

choice was based on an initial staircase procedure, using increasingly fine gratings

to identify the smallest ridge-width for which accuracy was between 55% and 60%

correct over 40 trials. The mean of the ridge widths selected by this approach was

1.01 mm (standard deviation¼0.35 mm). During the staircase procedure, partici-

pants kept their eyes closed.
2.3. EEG recordings and analysis

A Neuroscan system (Neuroscan, El Paso, TX) was used to record EEG from

electrodes placed at 17 standard scalp locations (FP1, FP2, F3, F4, C5, C3, Cz, C4, C6,

CP5, CP3, CPz, CP4, CP6, O1, Oz, O2). The reference electrode was AFz and the

ground electrode was placed on the chin. Electrode impedances were kept below

5 KO. The left and right mastoids were also recorded. Horizontal electroculogram

(hEOG) was recorded from bipolar electrodes placed on the outer canthi of each

eye, and vertical EOG (vEOG) was recorded from bipolar electrodes placed above

and below the right eye. EEG signals were amplified and digitized at 1 KHz.

EEG data were analyzed with EEGLAB (Delorme & Makeig, 2004). Data were

re-referenced to the average of the mastoids. Epochs were extracted from 50 ms

before each finger shock to 350 ms after the shock trigger and the interval

between 50 ms before the shock and the shock onset (0 ms) was used for baseline

correction. A stimulation artifact 1–11 ms after the shock trigger was removed by

linear interpolation. Data were low-pass filtered at 45 Hz. Trials with eyeblinks

(where signal in any of FP1 and FP2, hEOG left and right, or vEOG up exceeded

780 mV) or trials with signal exceeding 7120 mV in any channel were eliminated

(mean 14% of trials, SD 11%). Grand averages were visually inspected to identify

somatosensory event-related potential components. Well-known somatosensory

event-related potential components were investigated (Allison et al., 1989a;

Allison, McCarthy, Wood, Williamson, & Spencer, 1989b). Our interest focused on
components associated with early somatosensory cortical processing (P50), and

with somatosensory spatial attention (N140). Note that our 4 Hz stimulation rate

meant that P50 potential for one shock would be superimposed on any P300

potential for the immediately preceding shock, so that these two ERPs could not be

separated on purely temporal grounds. Therefore, we also investigated the P300

component. By comparing the form and scalp distribution of P50 and P300 ERPs to

established patterns (Bruyant, Garcia-Larrea, & Mauguiere, 1993; Hamalainen,

Kekoni, Sams, Reinikainen, & Naatanen, 1990), we could assess to what extent

the P50 early cortical responses to one shock were contaminated by ‘cognitive’

P300 responses to the preceding shock. Peak amplitudes for each component were

calculated by identifying maxima/minima in individual subject averages in each

condition in the prototypical time window appropriate for each component as seen

in the grand average (40–70 ms for the P50, 100–180 ms for the N140 and 290–

330 ms for the P300).

We predicted an improvement in tactile orientation discrimination from

viewing the hand, relative to viewing the object (Kennett et al., 2001). As regards

somatosensory evoked potentials (SEPs), we predicted no differences between SEP

components before visual exposure, since the view of hand or object has yet to

occur. Crucially, if VET depends on rapid phasic integration of visual and tactile

signals, we should predict a significant enhancement of somatosensory processing

components after viewing the hand, relative to after viewing the object. Con-

versely, if VET reflects tonic changes in somatosensory activation occurring more

slowly than the few seconds of our experimental trials, then no change in

somatosensory processing components is predicted after viewing the hand.
3. Results

3.1. Behavioral Results

Judgments of grating orientation were significantly above
chance both after viewing the hand (65% correct), [t(32)¼7.98;
po0.0001] or the object (62% correct), [t(32)¼5.39; po0.0001].
More importantly, the difference between these conditions was
significant: grating orientation discrimination was superior after
briefly viewing the hand compared to after briefly viewing the
object [t(32)¼2.46; po0.05, 2-tailed]. Thus a VET effect can be
induced behaviorally by discrete, trial-specific glimpses of the hand,
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interspersed unpredictably with glimpses of the alternative object
on other trials. Extended blocked viewing of the hand or object, as
in prior studies of VET (Cardini et al., 2011) is not required.
3.2. Electrophysiological results

Scalp topographic maps showed early activity localized across
contralateral central and parietal leads, corresponding to classical
somatosensory cortices, whereas later activity more broadly
distributed across the scalp.

Fig. 2 shows scalp topographic maps at three time points: at
50 ms, showing a strong positivity across the contralateral centro-
parietal cluster (C3, C5, CP3, CP5 electrodes), which overlies the
somatosensory cortex; a more broadly distributed negative activ-
ity across ipsilateral and contralateral centro-parietal sites (C3,
C5, CP3, CP5, C4, C6, CP4, CP6 electrodes) at 140 ms; a broadly
distributed positivity at around 300 ms. Three clear somatosen-
sory components were identifiable from the grand averages: a
P50 in the 40–70 ms time window, an N140 in the 100–180 ms
time window and a P300 between 290 and 330 ms. The electro-
des, which showed maximal deflection for each component, as
listed above, were selected to investigate modulations of ERPs
across visual conditions.

We had a strong hypothesis that somatosensory stimulation
and visual modulation would affect the SEP components recorded
from the contralateral somatosensory cortex, based on both
known anatomy and previous studies of SEP topography and
time-course (Cardini et al., 2011). Therefore, peak amplitudes for
each component in each condition were calculated and averaged
across electrodes overlying the contralateral somatosensory
cortex (C3, C5, CP3 and CP5). Component amplitudes were
statistically analyzed using 2-by-2 ANOVAs with factors of view
(hand vs object) and time (pre-vision vs post-vision). For P50 peak
amplitude this revealed a main effect of view [F(1,32)¼8.46;
po0.01], with higher amplitude for hand than for object, no
main effect of time [F(1,32)¼0.82; p¼0.37]. More importantly,
there was a significant view x time interaction [F(1,32)¼4.34;
po0.05]. Follow-up t-tests showed that this interaction was due
to an enhancement of P50 amplitude after glimpses of the hand.
Specifically, we found a significant enhancement of P50 ampli-
tude after the glimpse of the hand [t(32)¼�2.19; po0.05,
2-tailed] compared to before viewing the hand. No such enhance-
ment, however, was found after viewing the object [t(32)¼0.92;
p¼0.36, 2-tailed]. Comparing the hand and object conditions
showed a significantly larger P50 after viewing the hand com-
pared to after viewing the object [t(32)¼3.01; po0.01, 2-tailed],
while P50 amplitudes were comparable before visual exposure
[t(32)¼0.13; p¼0.89, 2-tailed] (see Fig. 3).

Similar analysis of N140 peak amplitude provided no evidence
for visual modulation at this later stage of somatosensory processing.
Fig. 2. Grand average scalp maps across all conditions for the P50, N140 a
The 2-by-2 ANOVA revealed no effect of view [F(1,32)¼1.41; p¼0.24],
a significant main effect of time [F(1,32)¼13.38; po0.01], and no
significant interaction between these factors [F(1,32)¼1.41; p¼0.96].
In summary, N140 peak amplitude showed an overall enhancement
after visual exposure relative to before, but this was independent of
the visual context of what was seen.

Finally, comparable analysis of P300 peak amplitude provided
no evidence for visual modulation specific to seeing the hand at
this later stage of somatosensory processing. The 2-by-2 ANOVA
did not show any significant main effects or interaction.
4. Discussion

Brief, unpredictable, and non-informative visual glimpses of
the hand, randomly intermingled with other trials where an
object was seen instead, enhanced tactile discrimination, and also
facilitated early somatosensory processing of stimulation at the
viewed skin location. The behavioural results extend previous
reports of VET obtained in paradigms where participants con-
tinuously viewed the hand across repeated trials of a block. Here,
we randomly interspersed brief 1 s glimpses of hand or object,
and showed that viewing one’s own hand can influence tactile
acuity within a few seconds of visual onset. Moreover, somato-
sensory potentials showed that this brief vision of the body also
affects tactile processing, again within a few seconds of visual
onset.

We delivered shocks every 250 ms to produce reliable SEPs
during our short experimental session. As a result, SEPs 50 ms
after stimulus onset could represent a combination of P50 evoked
by the immediately preceding shock and the P300 evoked by the
shock before. The P50 arises in early somatosensory cortex, while
the P300 is a late cognitive component. Therefore, understanding
which of these components is modulated by brief glimpses of the
body is important for the cognitive interpretation of our effects.
Classical P50 and P300 components have quite different form and
scalp topography. The P50 is maximal over contralateral somato-
sensory areas (Allison et al., 1989a; Ishibashi et al., 2000;
Mauguiere, Desmedt, & Courjon, 1983), and characteristically
shows reversal across the central sulcus. The classical somatosen-
sory P300 is a very broad peak, with a broad scalp topography
including frontal, parietal and temporal sites (Kida, Nishihira,
Hatta, & Wasaka, 2003). It is generally bilateral, at least at central
and parietal sites (Bruyant et al., 1993; Desmedt & Tomberg, 1989).

We could therefore use these classical forms to interpret the
observed P50 and P300 SEPs in our data. In particular, we could
assess whether our P50 component was contaminated by P300, or
rather our P300 component was contaminated by P50. Fig. 2
shows the scalp topography of the P50 and P300 components in
our data, averaged across subjects and conditions. The P50
nd P300 ERP components are shown (see discussion text for details).



Fig. 3. (A) Grand average ERP waveforms in the contralateral centro-parietal cluster (C3, C5, CP3, CP5) before and immediately after visual presentation of the hand

(dashed line), and object (solid line). (B) Average of C3, C5, CP3 and CP5 P50 and N140 peak amplitudes in each condition, 7 standard error.
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component shows the contralateral focus and reversal across the
central sulcus characteristic of early somatosensory components
(Allison et al., 1989b; Hamalainen et al., 1990). Interestingly, our
P300 did not show the broad distribution of the classical P300,
but instead showed a focus similar to our P50. These observations
suggest that our P300 components may be contaminated by P50
from the subsequent shock, but provide little evidence for the
reverse effect of P50 contamination by P300 from the previous
shock. This impression is confirmed by the width of the compo-
nents (see Fig. 3): our P50 component showed the narrow peak of
the classical P50. In contrast, our P300 did not show the broad
peak of the classical P300, but rather a very narrow peak similar
to our P50.

Our design involved a constant, high rate of somatosensory
stimulation to ensure enough trials to generate a clear ERP in a
single brief experiment. As a corollary, we cannot exclude some
overlap of ERP components, and should be cautious in identifying
which specific ERP components show rapid modulation from a
brief glimpse of the hand. However, for all the reasons given
above, we believe that our results provide evidence of rapid visual
modulation of early stages of tactile processing, notably the P50
component arising in early somatosensory cortex.

In contrast, as far as the second somatosensory wave observed
in the present data is concerned, no view-specific modulation of
the later N140 component was found. Instead this later compo-
nent was increased nonspecifically following glimpses of either
hand or object. The N140 component is known to be sensitive to
general attentional factors (Ohara, Lenz, & Zhou, 2006), and may
involve frontal responses driven by somatosensory inputs
(Allison, McCarthy, & Wood, 1992).

This study was designed to investigate whether VET can arise
phasically following a specific visual event of viewing the body, or
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only more tonically over the more extended timescales of neuro-
plastic changes. We found that visual enhancement of touch can
arise within a few seconds of viewing the body, and probably
influences early somatosensory processing over the same time-
scale. Specifically, we found enhanced SEPs to trains of somato-
sensory stimuli beginning 1.6 s after the onset of viewing the
hand, and immediately followed by tactile stimulation. Previous
studies had reported effects of viewing the body on early

somatosensory components (Cardini et al., 2011; Forster &
Eimer, 2005; Taylor-Clarke et al., 2002). However, those studies
used blocked designs, in which the hand or object was viewed
continuously over an extended period. Such studies cannot clarify
the time taken for viewing a body part to influence somatosen-
sory processing. The present result is the first, to our knowledge,
to address this question. Our results suggest that VET may occur
much more rapidly than the neuroplastic changes involved in
use-dependent intersensory substitution (Merabet & Pascual-
Leone, 2010), in use-dependent somatosensory plasticity
(Godde, Spengler, & Dinse, 1996), or in learning of multisensory
associations (Zhou & Fuster, 2000).

Instead, we suggest VET may reflect a special form of phasic
multisensory integration, which we call contextual integration.
Previous studies of multisensory integration emphasised rapid
feed-forward integration of visual and tactile information about
the same external object, both subcortically (Stein & Meredith,
1993) and cortically (Avillac et al., 2007). In human multisensory
perception, visual and haptic information must be present con-
currently, and perceptually bound to the same object, for such
feed-forward integration to occur efficiently (Helbig & Ernst, 2007).
In contrast, our hand and object visual stimuli were both non-
informative about the critical tactile events in our study, ruling out
explanations based on binding events in separate modalities to
form a single perceptual object (Driver, 1996). Moreover, our
randomized design with discrete visual events and intermingled
trial-types should prevent any continuous build-up of consistent
multisensory associations (Zhou & Fuster, 2000) within our experi-
ment. Thus, VET cannot simply reflect feed-forward integration of
simultaneous visual and tactile input about the same multisensory
event, nor can it reflect accumulating association between a visual
stimulus and somatosensory information.

Rather, viewing a body part could rapidly activate a represen-
tation of that body part and/or the peripersonal space around it.
Several studies confirm that such a multisensory, higher-order
representation of the body exists in parietal and premotor
association cortices (Gentile, Petkova, & Ehrsson, 2011). Recurrent
projections from these representations could then provide a top-
down modulating influence on early somatosensory cortex (Longo
et al., 2012a). This would allow a brief glimpse of the body to
influence somatosensory processing beginning rapidly after visual
onset, and with effects lasting after the activating visual input is
removed. VET may therefore provide an example of a contextual
influence on sensory processing, rather than feed-forward inte-
gration between two sensory inputs about the same external
event. Here we show that VET can emerge rapidly from discrete
visual context events, over a timescale of seconds, rather than
requiring plastic changes over several minutes. Future research
could reveal the lower bound for its operation, by identifying the
shortest visual-somatosensory intervals at which VET occurs.

The VET effects reported here are not readily explained by mere
cross-modal links in spatial attention (Kennett, Spence, & Driver,
2002; Spence, Pavani, & Driver, 2000). We controlled spatial
attention by ensuring that both hand and object were always
viewed at exactly the same location. One recent study used an
elegant factorial design to dissociate effects of viewing the hand
from effects of gazing in the direction of the hand (Forster & Eimer,
2005). The results suggested that gaze acted as a modulator of
spatial attention, affecting primarily the N140. In contrast, vision
of the hand affected the earlier P50 component, as also found here.
Our findings add the important information that P50 enhance-
ment due to VET emerges quite rapidly, after only a brief glimpse
of the hand, and then persists during a subsequent dark interval.

Our results also showed a significant enhancement of the
N140 after viewing either hand or object, compared to before
visual exposure. This could reflect either non-specific alerting
effects of visual exposure on somatosensory processing, or a
visual-tactile link in spatial attention. Specifically, visual stimula-
tion could have exogenously enhanced tactile attention at the
corresponding location, in accord with the well-known suscept-
ibility of the N140 to attention (Nakajima & Imamura, 2000).
However, we found different sensitivity to visual exposure and to
visual content for the P50 and N140. This further underlines the
distinction between effects of visual spatial attention, versus the
more specific effects of viewing the body as identified here.

Multisensory enhancement, and visual enhancement of touch
in particular, have clear adaptive value. VET facilitates processing
of tactile events on one’s own body. As soon as a body part is seen,
modulation of corresponding primary somatosensory cortex may
serve to enhance object perception on the body surface. Previous
studies in humans (Ladavas, di Pellegrino, Farne, & Zeloni, 1998;
Makin, Holmes, & Zohary, 2007) and primates (Colby, Duhamel, &
Goldberg, 1993; Duhamel, Colby, & Goldberg, 1998) confirm that
the parietal cortex, as well as other areas, maintains a multi-
sensory representation of the body and of the space surrounding
it. However, the functions of this representation are not yet fully
clear. Coordination of grasping movements and defensive
responding to potentially threats to the body surface have been
suggested (Graziano & Cooke, 2006). Our results suggest that
these multisensory representations may also modulate unisen-
sory processing.
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