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Abstract

Background: Intra-tumor heterogeneity (ITH) encompasses cellular differences in tumors and is related to clinical
outcomes such as drug resistance. However, little is known about the dynamics of ITH, owing to the lack of time-
series analysis at the single-cell level. Mouse models that recapitulate cancer development are useful for controlled
serial time sampling.

Results: We performed single-cell exome and transcriptome sequencing of 200 cells to investigate how ITH is
generated in a mouse colorectal cancer model. In the model, a single normal intestinal cell is grown into organoids
that mimic the intestinal crypt structure. Upon RNAi-mediated downregulation of a tumor suppressor gene APC, the
transduced organoids were serially transplanted into mice to allow exposure to in vivo microenvironments, which play
relevant roles in cancer development. The ITH of the transcriptome increased after the transplantation, while that of
the exome decreased. Mutations generated during organoid culture did not greatly change at the bulk-cell level upon
the transplantation. The RNA ITH increase was due to the emergence of new transcriptional subpopulations. In contrast
to the initial cells expressing mesenchymal-marker genes, new subpopulations repressed these genes after the
transplantation. Analyses of colorectal cancer data from The Cancer Genome Atlas revealed a high proportion of
metastatic cases in human subjects with expression patterns similar to the new cell subpopulations in mouse. These
results suggest that the birth of transcriptional subpopulations may be a key for adaptation to drastic micro-
environmental changes when cancer cells have sufficient genetic alterations at later tumor stages.

Conclusions: This study revealed an evolutionary dynamics of single-cell RNA and DNA heterogeneity in tumor
progression, giving insights into the mesenchymal-epithelial transformation of tumor cells at metastasis in colorectal cancer.
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Background
It is well established that cancer is pathologically
composed of different types of cells [1]; however,
intra-tumor heterogeneity (ITH) has only been
recently addressed at the genomic level [2]. ITH is
clinically important. For example, elevated copy-
number heterogeneity is related to an increased risk
of recurrence or death in non-small-cell lung cancer
[3]. High levels of ITH ultimately provide the seeds
for the emergence of anticancer drug resistance [4].
High levels of genetically characterized heterogeneity
in Barrett’s esophagus are associated with incidence
of esophageal adenocarcinoma [5].
ITH essentially stands for the cellular differences in

tumor tissue arising from genetic changes, called clonal
evolution, or non-genetic changes, such as cancer stem
cells and transcriptional responses to the environment.
In clonal evolution, as in Darwinian evolution, cancer
cells with advantageous genetic mutations evolve into
different types of cancer cells [6]. In contrast, cancer
stem cells, like normal stem cells, produce a variety of
differentiated daughter cells that constitute phenotypic-
ally distinct cancer cells without genetic differences
through epigenetic and the resultant transcriptional
mechanisms [7, 8].
A flood of studies have addressed ITH through the

variant allele frequencies (VAFs) of tumor cells in bulk,
which are calculated from sequence reads with variants
identified through next-generation sequencing (reviewed
in [2, 9]). In this bulk-cell sequencing approach, the
presence of minor clones is often reflected on lower
VAFs than the VAF of the major clone [10]. However,
this bulk-cell DNA sequencing approach is limited in re-
vealing genetic ITH because it only infers the presence
of clones, not directly observing individual cells. In
addition, the bulk-cell approach is generally not suitable
to resolve transcriptomic ITH, where transcript mixtures
from different cells are sequenced.
Single-cell sequencing is a powerful technology for

investigating ITH by identifying genomic alterations
and distinct transcriptomic states in single tumor cells
[11–19]. For example, in clinical samples of
glioblastoma, single-cell RNA sequencing showed that
individual tumor cells vary in terms of their degree of
stemness-related gene expression from extremely stem-
like to differentiated states [13]. Additionally, the exist-
ence of cancer stem cells that continuously differentiate
into astrocyte- and oligodendrocyte-like cells has been
demonstrated in oligodendrogliomas by single-cell
RNA sequencing [14]. Single-cell DNA sequencing has
also been applied to breast cancer samples to evaluate
ITH originating in genomic DNA, leading to the sug-
gestion of stepwise/sweepstake or gradual evolution of
cancer cells from single-nucleotide variation (SNV) data

[11, 12, 20]. However, these types of ITH and their re-
spective evolutionary mechanisms are based on snap-
shot data at one time point. Furthermore, either RNA
or DNA was solely examined. It is necessary to address
both RNA and DNA over time for the full elucidation
of tumor evolutionary dynamics associated with ITH.
Mouse models are convenient for controlled serial

time sampling to effectively examine changes in genomic
and transcriptomic states over time, which is practically
unrealistic with human samples. In a breast tumor
xenograft mouse model, single-cell DNA sequencing of
serially passaged samples identified tumor cell subpopu-
lations and suggested that tumor cells in the same initial
state followed the same evolutionary trajectory [21]. In
the present study, we employed a modified version of
the mouse colorectal cancer model that we previously
established [22] and sequenced both single-cell DNA
and RNA. In this model, a normal intestinal cell is
grown into organoids that model the structure of intes-
tinal crypts. After RNAi-medicated downregulation of a
tumor suppressor gene APC, the transduced organoids
are serially transplanted into nude mice to allow expos-
ure to in vivo microenvironments. In this way, the model
can mimic the development of colorectal cancer in
which a normal intestinal cell subjected to APC
impairment initiates uncontrolled cell proliferation that,
together with interactions with the intestinal microenvir-
onment, ultimately leads to the development of cancer
with ITH. We thus investigated how ITH based on the
exome and transcriptome changes over time at the
single-cell level.

Results
Colorectal cancer mouse model
The colorectal cancer mouse model was established by
knocking down APC expression in normal epithelial cells
taken from mouse intestinal crypts using short hairpin
RNA (shAPC; Fig. 1A) [22]. In the previous system, we
used bulk cells from a tissue for culture; however, in this
study, we cultured organoids from one single cell so that
heterogeneity observed in these cultures could not be
confused with heterogeneity originating from the knock-
down efficiency or intestinal crypts [23]. We grew orga-
noids for a period of 5 months so that the initial single
cell with only artificial APC intervention could naturally
obtain mutations to transform into tumor cells. The cul-
ture experiment was performed once; see “Methods” for
the experimental details.
Cultured cells were subcutaneously transplanted into a

nude mouse. One month after transplantation, the
mouse was sacrificed, and the tumor was harvested; half
of the tumor tissue was re-cultured in our three-
dimensional (3D) culture system for 1 month for the re-
moval of stromal cells. Using half-samples preserved the
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same genetic lineage over time. The process was re-
peated once more. Cells were sampled immediately
before the first transplantation at time point T1 and
at two time points T2 and T3 following the first and
second transplantations, respectively (Fig. 1A). We

sequenced single-cell RNA and DNA separately taken
from the different single cells of multiple organoids,
which descended from one single cell. We also ob-
tained a DNA sample before T1, at T0.5, 1.5 months
after culture initiation (Fig. 1A).

Fig. 1 The mouse model. A The experimental procedure and HE staining of subcutaneously transplanted tumors. One single cell was 3D-cultured
in a 96-well plate to grow organoids (see “Methods” for details). Single cell-derived organoids were taken to separate single cells, and RNA and
DNA were separately extracted from the different single cells of multiple organoids and then sequenced. The numbers of cells for RNA and DNA
sequencing in boxes are those obtained after quality control of data. The culture experiment from intestinal crypts to T3 organoids was
performed once. B Variant allele frequencies of mutations found in the significantly mutated genes of colorectal cancer by bulk-cell DNA
sequencing. See Additional file 1: Figure S1 for the annotations of the mutations
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Hematoxylin-eosin (HE) staining revealed that sub-
cutaneously transplanted organoids formed tumors con-
sisting of both glandular and non-glandular structures
(HE a and b in Fig. 1A). Glandular components in HE a
were mainly lined with single-layered epithelia, while
those in HE b were characterized by increased multi-
layered regions, loss of cellular polarity, and nuclear
enlargement. Non-glandular components had a stromal/
medullary structure consisting of spindle-shaped or
round to polygonal cells, were characteristically gelatin-
ous/fibrous, and had an abundance of fibrous stroma.
The APC expression was decreased in the APC knock-

down samples (Additional file 1: Figure S1). Out of the
31 significantly mutated genes (excluding TTN) defined
by The Cancer Genome Atlas (TCGA) colorectal cancer
study [24], we found two mutations in KRAS and TP53
by bulk-cell DNA sequencing in our model (Fig. 1B),
though the KRAS mutation was located outside of, but
close (9 bps) to, an exon and the position was evolution-
ary conserved as much as exons (Additional file 1: Figure
S1). The KRAS mutation occupied only a small fraction
(2.5%) of the population at T0.5 but increased to 46.4%
at T3. Additionally, we found nonsynonymous mutations
in six, CLTC, LRP1B, ALK, GRIN2A, MSH2, and SALL4
out of the cancer-related genes in COSMIC Gene
Census [25] (Fig. 1B). It seems that a major clone with
the TP53 mutation might have existed alongside minor
clones without this mutation at T0.5 (considering a VAF
of 48.7% at T0.5, 1–2% minor clones are possible). A
minor clone with the ALK and KRAS mutations replaced
the major clone between T0.5 and T1, during which the
number of SNVs drastically increased, as we will show
later.

Single-cell transcriptome analysis
We checked various indices of single-cell transcriptome
data to filter 42, 42, and 51 cells out of the 50 T1, 43 T2,
and 52 T3 cells, respectively (Additional file 1: Figure
S2). The median (± interquartile range) number of
mapped reads, mapping rate, and number of expressed
genes across selected cells were 6.2 × 106 (± 2.0 × 106),
61.9% (± 5.39%), and 3814 (± 889.5), respectively. There
was a strong correlation between gene expression levels
in the bulk sequencing data and average expression
levels across single cells (Additional file 1: Figure S2; R2

= 0.9). The expression levels of housekeeping genes
(GAPDH and mtATP6) [26] were well reproduced across
T1, T2, and T3 (Additional file 1: Figure S2). We per-
formed a bootstrap approach where we re-sampled
sequence reads and re-aligned them to obtain
bootstrapped expression data, and estimated that the
replicate variability of the expression levels (relative
errors of log2[TPM + 1] values) was about 1% on average
for a single cell (Additional file 1: Figure S2).

A principal component analysis (PCA) plot of cells
based on expression levels revealed increased diversity
from T1 to T2 (Fig. 2A). This was quantitatively con-
firmed by the diversity index (distance from the centroid
in the PCA space) (Fig. 2B). In the plot, T2 and T3 cells
partly overlapped but were separate from T1 cells. We
identified genes whose expression levels varied greatly
across cells at each time point; that is, these genes had
high corrected coefficient of variation (cCV) values
(Additional file 1: Figure S3), and were thus referred to
as highly variable genes. There were 8, 14, and 16 highly
variable genes at T1, T2, and T3, respectively, reflecting
an increase in variability from T1 to T2.
A cluster analysis of highly variable genes identified

three gene groups (Additional file 1: Figure S4); expres-
sion levels were correlated within two of the groups, but
not within the third group. Gene set enrichment analysis
showed that one of the correlated groups was associated
with negative regulation of keratinocyte differentiation
(referred to as anti-epithelial genes) (P = 3.80 × 10− 3),
whereas the other was associated with positive regula-
tion of cGMP and guanylate cyclase (GC) activity (re-
ferred to as cGMP/GC genes) (P = 1.30 × 10− 3), which
are known to be associated with negative regulation of
β-catenin signaling and matrix metalloproteinase activity
in colorectal cancer [27, 28].
A heatmap generated from the cluster analysis re-

vealed that T1 cells were relatively homogenous and
formed one group that highly expressed anti-epithelial
genes but showed negligible expression of cGMP/GC
genes (Fig. 2C). This group was therefore termed anti-
epithelial. In addition to an anti-epithelial cell group,
two new groups appeared at T2: one showing the oppos-
ite pattern, repression of anti-epithelial and activation of
cGMP/GC gene expression, referred to as the cGMP/
GC cell group; the other showed repression of both anti-
epithelial and cGMP/GC genes, referred to as the dor-
mant group for the marker analysis described below.
Notably, as shown in the heatmap, bulk-cell sequencing
analysis alone could not have identified these cell
groups, where their distinct expression patterns were av-
eraged in bulk-cell expression levels (labeled as T1, T2,
and T3 bulk in Fig. 2C). Using a PCA plot based on
highly variable gene expression, we confirmed that T1
cells were relatively homogeneous and T2 cells showed
similar grouping to T3 cells (Fig. 2D).

Marker gene expression
We examined the expression of several types of
marker genes. MKI67 and PCNA were used as posi-
tive markers, and CDKN1A was used as a negative
marker for cell proliferation in colorectal cancer
[29]. CCND2 and CCND3 were used as positive
markers for cell cycle in colorectal cancer [30]. E-
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cadherin (CDH1) is an epithelial marker, and N-
cadherin (CDH2), vimentin (VIM), and fibronectin
(FN1) serve as typical mesenchymal markers [31].

LGR5, ASCL2, OLFM4, MSI1, and SOX9 are crypt
base stem cell markers; HOPX, BMI1, and LRIG1 are
the + 4 (position from the crypt base) stem cell

Fig. 2 Transcriptome analysis. A PCA plot of single cells based on expression levels (genes with TPM ≥ 10 in at least one cell). T1, at the time of
3D culturing; T2 and T3, after the first and second transplantations, respectively. n = 42, 42, and 51 cells for T1, T2, and T3, respectively. B Boxplots
of Euclidean distance from the centroid in the PCA space (using full dimensions). **: P < 0.01 (two-sided Wilcoxon rank sum test). C Heatmap of
gene expression levels (in TPM). The rows represent single cells or bulk-cell samples (in the bottom), and the columns represent highly variable
genes and several types of marker genes. The cell and gene groups were determined as shown in Additional file 1: Figure S4. The red, blue, and
green codes in the rows correspond to T1, T2, and T3. “Diff.” and “Prol./cell-cyc.” represents differentiation and proliferation/cell cycle. “APC_ctrl”
indicates control samples that were cultured in our 3D culture system and derived from normal cells without APC knockdown. D PCA plot of cells
grouped based on expression levels of highly variable genes
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markers; AQP8, CAR1, CEACAM1, KRT20, and
SLC26A3 are differentiation makers for absorption
cells; and MUC2 and SPINK1 are differentiation
markers for secretion cells [32].
We first looked at proliferation/cell cycle markers

(Additional file 1: Figure S5) and performed PCA to
summarize the multiple expression levels (Fig. 3A).
Remarkably, most cells in the anti-epithelial group at T1
expressed high levels of proliferation- and cell cycle-
related genes according to the PCA loading plot (left cir-
cle, drawn by hand). In contrast, nearly all cells in the
dormant group at T3 showed a downregulation of the
marker genes (right circle; so the cell group was termed

dormant). At T2, about half of the cells showed a down-
regulation of the proliferation/cell-cycle genes.
We next examined epithelial and mesenchymal

markers (Additional file 1: Figure S5). A PCA plot of the
markers showed that expression of mesenchymal cell-
related genes decreased with time (T2 and T3, moving
from the lower left to the upper left to the middle right
circles), with cells forming two groups (Fig. 3B): one
(upper left circle) overlapping with some T1 anti-
epithelial cells with decreased mesenchymal N-cadherin
(CDH2) and fibronectin (FN1) levels; the other (middle
right circle) group was composed only of T3 cells with
decreased mesenchymal vimentin (VIM) and increased

Fig. 3 PCA and overlaid loading plots based on expression levels of markers. A About the proliferation/cell cycle. The arrow indicates the
direction from negative to positive markers in the loading plot; cells positioned in that direction in the PCA plot had higher expression levels of
positive marker genes. B About the epithelial and mesenchymal. The arrows along the x and y axes represent projected loadings in the loading
analysis, where cells positioned in that direction in the PCA plot had higher marker gene expression levels. C About stem cell and differentiation
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epithelial E-cadherin (CDH1) levels. These results sug-
gest a similarity between the processes occurring from
T1 to T2 and mesenchymal-epithelial transition (MET).
Stem cell and differentiation markers showed that over

time cells generally expressed more differentiation than
stem cell markers (Fig. 3C, from the right to left circles;
Additional file 1: Figure S5), though a remarkable vari-
ation across individual cells was also observed. Fractions
of cells with the expressions of stem cell markers de-
creased with time. Among the markers for crypt base
stem cells, SOX9 appeared to be the most influential;
LGR5, OLFM4, and MSI1 were not substantially
expressed. It seems that with time, cells differentiated
into those expressing a marker for absorption cells
(KRT20; cells in the upper left part) and those for secre-
tion cells (MUC2; cells in the lower left part) in the di-
gestive tract.
There was no remarkable change in the expression of

drug efflux genes [33, 34] at any time point (Fig. 2C), al-
though ABCB1 expression was slightly lower in the T3
dormant group (Additional file 1: Figure S5) and ABCE1
was downregulated at T2 and T3. There was variable
expression of glycolysis-related gene PDK1 [34] across
all cells, irrespective of groups (Fig. 2C; Additional file 1:
Figure S5).

Single-cell exome analysis
Based on several indices from single-cell exome sequen-
cing (Additional file 1: Figure S6), we selected 21, 23,
and 23 cells out of the 23 T1, 24 T2, and 24 T3 cells for
analysis. On average (expressed as the median [± inter
quartile range] across selected cells), the number of
mapped reads was 1.2 × 108 (± 2.2 × 107), mapping rate
was 76.6% (± 4.9%), coverage with > 0 depth regions was
76.9% (± 34.2%), average depth was 43 (± 34.5), Gini co-
efficient was 0.85 (± 0.15), allelic drop-out (ADO) rate
was 47.0 (± 36.1), and number of called SNVs was 462
(± 313.5). We compared the fractions of single cells with
SNVs to the variant allele frequencies (VAFs) of the
bulk-cell sequencing; in theory, the single-cell fractions
should be equal to half of the VAFs. We confirmed a
good concordance between these variables, although the
cell fractions were slightly lower than those expected
from bulk VAFs (Additional file 1: Figure S6).
We estimated the false-positive rate of SNVs called in

single-cell sequencing, based on normal intestinal tract
tissue samples from two mice and four single cells ob-
tained from one of these samples. We first counted the
number of SNV sites that differed between two individ-
ual mice of the pure C57BL/6J strain. For normal intes-
tinal tract samples obtained from the two mice, we
called SNVs in bulk-cell sequencing data using each of
the two samples as the foreground data and the other as
the background: the numbers were 1.0 and 4.5 × 10− 7

per chromosomal position for the two sample pairs, re-
spectively. When we called SNVs in half-split sequencing
data used as the fore- and background data for the same
sample, the number of SNVs per position was 0 and 0.4
× 10− 7 for the two samples, respectively. Taken together,
the false-positive rate in bulk-cell sequencing was es-
timated as 1.0–4.9 ([1.0 + 0.0]–[4.5 + 0.4]) × 10− 7.
Next, because we called SNVs in single cells only at
SNV sites called in bulk-cell sequencing data, the
false-positive rate in single cells was not more than
that in bulk-cell sequencing. Since 10–23% of
chromosomal positions were called by our loose cri-
teria for sequencing data from four single cells ob-
tained from normal intestinal tract tissue, the false-
positive rate per chromosomal position in single-cell
sequencing was estimated as 0.1–1.1 × 10− 7.
We first examined the bulk-cell sequence data. The

T0.5 tissue had much fewer SNVs than the later stages
(Fig. 4A), which suggests that DNA heterogeneity only
weakly appeared soon (1.5 months) after culture initi-
ation. The numbers of SNVs increased markedly from
T0.5 to T1, a 5-month period (Fig. 4A). Although these
numbers decreased slightly at T2 before recovering at
T3, they were all mostly saturated at T1, T2, and T3.
Thus, new SNVs were largely generated from T0.5 to
T1, and most of these SNVs remained in the genome
after T1 at the bulk-cell level (Fig. 4B).
We then used single-cell sequencing data to draw a

multidimensional scaling (MDS) plot based on single-
cell SNVs at polymorphic SNV sites (defined as SNVs
with 10–35% bulk VAFs) (Fig. 4C). T1 cells showed
the greatest genetic diversity, whereas T2 and T3 cells
showed less diversity. This decrease in diversity was
confirmed by a statistical significance of the diversity
index (average distance from the centroid), where the
bias due to ADO rates was taken into account by a
bootstrapping test (Fig. 4D). Interestingly, this
diversity tendency was the complete opposite of the
transcriptomic pattern (Fig. 2A, B).

Association with human cancer
We examined whether the identified cell groups featured
by expression of genes had an association with malig-
nancy represented by metastasis. We searched the
TCGA dataset [24, 35] for human colorectal cancer sam-
ples with expression patterns similar to those of the
genes characterizing the mouse cell groups. For example,
if a TCGA sample is predominantly composed of a
tumor cell group with a similar expression pattern to
that of the genes characterizing the anti-epithelial mouse
cell group, the expression pattern of the TCGA sample
should be close to that of the anti-epithelial mouse cell
group, despite the fact that the TCGA data are derived
from bulk-cell sequencing.
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In MDS analysis (Fig. 5A), among the total 244
TCGA samples, we identified 149 samples with simi-
lar expression patterns to any of the mouse cell
groups: 94 (38.5%), 42 (17.2%), and 13 (5.3%) TCGA

samples were respectively close to the anti-epithelial,
cGMP/GC, and dormant mouse cell groups. TCGA
anti-epithelial samples showed enhanced REG and re-
pressed cGMP/GC gene expression; TCGA cGMP/GC

Fig. 4 Exome analysis. A Number of SNVs called in bulk-cell sequencing. B Comparison of VAFs of SNVs called in bulk-cell sequencing at
successive time points. One point indicates one SNV; n represents the number of points. C MDS plot based on single-cell exome sequencing. “No
SNVs” and “All SNVs” represent sequences with no SNVs and with SNVs at all sites, respectively, which were artificially generated as a reference.
Error bars represent the standard deviation for each dimension calculated with a bootstrapping approach that took into account ADO rates. n =
21, 23, and 23 cells for T1 SC, T2 SC, and T3 SC, respectively. D Median Euclidean distance from the centroid over cells in the MDS space. The
black and red bars represent the observed value and 95% confidence interval calculated with the bootstrapping approach. *: P < 0.05
(bootstrapping test). n represents the number of cells
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Fig. 5 Analysis of TCGA human samples with gene expression patterns similar to mouse cell groups. A MDS plot of mouse single-cell samples
and such TCGA samples on the basis of a similarity of gene expression patterns. n = 42, 42, and 51 cells for the anti-epithelial, cGMP/GC, and
dormant groups, respectively; n = 94, 42, and 13 TCGA samples for the anti-epithelial, cGMP/GC, and dormant types, respectively. B Heatmap of
the samples. Genes are highly variable genes shown in Fig. 2C. The number of cells and cases are the same as in A. C The fraction of patients
with metastatic tumor in TCGA samples with expression patterns similar to mouse cell groups
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samples showed the opposite pattern; and TCGA
dormant samples had both repressed REG and GC-
related gene expression (Fig. 5B). Next, we examined
an association between these TCGA samples and
metastasis. TCGA cGMP/GC and TCGA dormant
samples tended to be more closely associated with
metastasis than those with patterns similar to the
anti-epithelial group (two-sided Fisher’s exact test P =
0.04; Fig. 5C).
In addition, we examined whether our mouse cancer

model corresponds to the hypermutation type of human
colorectal cancer, using our mouse bulk sequencing data
and TCGA human colorectal cancer data. SNV density
in the mouse model was closer to the hypermutation
type of human colorectal cancer (Additional file 1:
Figure S7). The expression of MLH1, the dysregulation
of which causes hypermutation, was repressed with the
levels decreasing over time (from T1 to T3) (Additional
file 1: Figure S7). The average copy number across the
mouse genome was closer to the hypermutation type, in-
dicating low chromosomal instability (Additional file 1:
Figure S7). Taken together, these results suggest that the
mouse model was closer to the hypermutation type
(albeit not extremely hyper) of human cancer.
We further analyzed corresponding histological types

and microsatellite instabilities in a machine learning
approach (random forest) using a histological type or
microsatellite instability as the objective variable and
omics (SNV/indel/RNA) data as explanatory variables.
Of the three histological types, including colon and
rectal mucinous adenocarcinoma, our mouse model was
closest to human colon adenocarcinoma, and was closer
to the MSI-high than MSI-low and microsatellite-stable
types (Additional file 1: Figure S8). Thus, our mouse
model represented the MSI-high hypermutation
(although, not extremely hyper) type of human
colon adenocarcinoma.

Discussion
Our mouse model was close to human colon adenocar-
cinoma of the MSI-high hypermutation type. In this
model, once cancer cells accumulate a sufficient number
of genetic alterations (SNVs/indels), they may be able to
adapt to drastic environmental changes, such as the shift
from a 3D culture to a live mouse, by only altering their
transcriptional profiles without further genetic changes.
Such transcriptional adaptation may cause the
generation of new subpopulations, leading to increased
transcriptional heterogeneity. Meanwhile, genetic het-
erogeneity decreased, possibly as a result of microscale
natural selection that occurred during the environmental
transition. Though expected, it is nonetheless surprising
to see that this diversity was indeed generated from one
single cell. One caveat is that the outcome of the

evolutionary path could be unique to the given experi-
ment, because the experiment from a single cell to orga-
noids after allotransplant at T3 was performed only
once.
T1 cells had the saturated number of genetic muta-

tions, expressing active cell cycle, mesenchymal, and
stem cell markers. Thus, the cells are considered as
those at a late tumor stage when they move out from
the niches or microenvironment of intestinal crypts [36].
Moreover, the emergence of the dormant and cGMP/
GC groups at T2 and T3 was associated with metastasis
in the analysis using TCGA human samples. Therefore,
our observation that cells lose their mesenchymal gene
expressions and acquire epithelial-like characteristics
after subcutaneous transplantation may be analogized to
MET during metastasis, though this implication should
be tested by further investigations of clinical samples in-
cluding single-cell sequencing of TCGA samples.
Considering the decreased DNA ITH and dominance

(90%, 883 / total 987 sites) of fixed SNVs over poly-
morphic SNVs, tumor cells were close to be genetically
monoclonal based on DNA-seq, which is in contrast to
the high ITH and presence of subpopulations detected
using RNA-seq. Using SCmut [37], a tool specialized for
calling SNVs in single-cell RNA-seq, we attempted to
find a link between the small genetic differences and
RNA subpopulations by comparing single-cell DNA
SNVs and single-cell RNA SNVs. However, we did not
find a clear association. Simultaneous single-cell se-
quencing of both DNA and RNA from the same cells
([38, 39]) may be required for further clarification.
Classically, cells that generate a tumor by subcutane-

ous transplantation are called tumor-initiating cells or
cancer stem cells (CSCs) [34]. In this classical model, it
is expected that differentiated cells die while CSCs can
survive at the start of subcutaneous transplantation and
3D culture; then, CSCs re-generate differentiated cells.
We initially expected that fractions of cells expressing
stem cell markers increased over the serial transplant-
ation, because we simply thought that it is CSCs, not dif-
ferentiated cells, that can survive at transplantation.
However, our observation was the opposite. CSCs that
efficiently generate differentiated cells may be more
adaptive for the merit of obtaining mutual benefits be-
tween different types of cells. Alternatively, contrary to
the classical expectations, CSCs may not necessarily ex-
press high levels of stem cell markers: the dormant and
cGMP/GC cells with low expression levels of stem cell
markers may be also CSCs or tumor-initiating cells that
survived at the transplantation and 3D culturing.
Nguyen et al. [40] used DNA barcoding for breast can-

cer xenografts to find several patterns of clone size dy-
namics across clones and samples at serial transplants;
however, DNA changes in the genomes after the
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insertion of barcodes were not taken into account. Eirew
et al. [21] sequenced the genomes of breast cancer
patient-derived xenografts to reveal that the same start-
ing tumor cell population could result in similar dy-
namic patterns of clone size growth at serial passages.
However, neither of these studies included transcrip-
tome analysis. Roerink et al. [41] performed multi-
regional sequencing for single cell-derived organoids of
colorectal cancers at a single time point to reveal that
even genetically close cancer cells exhibited marked dif-
ferences in responses to anticancer drugs as measured
by the IC50 value, although the transcriptome dynamics
related to these response differences were not analyzed.
We sequenced both the DNA and RNA of single-cell-
ancestral allografts of colorectal cancer at serial passages
and revealed that genetically similar cancer cells with
sufficient DNA changes diverged into two new transcrip-
tional subpopulations to respond to drastic environmen-
tal changes such as serial passages.
It is important to confirm data quality in single-cell se-

quencing. For RNA, we performed a quality control
(QC) check and filtered out cells such as those with too
many or few expressed genes and confirmed a good
correlation in the expression levels between bulk- and
single-cell sequencing (Additional file 1: Figure S2). We
further confirmed high concordance in the expression
levels of housekeeping genes between bulk- and single-
cell sequencing across all time points, and the estimated
replicate variabilities (bootstrapped relative errors) of the
expression levels were clearly smaller than the inter-
subgroup differences (Additional file 1: Figure S2). For
DNA, we used the multiple displacement amplification
method for whole-genome amplification because of the
reduced amplification bias compared to PCR-based amp-
lification [42]. We also performed a QC check and cell
filtering (Additional file 1: Figure S6) in the same man-
ner as performed for the RNA data. Moreover, SNVs
were called in single cells only when the same SNVs
were called in bulk cells and, as expected, the estimated
false-positive rate was quite small. Nevertheless, we
recognize that a high ADO rate may restrict available
analyses. For an analysis that could have been affected
by ADO, we adjusted for the ADO by a bootstrapping
method (see error bars in Fig. 4C, D). Overall, these pro-
cesses confirmed the quality of our single-cell sequen-
cing data.
Recently, more fine-scale single-cell sequencing tech-

nology, such as 10X/Drop-Seq, has emerged for RNA-
seq, enabling researchers to capture tens of thousands of
cells. Although the number of cells we addressed was
relatively small compared to that technology, we believe
that we successfully captured a major part of the hetero-
geneity constructed by cell clones, constituting as small
as ~ 2% (an inverse number of 42, 42, and 51 cells at T1,

T2, and T3) of the tumor cell population. Nevertheless,
10X/Drop-Seq will be needed to investigate rarer cells.

Conclusions
We demonstrated that time-series ITH analysis by
single-cell DNA and RNA sequencing for a mouse
model is able to deepen our understanding of the evolu-
tional processes of cancer cells and raise issues on CSCs
from the genomic and transcriptomic viewpoints. The
birth of transcriptional subpopulations of cells may be a
key for adaptation to drastic micro-environmental
changes when cancer cells have sufficient genetic alter-
ations at later tumor stages. It will be crucial to examine
how such genetic changes accumulate in the earlier
stages of tumorigenesis and how transcriptional subpop-
ulations develop to increase malignancy in the further
later stages of tumor progression.

Methods
Organoid culture of small intestinal cells and lentiviral
transduction
C57BL/6J mice and BALB/cAnu/nu immune-deficient
nude mice were purchased from CLEA Japan (Tokyo,
Japan). The small intestine was harvested from wild-type
male C57BL/6J mice at 3–5 weeks of age (Additional file
1: Figure S9A). Crypts were purified and dissociated into
single cells, which were then put into serum-free
Matrigel-based organoid culture as previously described
[22, 43]. Five days later in the first passage, organoids
were lentivirally transduced with shRNA against APC,
where the efficiency of introducing the shRNA was
around 90% [22, 43]. To select for APC-repressed cells,
transduced organoids were thereafter maintained in cul-
ture medium lacking R-spondin 1, which activates Wnt
pathway and is thereby indispensable for propagation of
normal intestinal cells. To obtain a single-cell clone,
shAPC-transduced organoids were dissociated and
plated at the concentration of 0.5 cell/well in a 96-well
plate. Immediately after plating, 50 wells containing only
a single cell were identified under microscope; the
remaining 46 wells were occupied by no cells or 2 or
more cells. Then, we selected 24 out of the 50 single-
celled wells and placed the organoids from each well
into a separate well of a 24-well plate. Fresh culture
media at the passage were necessary for removing wastes
and multiplying organoids. We repeated these proce-
dures for 5 wells selected from among the 24 wells, and
finally specified 1 well for later use as organoids originat-
ing from a single cell.
We then grew organoids from a single cell in an indi-

vidual well, transferring the fastest growing organoids
from 1 to 2 to 4 to 8 wells as they multiplied (Additional
file 1: Figure S9B). On the way to the 8-well stage, as is
usually done in this type of culture, we collected
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organoids into a single tube at every passage, resulting in
the intermixing of organoids across different wells. At
the 8-well stage, we collected organoids from 4 out of
the 8 wells into a single tube for storage and also
sampled the DNA for sequencing, which was used as the
T0.5 sample. Two of the remaining wells were used for
re-culture, and two were used for the mouse injection
test; the same procedure was used for T1, T2, and T3
(Additional file 1: Figure S9B). Organoids composed of 5
× 105 cells were mixed with 200 μl of Matrigel and
injected into one side of the dorsal skin of nude mice,
while uninjected cells were maintained in 3D cultures
for later use.

Analysis of subcutaneous tumors in nude mice
Palpable tumors from the injection sites were harvested
for histological examination or cell culture. Half of the
subcutaneous tumors were formalin-fixed, paraffin-
embedded, and sectioned at a thickness of 5 μm,
followed by HE staining to assess histological features.
The other half of the tumors were minced and digested
to recover cells as described previously [22], then seeded
onto solidified Matrigel to resume organoid culture.

Single-cell transcriptome and exome sequencing
Cultured mouse organoids derived from a single cell
were harvested and treated with Accumax (Innovative
Cell Technologies, AM105) to generate a single-cell sus-
pension. To capture cells and extract RNA or DNA from
a single cell, the cell suspensions (4.4 × 105 cells/ml)
were loaded on a C1 Single Cell Auto Prep System (Flui-
digm, C1) with medium-sized (10–17 μm) microfluidic
chips for 96 cells. Approximately 1300 cells were applied
to each chip. Captured cells were imaged on a BZ-9000
digital microscope (Keyence, BZ-9000) and a visual in-
spection was performed to determine whether a single
cell was captured in each well of the chip. Capture effi-
ciency for a single cell was determined as 71–82%.
For single-cell whole transcriptome (RNA) sequencing,

captured cells were lysed on the chip using a C1 Single-
Cell Auto Prep Reagent Kit for mRNA Seq (Fluidigm,
100-6201). Full-length cDNA fragments were tran-
scribed and amplified from poly-A RNA in each single
cell using the SMARTer Ultra Low RNA kit (Takara Bio,
634832). Tagmentation of cDNA was performed and se-
quencing libraries were prepared using the Nextera XT
DNA sample preparation kit (Illumina, FC-131-1096) ac-
cording to the manufacturer’s protocol. Up to 52 inde-
pendent single-cell RNA-seq libraries were prepared for
sequencing.
For single-cell DNA sequencing, genomic DNA was

prepared from single cells using the C1 Single-cell Auto
Prep Reagent Kit for DNA Seq (Fluidigm, 100-7357) and
whole-genome amplification was achieved by multiple

displacement amplification with Phi29 DNA polymerase
and the Illustra GenomiPhi v.2 kit (GE Healthcare,
25660032). Amplified genomic DNA (70 ng) was used to
generate exome sequence libraries using the Hyper Prep
kit (Kapa Biosystems, KK8504), SureSelect Target
Enrichment kit (Agilent Technologies, 931171), and
SureSelect XT Mouse All Exon v.1 probe (Agilent
Technologies, 5190-4642).

Bulk-cell transcriptome and exome sequencing
Among the cells that were not used for single-cell cap-
ture with the C1 system, suspensions of about 200 cells
were subjected to whole transcriptome (RNA) sequen-
cing for bulk-cell RNA-seq (T1, T2, and T3 samples).
The sequencing libraries were prepared using the same
reagents as the single cell RNA-seq. As control bulk
cells, normal intestinal crypt epithelial cells from two
wild-type mice of the same strain were grown in the 3D
culture system for 7 days, then harvested and lysed for
total RNA preparation using the miRNAeasy Mini kit
(Qiagen, 217004). RNA-seq libraries for control bulk
RNA were generated using the SureSelect Strand Specific
kit (Agilent Technologies, G9691B). Bulk DNA from
over 1 × 105 cells was obtained from the cell culture
(T0.5 sample, 1.5 months after culture initiation) and the
remaining cells in single-cell capture (T1, T2, and T3
samples) using the QIAamp DNA Mini kit (Qiagen,
51304), and 500 ng of DNA were used to construct ex-
ome sequencing libraries with the same reagents as the
single cell DNA-seq.

Sequencing
All the sequencing libraries were subjected to paired-end
sequencing of 101-bp fragments on the HiSeq2500 DNA
sequencer (Illumina, SY–401–2501).

Transcripts per kilobase million (TPM) calculation for
single and bulk cells
The procedure for calculating TPM is summarized in
Additional file 1: Figure S10. Specifically, sequence reads
were quality-filtered and trimmed using PrinSeq [44],
and then used as input for quality-check by FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). We used the following parameters: --min_len
30 (removing reads ≤ 30 bases); --min_qual_mean 20
(average read quality ≤ 20); --trim_tail_right 5, --trim_
tail_left 5 (trim bases if the 3′ and 5′ end poly A/Ts are
≥ 5 bases); and --trim_qual_right 20, --trim_qual_left 20
(trim 3′ or 5′ end for read quality ≤ 20). Paired-end
reads were mapped to the University of California Santa
Cruz mouse genome sequence (mm10) [45] using Bow-
tie2 [46] built in RSEM [47]. Expression levels (in TPM)
were estimated by RSEM using the command rsem-
calculate-expression with the parameters --estimate-
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rspd, --paired-end, --bowtie2, -p 30, and --ci-memory
10192. We removed eight T1 cell samples due to an ex-
cessive number of genes (≥ 5200) with TPM ≥ 10 (with
reference to results in [48]) or with too few unique map-
ping reads (< 2.2 × 106). We also removed two samples
with unique mapping rates that were too low (< 20%)
and discarded genes with low expression levels (≤ 10
TPM) across all cell samples, leaving 14,258 out of
32,732 genes for analysis.

Estimation of replicate variabilities of gene expression
levels
To estimate replicate variabilities of gene expression
levels for a single cell, we first randomly selected three
cells at each time point and then employed a bootstrap-
ping approach where we re-sampled sequencing reads in
the FASTQ file for each cell. We repeated this re-
sampling three times for each cell to make three replicate
sets of sequence reads. For each replicate set, we used the
same method as for the observed data to obtain boot-
strapped gene expression levels in log2 [TPM + 1]. We
calculated the relative error of the expression level for
each gene, setting the observed value in the denominator,
and then averaged the relative errors across genes.

Detection of highly variable genes
To detect genes with variable expression levels across
cells, we defined highly variable genes according to the
CV, corrected in the locally weighted scatterplot
smoothing (LOWESS) method using the “lowess” func-
tion in R. To fit a single LOWESS curve across all
ranges, we divided average expression level data into
three ranges: < 4, 4–8.5, and > 8.5. cCV values were
yielded by dividing CV values by the value of the upper
variability band (± 1.96 times the standard deviation) of
smoothed curve estimated using “loess.sd” in the “msir”
package. Because of the large bias in original CV values
against low average expression levels, only those with
cCV values > 1.3 and high average expression levels (log2
[TPM + 1] ≥ 4) were defined as highly variable genes.

PCA of RNA data
PCA was carried out for gene expression levels (log2
[TPM + 1]) without scaling.

Hierarchal clustering, correlation plot, and heatmap
analysis
For hierarchal clustering, we used the “hclust” function
in the “stats” package of R software, where we calculated
the Euclidean distance of expression levels (log2 [TPM +
1]) of all highly variable genes between cells and used
the Ward method for agglomeration. We generated cor-
relation plots of highly variable genes using the “corrplot”
function in the R “corrplot” package, where we used the

Ward method for agglomeration. We divided genes into
three clusters based on these hierarchical clustering results
using the “addrect = 3” option. A heatmap was generated
using the “heatmap.2” function in the “ggplot2” package.
In the heatmap, cells were arranged according to their
order in the dendrogram described above and genes were
arranged according to their order in the correlation plot
of highly variable genes.

Gene set enrichment analysis
DAVID [49] was used to identify gene ontologies (bio-
logical processes) in which genes of an identified group
were enriched (P < 0.01).

SNV detection for single and bulk cells
For bulk-cell data, we used a previously described
method for SNV/indel calling [50] by cisCall with cell-
line/frozen parameters [51], mapping reads to the mouse
genome (mm9) [45] by BWA [52]. We filtered out PCR-
duplicated reads as well as reads and bases with low
mapping and base qualities. The remaining variants were
further filtered statistically using Fisher’s exact test to
compare fore- and background samples, which came
from two different individuals of the same pure C57BL/
6J strain. We verified the negligible effects of using a dif-
ferent individual for the background sample. A series of
filters was used to remove suspicious variant calls, such
as those related to misalignments. Variants for which
allele frequencies were significantly greater than 1% in
the binomial test were retained. The procedure is
summarized in Additional file 1: Figure S10.
For single-cell sequencing data, we called SNVs only

at SNV sites called in bulk-cell sequencing data. Specifically,
we counted nucleotide bases with high qualities (mapQ ≥
20, BaseQ ≥ 10) in single-cell sequencing data as well as in
background data (same as those used in bulk-cell SNV call-
ing) with the Samtools mpileup function [52, 53]. We then
selected variants with the largest χ2 test statistic (with
Yates’s correction) among all possible variants at each
position to identify those that were most likely to differ be-
tween single-cell and background data. We required a vari-
ant count ≥ 2 and VAF ≥ 2% for such variants in single-cell
data. We then selected variants that overlapped with SNV
sites called in bulk-cell data.

Detecting mutation in cancer-related genes
We investigated nonsynonymous mutations in cancer-
related genes contained in Tier1 in COSMIC Cancer
Gene Census v87 [25, 54].

MDS of DNA data and the diversity index
We performed MDS from the cell × site matrix com-
posed of zero and one, which respectively represent the
absence and presence of SNVs (both synonymous and
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nonsynonymous SNVs) and NA, which represents an
undetermined call due to shallow depth. We assigned
zero to non-called sites as the true negative when those
sites had depths ≥ 30 and assigned NA to non-called
sites when the depth was < 30. We only used SNV sites
where a variant was called in at least one cell and the
VAFs at the same sites in bulk data ranged from 10 to
35% (polymorphic) for at least one time point. We re-
moved cells and sites (two each) with too few or too
many NAs, yielding 104 sites and 69 cells. Using this 0/
1/NA matrix, we calculated the p-distance (proportion
of different sites) used in molecular evolution without
using NA, and then performed MDS.
The diversity index was calculated as the average Euclid-

ian distance from the centroid over cells in the MDS
space, where we used up to the sixth dimension because
of a sudden drop in the eigenvalues over this dimension.
To calculate the statistical significance of differences be-
tween cell groups, we used a bootstrapping approach in
which we randomly re-sampled cells’ sequences from the
0/1/NA matrix of each cell group 10,000 times and per-
formed the same MDS as in the observed data for each
replicate. We then calculated the diversity index for each
replicate to determine the 95% confidence interval and
standard deviation for each cell group.

Lorenz curve and Gini coefficients
A Lorenz curve was generated with read depth at each site
using the “Lc” function in the “ineq” package of R soft-
ware. To quantify uniformity, the Gini coefficient was
calculated using the “Gini” function in the “ineq” package.

ADO rate
The ADO rate was defined as the rate of homozygous
sites in single-cell samples where the bulk sample was
heterozygous (defined as sites where VAFs were 45–
55%) at the same nucleotide site. We removed outlier
cells with high ADO rates at each time point (one cell
each with an ADO rate > 80% at T2 and T3).

Average copy number
The average copy number, ACN, was calculated as
follows:
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where log2Ri, Li, and GL represent the log-ratio of
CNA segment i, length of CNA segment i, and genome
length (50 Gb for mouse, 40 Gb for human), respect-
ively. CNAs of mouse bulk data were detected as previ-
ously described [50]. Briefly, segments were called for

the same fore- and background BAM files as those used
in SNV with Exome CNV [55] and Varscan2 [56]. Over-
lapping segments called by both tools were used as CNA
segments.

Random forest
Random forest was used to generate the classifier for the
histological type and MSI status of human cancer. We
used gene expression levels, number of SNVs in each
gene, total mutation (SNV/indel) number, and mutation
density (total number of SNVs/indels divided by target
region size) as explanatory variables. Using TCGA data
[24, 35], we first filtered out unimportant explanatory
variables using the two-sided Kruskal-Wallis test with P
values of 5.00 × 10−5 and 1.00 × 10− 9 yielding 171 and
78 variables for histological type and MSI status, respect-
ively. These were used to train a random forest classifier
with the “randomForest” function in the “randomForest”
package of R software, with the options ntree = 10000
(setting the number of trees to grow to 1000) and mtry
= 5 (setting the number of variables randomly sampled
to 5). Using the created classifier, the same explanatory
variables for mouse data were used to classify each fea-
ture in the mouse model.

MDS of mouse cell and TCGA samples
We first identified TCGA samples with gene expression
patterns similar to the mouse single-cell groups. For that
purpose, we calculated a normalized 1 − r distance as
follows:

dh;G ¼ 1−rh;mG

MADN 1−rmG
i ;m

G

� � ; ð2Þ

where ri,j is a Pearson correlation coefficient between
vectors i and j of expression levels in log across highly
variable genes, h represents a human TCGA sample, G
represents a mouse single-cell group, mG

i represents
mouse single cell i in group G, mG represents the cen-
troid of mG

i that was calculated by the median, and
MADN represents the median absolute deviation ad-
justed by a factor for asymptotically normal consistency.
We calculated this distance from a TCGA sample to
every mouse group and selected a TCGA sample for
those whose minimum distance across the groups was
less than 4.05 and the difference between the first and
second minimum distances was larger than 0.31. For se-
lected TCGA and all mouse single-cell samples, MDS
was performed based on the distance of 1 − r.

SCmut
We called SNVs in single-cell RNA-seq using SCmut
[37], which is specifically designed to identify SNVs (het-
erozygous in a tumor sample but homozygous in the
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normal sample) in single-cell RNA-seq data with the aid
of bulk-cell DNA-seq data. In their study [37], SCmut
was applied to Illumina sequencing reads obtained using
the Fluidigm C1 system, which is the same system that
we used.

Statistical analysis
All statistical analyses were performed using R (https://
www.r-project.org/). Symbols “*” and “**” indicate p < 0.05
and 0.01, respectively, unless otherwise noted. The two-
sided Wilcoxon rank sum test was used in the analysis
shown in Fig. 2B. A bootstrapping test was used in the
analysis shown in Fig. 4D. The details of this bootstrap-
ping test are described above in the subsection “MDS of
DNA data and the diversity index.” The number of
samples (n) used in statistical analyses is indicated in each
figure or figure legend as appropriate.
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