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Abstract

Phenotypes proximal to gene action generally reflect larger genetic effect sizes than those that are distant. The human
metabolome, a result of multiple cellular and biological processes, are functional intermediate phenotypes proximal to gene
action. Here, we present a genome-wide association study of 308 untargeted metabolite levels among African Americans
from the Atherosclerosis Risk in Communities (ARIC) Study. Nineteen significant common variant-metabolite associations
were identified, including 13 novel loci (p,1.6610210). These loci were associated with 7–50% of the difference in
metabolite levels per allele, and the variance explained ranged from 4% to 20%. Fourteen genes were identified within the
nineteen loci, and four of them contained non-synonymous substitutions in four enzyme-encoding genes (KLKB1, SIAE,
CPS1, and NAT8); the other significant loci consist of eight other enzyme-encoding genes (ACE, GATM, ACY3, ACSM2B,
THEM4, ADH4, UGT1A, TREH), a transporter gene (SLC6A13) and a polycystin protein gene (PKD2L1). In addition, four
potential disease-associated paths were identified, including two direct longitudinal predictive relationships: NAT8 with N-
acetylornithine, N-acetyl-1-methylhistidine and incident chronic kidney disease, and TREH with trehalose and incident
diabetes. These results highlight the value of using endophenotypes proximal to gene function to discover new insights
into biology and disease pathology.
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Introduction

The power to detect genetic effects for complex traits is

influenced by, among other things, the study sample size and the

effect size of a particular locus. Most contemporary genome-wide

association studies (GWAS) have achieved increased power by

increasing the size of the discovery sample to tens of thousands of

individuals [1]. Besides expanding the sample size, focusing on

variants with large effects is an alternative strategy for novel gene

discovery. The human metabolome consists of a collection of small

molecules resulting from a variety of cellular and biologic processes,

the activity of which is regulated by coordinated enzyme action [2].

In addition, as metabolites reflect multiple metabolic and physio-

logical activities in the body, they hold promise to discover

intermediate traits between gene action and disease processes [3].

GWASs of known risk factor phenotypes of clinical disease, such

as cholesterol or urate levels, have shown that genetic association

with functional intermediate traits, as opposed to the clinical

endpoint itself, are often more highly powered and may provide

information into the biological mechanism of disease [4–7].

Untargeted metabolomic approaches simultaneously measure

numerous known and unknown metabolites present in a study

sample. Recent studies combining genetics and metabolomics

have identified multiple common variant-metabolite associations

with large effect sizes in populations of European ancestry, and

provided new functional insights into common complex disease.

[8–11]. African ancestry-derived populations have higher levels of

genetic variation and population substructure, and lower levels of

linkage disequilibrium (LD) compared to European ancestry-

derived populations, so studies in African-Americans may lead to

identification of new genes or variants and fine map of existing loci

[12–14]. To date, no such study has been conducted in African

Americans, a population that bears a disproportionate burden of

disease, such as cardiovascular disease, diabetes and chronic

kidney disease [15–17]. Our goal here is to identify common genetic

variations influencing the human metabolome in African Americans

among the Atherosclerosis Risk in Communities (ARIC) Study in

order to reveal novel pathways underlying disease etiology and

possible avenues of disease prevention and treatment.

Results

A total of 308 known serum metabolites including 83 amino

acids, 16 carbohydrates, 9 cofactors and vitamins, 7 energies, 136
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lipids, 12 nucleotides, 25 peptides and 20 xenobiotics (Table S1)

were included and a set of 2,341,704 common autosomal SNPs

were tested in 1,260 African Americans (demographics in Table
S2) for each metabolite levels. Nineteen significant (p-val-

ue,1.6610210 after correction for multiple testing) common

variant-metabolite associations were identified (locus association

summaries are presented in Table 1, regional association plots

and quantile-quantile plots are presented in Figures S1 and S2,

respectively), including 13 novel loci which have not been reported

in previous metabolomics studies. Depending on the particular

metabolite, these loci were associated with 7–50% of the difference

in metabolite levels per allele (average at 25%), and the variance

explained ranged from 4% to 20%.

Fourteen genes were mapped within the nineteen significant

genetic loci; eight of them encode enzymes that catalyze the

reaction of the corresponding metabolite as a substrate or product

(gene names shown in red in Figure 1). Four of the associated loci

contained non-synonymous substitutions in four enzyme-encoding

genes (KLKB1, SIAE, CPS1, and NAT8). The other significant loci

consist of eight other enzyme-encoding genes (ACE, GATM, ACY3,

ACSM2B, THEM4, ADH4, UGT1A, and TREH), a transporter

gene (SLC6A13) and a polycystin protein gene (PKD2L1). Two

protease-encoding genes, ACE and KLKB1, showed pleiotropic

effects on multiple oligopeptide metabolites, and the UDP-

glucuronosyltransferases gene, UGT1A, contributed to the levels

of several bile pigments (Figure 1).

Nineteen significant common variant-metabolite associations

were compared with previously published SNP-metabolite associ-

ations in Caucasians [10]. Eleven out of nineteen metabolites were

shared between the published study and the data presented here,

and six of them showed the same significant SNP-metabolite

associations in both ethnicities (Table 2). A CPS1-glycine

association was reported in the Caucasion metabolomic GWAS,

but the sentinel SNP was different (r2,0.5) from that reported

here (Table 2). A CPS1-glycine association was also reported in a

recent genetic study for glycine metabolism among Caucasians

[18]. The other four shared metabolites had different signals in

African-Americans when compared to Caucasians (Table S3).

We identified a missense mutation in NAT8 (rs13538) that was

significantly associated with N-acetylornithine levels (p = 4.06
10266). A recent biochemical study has shown that NAT8

catalyzed the N-acetylation of cysteine conjugates [19]. We next

asked whether the presumed specificity of NAT8’s function could

be used to identify the identity of any unknown metabolites by

analyzing its effect on 294 unknown metabolites. Two metabolites,

X-11333 and X-11787 reached our a priori defined level of

significance (p = 1.0610261 and p = 2.5610225, respectively). By

targeted mass spectroscopy, X-11333 was determined to be N-

acetyl-1-methylhistidine (Figure S3), a type of N-acetyl amino

acid; and X-11787 was an isoform of either hydroxy leucine or

isoleucine, as reported previously [20].

Among nineteen metabolites that reached genome-wide signif-

icance, we identified four potential disease-associated paths among

African Americans for cardiovascular disease, chronic kidney

disease (CKD) and diabetes, including two direct longitudinal

associations (Figure 2, detailed estimates in Table S4). As

described above, a missense mutation in NAT8 (rs13538), a known

susceptibility locus for chronic kidney disease [21], was signifi-

cantly associated with N-acetylornithine and N-acetyl-1-methyl-

histidine levels. We identified a pronounced relationship of both

N-acetylornithine and N-acetyl-1-methylhistidine levels with

kidney function, whereby higher levels of of N-acetylornithine

and N-acetyl-1-methylhistidine were related to lower eGFR

(p = 9.0610213 and 1.6610221; respectively) and higher risk of

incident CKD after 19 average years of follow-up among 1,921

African Americans (demographics in Table S5, HR = 1.64,

p = 0.003 and HR = 1.34, p = 0.03, respectively). However, the

longitudinal associations with the metabolites were attenuated and

no longer significant after further adjusting for eGFR (data not

shown). Finally, trehalose levels were significantly associated with

TREH gene variation. Trehalose can be cleaved to two molecules

of glucose. In this study, trehalose levels were significantly

associated with glucose levels (p = 2.9610217), and showed a

1.34 fold increased risk of incident diabetes after an average 7

years of follow-up (p = 2.061025) in a sample of 1,430 ARIC

African Americans (demographics in Table S5). With further

adjustment of glucose levels, trehalose levels persisted to show an

apparent association with incident diabetes, although the effect

size was lessened (HR = 1.16, p = 0.02).

Discussion

By combining high-throughput metabolomic and genomic

technologies, we identified nineteen common variant-metabolite

associations among African Americans with p-values ranging from

6.0610211 to 4.0610266. We inferred the structure of an unknown

metabolite to be N-acetyl-1-methylhistidine using knowledge of the

associated gene’s function and targeted mass spectroscopy. We

further established potential novel disease-associated pathways for

cardiovascular disease risk factors, CKD and diabetes. The results

offer new evidence about the genetic impact on metabolites and

disease among African Americans, which advance our understand-

ing of disease causation and progression.

Most loci identified by GWA studies of complex disease traits

contribute relatively small effects and the variance explained

remains modest [14,22,23]. Thus, contemporary GWAS are

shifting focus to phenotypes that more immediately reflect the

effects of gene action. For example, although the effect sizes of

genetic loci related to coronary heart disease (CHD) are rela-

tively small (OR from 1.08 to 1.47) [24–26], loci related to

plasma triglyceride and cholesterol levels explained a meaningful

proportion of the variance (9–13%) [4]. The human metabolome,

Author Summary

Most contemporary GWAS studies have achieved in-
creased power by increasing the size of the discovery
sample to tens of thousands of individuals. An alternative
approach for detecting the effects of novel loci is to
measure phenotypes that more immediately reflect the
effects of gene function. The metabolome consists of a
collection of small molecules resulting from a variety of
cellular and biologic processes, which can be considered
intermediate phenotypes proximal to gene function. Here,
we report a genome-wide association study identifying
nineteen genetic loci influencing untargeted metabolomes
traits among African Americans in the Atherosclerosis Risk
in Communities (ARIC) Study. Fourteen genes mapped
within nineteen loci, including twelve enzyme-encoding
genes (KLKB1, SIAE, CPS1, NAT8, ACE, GATM, ACY3, ACSM2B,
THEM4, ADH4, UGT1A and TREH), a transporter gene
(SLC6A13) and a polycystin protein gene (PKD2L1). In
addition, four potential disease-associated paths were
identified, including two direct longitudinal predictive
relationships: NAT8 with N-acetylornithine, N-acetyl-1-
methylhistidine and incident chronic kidney disease, and
TREH with trehalose and incident diabetes. These results
highlight the value of using phenotypes proximal to gene
function to promote novel gene discovery.

GWAS on Human Metabolites among Blacks
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the ultimate downstream product of gene and environment

interaction, holds the promise to identify genes that directly reflect

gene action with large effects sizes [8,10,27]. Our results show

relatively large effect sizes of nineteen identified genetic loci related

to human metabolome among African Americans (average at 25%

shift per allele copy). In addition, the majority of identified loci

Figure 1. Genome-wide significant loci and human metabolic traits among African Americans in ARIC. Each hexagon shows the
significant genetic locus (p,1.6610210) and the corresponding metabolite. The gene name listed in a hexagon is mapped by the sentinel SNP, and
the closest gene is picked if the sentinel SNP was not located in a gene but is in linkage disequilibrium (r2$0.8) with other SNPs in a nearby gene.
Metabolites are grouped by super pathway, indicated in different colors. A red border line indicates that this gene-metabolite pair has been
previously reported, and a gene name in red indicates the gene encodes an enzyme that catalyzes the reaction of the corresponding metabolite as a
substrate or product. Rs number, risk allele, effect size and variance explained for the sentinel SNP are listed in parenthesis.
doi:10.1371/journal.pgen.1004212.g001

Table 2. A comparison of significant common variant-metabolite association among ARIC, KORA and TwinsUK studies.

Metabolites ARIC KORA TwinsUK

Top SNP P SNP P SNP P

aspartylphenylalanine rs4343 ACE (synonymous) 9610225 rs4343 2610210 rs4343 2610210

N-acetylornithine rs13538 NAT8 (missense) 4610266 rs6745480 (r2 = 1) 36102123 rs10496191 (r2 = 0.95) 2610265

palmitoleate (16:1n7) rs603424 PKD2L1 (intron) 1610211 rs603424 161027 - -

bilirubin (E,E) rs887829 UGT1A (intron) 1610217 rs887829 3610224 rs887829 561025

bilirubin (Z,Z) rs887829 UGT1A (intron) 6610213 rs887829 1610246 rs887829 461028

biliverdin rs887829 UGT1A (intron) 8610223 rs887829 5610247 - -

glycine rs7422339 CPS1 (missense) 4610212 rs2371015 (r2,0.5) 361029 rs4673553 (r2,0.5) 2610223

doi:10.1371/journal.pgen.1004212.t002
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(15/19) are located in or near genes, and these loci explained up to

20% of the variance of each trait.

Twelve out of fourteen genes that were significantly associated

with metabolite levels were enzyme-encoding genes, including four

genes involved in disease-associated processes. These data under-

score the important role of enzyme activity and regulation in

controlling metabolite levels. As metabolite levels are closely

related to disease process, to understand whether the underlying

mutations detected here lead to gain-of-function or loss-of-function

for these enzyme-encoding genes offers new opportunities for

disease treatment and prevention (e.g. design an antagonist/

agonist of the gene as a drug candidate). The majority of the gene-

metabolite associations are consistent with the gene’s known

function, but the direction of effect of the coded allele does not

provide direct evidence as to whether or not the variant represents

gain of function or loss of function. Future investigation of the

functional impact of the underlying causal variants is critical and is

an area of intense research.

NAT8 is expressed mainly in the kidney and liver [28], but its

function is not fully understood. Several previous, seemingly

Figure 2. Pathways among gene, metabolite, risk factor and disease identified among ARIC African Americans. Solid arrows between
genes and metabolites indicate genome-wide significant effects (p,1.6610210). Arrows between metabolites and risk factors indicate significant
linear associations after adjusting for age and gender (p,0.05). Arrows between metabolites and clinical endpoint indicate significant associations
after adjusting for age, gender and other risk factors using Cox proportional hazards modeling (p,0.05). The dotted arrows between risk factors and
clinical endpoints indicate well-established relationships. DBP indicates diastolic blood pressure and eGFR, estimated glomerular filtration rate.
doi:10.1371/journal.pgen.1004212.g002

GWAS on Human Metabolites among Blacks

PLOS Genetics | www.plosgenetics.org 5 March 2014 | Volume 10 | Issue 3 | e1004212



unrelated, observations have found that mutations in N-acetyl-

transferase 8 (NAT8), are contributed to N-acetylornithine levels,

creatinine levels, kidney function and CKD [10,21,29,30]. Our

results show that an amino acid substitution in NAT8 is related to

N-acetylornithine, N-acetyl-1-methylhistidine and eGFR, which

in-turn influence risk to incident CKD. These findings provide

evidences that N-acetylation plays a role in the development of

CKD [10].

Trehalose is a food ingredient with the ability to prevent protein

denaturation [31]. Because of its ability to inhibit lipid and protein

misfolding, trehalose has become a potential therapeutic in

neurodegenerative studies [32,33]. Animal safety studies conclud-

ed that trehalose is safe for use as an ingredient in consumer

products [34], and it is now widely used in food and cosmetics.

Here, we report that trehalose levels are regulated by TREH,

which encodes the trehalase enzyme which hydrolyzes trehalose to

two glucose molecules. In addition, we show that trehalose is

associated with glucose levels and the onset of incident diabetes.

Environment factors, in addition to and interacting with genetic

factors, (e.g. dietary intake) explain part of the variability of human

metabolome. Follow-up investigations of the interactions between

the genes identified here and possible environment factors are

likely to provide new insight into the understanding of disease

etiology and its metabolism. For example, alcohol dehydrogenase

4 (ADH4) contributes to esophageal squamous-cell carcinoma

(ESCC) through an interaction with alcohol consumption [35].

Here, we reported that ADH4 is associated with hexadecanedioate

levels, a metabolite with an antitumor activity [36]. Moreover,

studies have shown that coffee consumption is associated with

lower bilirubin levels [37] and UGT1A is contributed to bilirubin

levels as well [10]. Our data show that mutations in UGT1A are

associated with the levels of several bile pigments. Thus, future

investigations of genes related to metabolite levels with environ-

ment interaction are of interest.

Untargeted metabolomics approaches measure numerous

known and unknown metabolites presented in a sample simulta-

neously. Since the chemical identities for unknown metabolites

have not been elucidated, previous GWAS on metabolomic traits

largely ignored unknown metabolites for the analysis. In our study,

we show an example of unknown metabolite identification (i.e. X-

11333) by combining GWAS results (i.e. NAT8) with existing

knowledge about the function of the gene product (i.e. N-

acetylation). A recent study has used GWAS results and Gaussian

graphical modeling to predict unknown metabolite identities [38].

These two examples demonstrate the feasibility for unknown

compounds structure identification by combing genetic and

metabolomics information.

Limitation of this study warrants consideration. To our

knowledge, the ARIC study is the only cohort with serum

metabolome measurements in African-Americans, so it is unlikely

to find an independent sample for replication. In our study, the

SNP-metabolite associations identified were compared with the

results from a published study in Caucasians [10] as a surrogate

replication. Six distinct SNP-metabolite associations were repli-

cated out of eleven shared metabolites, indicating homogeneous

genetic effects on several metabolites regardless of ethnicities.

Differences in the site frequency spectrum between African-

Americans and Caucasians and lower LD in African-Americans

may explain the lack of significant association at the other loci. As

a consequence of lack of replication, the proportion of variance

explained by the SNPs was reported from the discovery sam-

ple, which may be an over-estimate. Future studies are needed

to replicate our findings in independent samples of African-

Americans. Despite limitations, the data presented here have

important strength. Previously published GWAS on human meta-

bolites estimate only cross-sectional relationships between metab-

olites and clinical endpoints. In contrast, the data presented here

originate from a large, well-defined, longitudinal cohort study,

allowing establishments of longitudinal predictive relationships.

In summary, we report here the first genome-wide association

study of untargeted metabolome in African-Americans. The

genetic variant-metabolite associations along with the disease path

reported here will continue to be improved with further use of

contemporary omics technologies. Our study highlights the value

of utilizing omics studies in deeply phenotyped individuals to

provide new insights into gene function, disease etiology and

epidemiology.

Methods

Study Population
The Atherosclerosis Risk in Communities (ARIC) study is a

longitudinal cohort study designed to ascertain the etiology and

predictors of cardiovascular disease (CVD). The ARIC study

enrolled 15,792 middle-aged adults from four U.S. communities

(Forsyth County, NC; Jackson, MS; suburbs of Minneapolis, MN;

and Washington County, MD) between 1987–89 and followed by

four completed visits with each approximately three years apart, in

1987–89, 1990–92, 1993–95, and 1996–98. In general, each visit

included interviews and a physical examination. A detailed

description of the ARIC study design and methods was published

elsewhere [39]. Metabolomic profiles were measured in baseline

serum from 1,977 African-Americans selected from the Jackson,

MS field center. Participants were excluded if they did not give

consent for use of DNA information.

Assessment of Metabolomic Profiles
Metabolite profiling was completed in June 2010 using fasting

serum samples which had been stored at 280u since collection at

the baseline examination in 1987–1989. In total, detection and

quantification of 602 metabolites was completed by Metabolon

Inc. (Durham, USA) using an untargeted, gas chromatography-

mass spectrometry and liquid chromatography-mass spectrometry

(GC-MS and LC-MS)-based metabolomic quantification protocol

[40,41]. Prior to the analyses presented here, a rigorous assessment

of the metabolomic data was done. Metabolites were excluded if:

1) more than 50% of the samples had values below the detection

limit; or 2) they had unknown chemical structures, except for X-

11333 and X-11787 which were followed-up as part of more

detailed NAT8 investigations. After this assessment, a total of 308

named metabolites were included in the present study. Structural

identifications for X-11333 and X-11787 were proposed using a

mass spec-based structural approach, including targeted accurate

mass and MSn fragmentation with accurate mass [41].

Genotyping and Imputation
In the present study, common (minor allele frequency,

MAF$5%) autosomal single-nucleotide polymorphisms (SNPs)

were genotyped on the Affymetrix 6.0 chip and were imputed to

2,341,704 SNPs based on a panel of cosmopolitan reference

haplotypes from HapMap CEU and YRI. MACH v1.0 was used

to do imputation and allele dosage information was summarized in

the imputation results. SNPs were excluded before imputation if

they had no chromosomal location, were monomorphic, had a call

rate ,95%, or had a Hardy-Weinberg equilibrium p-value,1025.

For each SNP, the ratio of the observed versus expected variance

of the dosage served as a measure of imputation quality.

GWAS on Human Metabolites among Blacks
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Genome-Wide Association Analyses
A total of 308 metabolites were included in this analysis.

Metabolite levels below the detectable limit of the assay were

imputed with the lowest detected value for that metabolite in all

samples, and all metabolites values were natural log-transformed

prior to the analyses. Linear regressions and an additive genetic

model were applied to each metabolite, adjusting for age, sex and

the first 10 principal components. The significant threshold was

defined as a p-value,1.6610210 (5.061028/308) based on

Bonferroni correction. SNPs with MAF,5% were excluded.

Quantile-quantile (QQ) plots were generated for each analysis to

illustrate the distribution of the observed and expected p-values for

all eligible SNPs. Regional plots showing LD and the location of

nearby genes (if any) were generated for the top ranking SNPs for

each metabolite. If more than one significant SNP clustered at a

locus, the SNP with the smallest p-value was reported as the

sentinel marker. All analyses were performed using ProbABEL

and R (www.r-project.org). The identified sentinel SNPs were

further compared with the metabolite-SNP association from the

KORA and TwinsUK studies [10] using their public GWAS

server (http://metabolomics.helmholtz-muenchen.de/gwa/index.

html) and other published GWA studies through NHGRI GWAS

Catalog (http://www.genome.gov/gwastudies/).

Disease Association Analyses
Analyses included all African-American samples with metabo-

lomic data were conducted to estimate the association between

genome-wide significant metabolite levels and relevant clinical risk

factors and endpoints, including incident chronic kidney disease

and incident type 2 diabetes. Nine associations, including six cross-

sectional associations with clinical risk factors and three longitu-

dinal associations with clinical endpoints, were tested. In each

analysis, metabolite levels were natural log-transformed. The

cross-sectional associations were assessed using linear regression

with adjustment for age and gender. Longitudinal associations

with disease endpoints were estimated using Cox proportional

hazards models adjusting for age, gender, systolic blood pressure

(SBP), antihypertensive medication use, diabetes, high-density

lipoprotein, low-density lipoprotein, current smoking and preva-

lent CHD for incident the CKD analysis; and age, gender, SBP,

antihypertensive medication use, body mass index, total choles-

terol for the incident type 2 diabetes analysis. The proportional

hazards assumption was examined and not rejected using the

methods developed by Grambsch and Therneau [42]. Covariates

were measured at baseline (1987–1989) and The Chronic Kidney

Disease Epidemiology Collaboration equation was applied to

estimate glomerular filtration rate (eGFRCKD-EPI) [43]. For the

disease association analyses, the significant threshold was defined

as p,0.005 using Bonferroni correction (0.05/9) and the analyses

were performed using R (www.r-project.org).
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