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Abstract

Background

Protein post-translational modifications (PTMs) are an important aspect of protein regulation.

The number of PTMs discovered within the human proteome, and other proteomes, has been

rapidly expanding in recent years. As a consequence of the rate in which new PTMs are iden-

tified, analysis done in one year may result in different conclusions when repeated in subse-

quent years. Among the various functional questions pertaining to PTMs, one important

relationship to address is the interplay between modifications and mutations. Specifically,

because the linear sequence surrounding a modification site often determines molecular rec-

ognition, it is hypothesized that mutations near sites of PTMsmay bemore likely to result in a

detrimental effect on protein function, resulting in the development of disease.

Methods and Results

Wewrote an application programming interface (API) to make analysis of ProteomeScout, a

comprehensive database of PTMs and protein information, easy and reproducible. We used

this API to analyze the relationship between PTMs and human mutations associated with

disease (based on the ‘Clinical Significance’ annotation from dbSNP). Proteins containing

pathogenic mutations demonstrated a significant study bias which was controlled for by ana-

lyzing only well-studied proteins, based on their having at least one pathogenic mutation. We

found that pathogenic mutations are significantly more likely to lie within eight amino acids of

a phosphoserine, phosphotyrosine or ubiquitination site when compared to mutations in gen-

eral, based on a Fisher’s Exact test. Despite the skew of pathogenic mutations occurring on

positively charged arginines, we could not account for this relationship based only on residue

type. Finally, we hypothesize a potential mechanism for a pathogenic mutation on RAF1,

based on its proximity to a phosphorylation site, which represents a subtle regulation differ-

ence that may explain why its biochemical effect has failed to be uncovered previously. The

combination of the API and a dynamically expanding PTM database will make the reanalysis

of this question and other systems-level questions easier in the future.
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Introduction
The development of high-throughput measurement technologies, such as mass spectrometry
based proteomics, has led to a rapid expansion in the discovery of post-translational modifica-
tions (PTMs) [1]. In order to understand how these PTMs regulate protein turnover, activity,
interactions, localization, and other aspects of protein function, a large body of research has
developed based on the analysis of PTMs relative to other protein features [2–6] and the rela-
tionship between PTMs and protein evolution [7–12]. Several similar systems-level studies
have also been focused on how the gain, loss, or dysregulation of PTMs may be involved in
human disease [13–15]. To perform these studies, researchers have manually combined a vari-
ety of PTM resources—a process which poses a significant challenge from a data acquisition,
scrubbing, and warehousing perspective. Beyond this, such an analysis is based on a single
snapshot of a collection of resources, a perspective which does not easily allow a longitudinal
analysis to explore how a relationships of interest may change as new information becomes
available and the PTM datasets evolve. In this study we examine how the number of identified
PTMs has changed over time, a result which suggests there could be serious limitations in the
conclusions drawn from systems-level analysis of PTMs in previous years, when compared to
analysis done using data available today.

To overcome the challenge of data curation and enable easy updates and future re-analysis,
we wrote an application program interface (API) for the expansive and dynamically growing
database of PTMs, ProteomeScout [16] (Fig 1). The Python-based API makes it easy to interact
with a ProteomeScout database download. The ProteomeScout database has a stable release
every six months, as well as weekly updates to reflect dynamics snapshots of the current state
of knowledge of PTMs across organisms. We have used this API, in conjunction with the cur-
rent stable release of the ProteomeScout database, to analyze the relationship between PTMs
and mutations. Specifically, we, and others [14], hypothesize that mutations within the recog-
nition sequence of PTMs used by enzymes and binding partners would be likely to cause pro-
tein dysregulation and manifest as human-disease related mutations.

To test the hypothesis of whether disease-causing mutations, based on the ‘Clinical Signifi-
cance’ category within dbSNP [17], are more likely to be near sites of PTMs, we found that we
first had to correct for study bias. Proteins with at least one pathogenic mutation were consis-
tently more likely to have other annotations, including PTMs and Gene Ontology terms [18].
Therefore, we first controlled for study bias by only analyzing the set of proteins with at least
one pathogenic mutation. We found that pathogenic mutations were more likely to be within
eight amino acids of a PTM of several types, including ubiquitination and phosphorylation of
serine and tyrosine residues. The limited amount of data currently available on other modifica-
tions limits the analysis of these PTMs, although this may change in the future as the associated
datasets grow as a result of community-based deposition of PTMs in ProteomeScout or the
major compendia that ProteomeScout incorporates. Since pathogenic mutations were much
more likely to occur on arginine residues, we tested for the possibility that PTMs and pathogenic
mutations were coincidentally together based on surface accessibility. However, in control tests
we could not explain the enrichment of PTMs near pathogenic mutations based on charge
alone. Importantly, the API, the specific database snapshot that was used in this analysis, and
the open-source analysis scripts, are available as supplementary information on our website,
making the reproducibility of this analysis easy and certain. Additionally, this means that we
and others can continuously update these proteome-wide statistical relationships between muta-
tions and PTMs as the database expands and a new database file is used in the analysis pipeline.

After discovering that globally, the nearness of mutations to a PTMmay be indicative of a
likelihood of being related to disease, we asked whether we could use this to develop specific
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hypotheses of how pathogenic mutations may alter protein function. The serine/threonine
kinase RAF1 is heavily mutated, and several of these mutations are linked to dysregulation of
MAPK activity [19, 20]. Despite a link to disease, the RAF1 V263A mutation has failed to dem-
onstrate disruption of 14-3-3 protein binding, which leads to increased RAF1 activity [21, 22],
unlike other nearby mutations [23]. By understanding the PTMs within the region and using
the data available on ProteomeScout from a quantitative phosphoproteomics study of regula-
tion of this region during stem cell differentiation [24], we hypothesize that the V263A muta-
tion may be affecting regulation important to differentiation, which results in the development
of MAPK-related developmental disorders where V263A has been observed [19, 20]. These
explorations demonstrate that the under-appreciation of nearby PTMs may be playing a role in
RAF1 regulation, particularly during development, and explain how biochemical assays may
have failed to uncover the effect of the V263A mutation via 14-3-3 misrecognition alone.

Fig 1. ProteomeScout API and its application to reproducible analyses. The API block gives examples of functions that operate on a tab-separated file,
which can be downloaded from ProteomeScout [16]. The analysis that can be done on the PTM-centric information in ProteomeScout can take on many
forms given the flexibility of the API. Example code is given for retrieving all PTMs associated with the protein p53 (UniProtKB accession P04637). As the
ProteomeScout dataset evolves and grows through new external data the same analyses can be re-run in the future.

doi:10.1371/journal.pone.0144692.g001
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Materials and Methods

PTM growth
Numbers of PTMs for 1999 and 2004 were taken from early PhosphoBase and PhosphoSite
papers, [25] and [26], respectively. For information from latter years, we parsed database
downloads of files from PhosphoSite [27]. Database downloads were performed by the authors
on the following dates: May 2007, September 2009, July 2013, January 2014, and July 2015. The
data file and the iPythonNotebook that analyzed these data are available on ProteomeScout’s
documentation page (https://www.assembla.com/spaces/proteomescout/wiki). The file of all
PTMs and numbers is also available as S1 Table.

Implementation of the ProteomeScout API and mutations analysis
The ProteomeScoutAPI was written in Python and is available in a Mercurial repository on the
ProteomeScout Assembla project page. The current stable release (v1.0b, November, 2015) of
ProteomeScout mammalian PTM file was downloaded from the ProteomeScout stable release
FTP site ftp://ftp.seas.wustl.edu/pub/ProteomeScout_DbF/current_stable_release/. All calcula-
tions and analyses were performed in Python, specifically using iPython [28] notebooks and
the following open-source projects: Pandas [29], NumPy [30], and Matplotlib [31]. Testing for
enrichment was done using a one-sided Fisher’s Exact test. We counted amino acids uniquely
for having either a mutation or a modification within the specified window of 0 (on the amino
acid) or 8 (within +/- 8 amino acids of the residue). If more than one mutation exists on the
same amino acid and at least one of the mutations was known to be pathogenic or disease-
related, then we assigned that residue a pathogenic/disease phenotype during all analyses. False
discovery rate [32] was used as a multiple hypothesis correction technique, where denoted.

In accordance with recommendations on best practices [33] for developing bioinformatics
software, the ProteomeScoutAPI has a full software testing suite, built using the Python unittest
framework. This series of tests ensures that updates and changes to the code do not inadver-
tently lead to the introduction of software bugs elsewhere. Importantly, extending and growing
this suite to accommodate new features is simply a few lines of additional code, ensuring that
as the ProteomeScoutAPI grows and new functionality is added, a formal testing framework
can be built in parallel.

The analysis code is available on GitHub and can be visualized on nbviewer at: http://
nbviewer.ipython.org/github/knaegle/MutationsNotebooks/tree/master/. All calculations and
graphs for study bias, PTM enrichment, and resampling for charge distributions are available
in the iPython notebooks. SVG exports for RAF1 studies and data from the study by Rigbolt
et al. [24] were taken from ProteomeScout [16].

Definition of disease mutations
This study focuses on mutations which were identified as being disease-related based on having
a dbSNP Clinical Significance annotation of ‘pathogenic’. However, we also performed an iden-
tical analysis on mutations identified as being disease-related based on their UniProKB annota-
tion, as defined by the Human polymorphisms and disease mutations index file (http://www.
uniprot.org/docs/humsavar, S3 Table). The dbSNP annotations yield 784 proteins with at least
one pathogenic mutation, while the UniProtKB annotations yield 2273 such proteins. The
dbSNP annotations are taken directly from the ProteomeScout database annotations using the
ProteomeScoutAPI. The UniProtKB annotations were pulled from the humsavar file and then
mapped to ProteomeScout database records. All the code for performing this analysis is
provided.
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Controlling for amino acid content of the pathogenic set
We created random foregrounds the same size and with the same distribution of amino acid
types as the real foreground, the pathogenic set, which is enriched for arginines in particular.
We then tested these random foregrounds for enrichment of nearby PTMs using the same
analysis as outlined above. We ran many sets of 10 random foregrounds and never observed
enrichment between mutations in random foregrounds and PTMs above what was expected by
random chance alone.

Results and Discussion

Growth of the PTM proteome (PTMome)
Our understanding of post-translational modifications in a wide range of organisms is rapidly
expanding. We explored the growth of the most well-studied PTMs in the human proteome by
looking at a single resource of PTMs across time, shown in Fig 2. Specifically, we examined the
PhosphoSite database [27], obtaining the number of phosphosites from the PhosphoSite papers
in 1999 [25] and 2004 [26] as well as the datasets downloaded by the PTMScout and Proteo-
meScout authors from PhosphoSite between 2007 and 2015. The number of identified phos-
phosites grows exponentially during this decade and a half, with just tens of sites in 1999
growing to thousands of known sites by 2015. The first acetylation, sumoylation, and ubiquiti-
nation database entries appear in 2010, when high-throughput purification methods were

Fig 2. Growth of identified human PTMs across time. Data is based on PhosphoBase publications in 1999 [25] and 2004 [26] and PhosphoSite [27]
downloads from 2007, 2009, 2012, 2013, 2014, and 2015.

doi:10.1371/journal.pone.0144692.g002
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developed and tied to mass spectrometry [1]. The slowing of growth in the number of newly
identified phosphorylation sites in the latter years may indicate that the number of novel phos-
phorylation sites discovered in human proteins from standard cell lines is approaching satura-
tion. However, it is expected that the identification of phosphosites in new organisms, as well
as tissue- and disease-specific sites, will take over as the primary contributors to novel measure-
ments in the coming years. While phosphorylation has, historically, been the most well under-
stood class of PTMs, coverage of other modification types may be expected to grow robustly
based on these trends.

The growth of information associated with PTMs—as well as the surrounding information
regarding protein sequence annotations—motivates the necessity for a sustainable database of
post-translational modifications and protein annotations such that analysis and research can be
updated easily. Certainly, these results indicate that conclusions drawn as recently as 2010 would
no longer reflects our understanding in 2015, and that the shift in our understanding based on
newly available data alters the set of relevant questions surrounding PTMs. In the remainder of
this work we will introduce our solution to performing reproducible analyses of the PTMome
and use this tool to explore the relationship between PTMs and human mutations.

Reproducible analysis of PTM-centric studies
To address the challenge of a rapidly changing PTMome, we built an application programming
interface (API) to interact with ProteomeScout database files. ProteomeScout’s database files are
updated weekly and every six months a stable release is created. The weekly updates may include
changes since the last week as a result of users uploading data. Uploading data triggers an update
of annotations associated with those specific protein records in the database. In the stable
release, all protein annotations, such as Gene Ontology terms [18] and mutations [17, 34] are
updated. Additionally, the major compendia, such as UniProtKB and Phosphosite PTM datasets
are updated. The weekly releases are available directly on the ProteomeScout website and the
stable releases are available via FTP hosting, as described in the methods section.

In flat text files generated by ProteomeScout, all of the annotations for proteins are written
in column-wise fashion with multiple annotations of a certain type being separated by semico-
lons. The database files are described in detail on ProteomeScout’s wiki (available at https://
www.assembla.com/spaces/proteomescout/wiki). However, the ProteomeScoutAPI removes
the necessity of understanding the exact formatting of the database file by automatically pars-
ing the file into Python objects that can be interacted with in a straightforward manner. For
example, using the get_mutations(<ACC>) command, one can retrieve all mutations for a
protein record, based on a particular protein accession. The ProteomeScoutAPI code and help
documentation are available on the freely-hosted ProteomeScout project page (https://www.
assembla.com/spaces/proteomescout). Fig 1 demonstrates the usage of the API and how, when
analyses are based on a ProteomeScout database download, the analysis written in Python with
the API can be used for the re-analysis of the data with the same database download or updated
with future database downloads to reflect the growing knowledge of PTM and other protein
information.

Study bias confounds proteome analysis
In this study, we wish to test the hypothesis that disease-related point mutations are more likely
to be near or at sites of post-translational modifications. To do this we used the non-synony-
mous mutation annotations within ProteomeScout, which are harvested from NCBI’s dbSNP
[17]. A subset of these mutations are annotated with ‘Clinical Significance’, which includes the
categories ‘Pathogenic’ and ‘Non-pathogenic’. Prior to testing mutations from all protein
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records for their proximity to known PTMs, we first explored for the possibility of study bias,
i.e. the possibility that proteins with pathogenic mutations are more likely to have annotations
of other types simply because they are well studied.

To test for study bias, we first looked at the correlation between the number (per protein) of
two different protein annotations, or the number of protein annotations versus the total length
of the protein (Fig 3). Specifically, the annotations we considered were GO terms, mutation
records, and PTM records. In total, 21,910 human protein records existed in the stable release
considered for this study, 15,480 of which have at least one known mutation. The p-values of
all correlation values are significant, and there is some degree of positive correlation between
every pairing. The highest correlation exists between PTMs and sequence length, indicating
that the longer a sequence is, the more likely it is to have a larger number of PTMs. To a lesser
extent this also holds true for mutations.

The positive correlation of all mutations with PTMs and with pathogenic mutations and
PTMs (Fig 3) led us to test for specific study bias of proteins containing records of pathogenic
mutations. To test for this, we performed a Fisher’s Exact Test to compare the significance of
label distributions based on proteins having at least one pathogenic mutation. There were 784
proteins with a pathogenic mutation and these proteins are significantly more likely to have a

Fig 3. Correlation between protein annotations. Scatter plots for all comparisons of the number of annotations per protein or the length of the protein.
Points in blue represent the number of annotations on a protein that does not contain a pathogenic mutation. Red represents a protein with at least one
pathogenic mutation, which becomes the set of proteins studied in subsequent analyses. Correlations between numbers of labels on a per protein basis are
given as well as the correlation between annotations on the pathogenic set. All correlations were significant with a p-value less than 1E-08. These plots and
correlation values, broken down by PTM type, are available in S1 Fig.

doi:10.1371/journal.pone.0144692.g003
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large number of GO terms and PTMs in addition to having many annotated mutations in gen-
eral. For example, when we tested for enrichment of proteins having at least ten GO annota-
tions or PTMs we find pathogenic mutation containing proteins to be significantly enriched
(p-values of 2e-101 and 2e-19, respectively). Study bias appears to occur on the level of the full
protein, i.e. a protein with a known pathogenic mutation is much more likely to have more GO
annotations, PTM annotations, and mutations in general. Therefore, in the following work we
control for study bias by only considering those proteins that have at least one known patho-
genic mutation, and are therefore more likely to have more annotations and mutations overall.

Pathogenic mutations are enriched for nearby PTMs
To test for the relationship between mutations and PTMs, controlling for study bias, we used the
set of human proteins that have at least one pathogenic mutation. This included 795 human pro-
teins, which all together contain 21,085 mutations (1,896 are pathogenic) and 16,701 total
PTMs. For each of the human PTMs with a sufficiently large number of annotations (phospho-
serine, phosphothreonine, phosphotyrosine, acetylation, ubiquitination, and N-Glycosylation),
we tested for the significance of having a pathogenic mutation on the site of modification or
within a possible recognition area of the site of modification using a one-sided Fisher’s Exact
test. We found that pathogenic mutations were not significantly more likely occur on sites of
modification than other sites in the proteome. Only about 10% of all mutations (1,896) occur on
a specific site of modification with relatively small numbers for the individual modification
types. Therefore, we cannot rule out that lack of significance is not meaningful based on the sam-
ple sizes. However, most modifications demonstrated a significant relationship with pathogenic
mutations when a regulatory window was considered (Table 1). In particular, ubiquitination
occurring near a site of mutation means the mutation is much more likely to have a known rela-
tionship with human disease, whereas N6-acetlylysine and N-Glycosylation were not signifi-
cantly related to pathogenic mutations (possibly also due to limited set size). To a lesser extent
than ubiquitination, phosphorylation of serines, threonines and tyrosines were significantly
related to pathogenic mutations. These results indicate there is a strong relationship between the
likelihood that mutations will be associated with pathogenicity and their proximity to known
protein modifications, and that this relationship is dependent on the type of modification.

The relationship between modifications and pathogenic mutations indicates that misrecog-
nition of PTM sites by enzymes or binding domains could lead to functional disruption which
is more likely to cause disease than other mutations in general. However, an alternate hypothe-
sis is that pathogenic mutations and sites of modification are coincident based on some other
property they have in common. For example, if mutations on the protein surface are more

Table 1. Significance between dbSNP pathogenic or disease mutations and PTMs.

Modification dbSNP ‘pathogenic’ p-value UniProtKB ‘Disease’ p-value

Ubiquitination 2E-07 4E-03

Phosphotyrosine 3E-02 1E-05

Phosphoserine 2E-02 1E+00

Phosphothreonine 2E-02 1E+00

N6-acetyllysine 3E-01 1E-01

N-Glycosylation 1E+00 7E-01

Significance calculated on one-sided Fisher’s exact test for ‘pathogenic’ or ‘disease’ mutations having the designated PTM within eight amino acids,

compared to all mutations in the background set (corrected for study bias).

doi:10.1371/journal.pone.0144692.t001
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likely to be detrimental and modifications are more likely to occur on the surface of the protein,
then their coincidental location on the protein alone might explain the significant relationship
we observed. Indeed, we found a skew in the types of amino acids that have known pathogenic
mutations. Specifically, there is a significant bias towards arginines in the pathogenic set of
mutations (p-value 2E-15), which might indicate a higher likelihood of surface accessibility. To
rule out the effect of the distribution of amino acid types, and possible location of amino acids
within a protein structure, we created random foregrounds that contained the same number of
mutations as the pathogenic set and the same distribution of amino acids. In ten randomized
trials, we never observed a significant enrichment of these foregrounds having nearby modifi-
cations. These results indicate that globally there is a significant relationship between patho-
genic human mutations and modifications that cannot be accounted for by co-incidental
charge of the mutations alone.

Extending to a larger set of disease-related mutations
We used dbSNP’s ‘pathogenic’mutations for our initial tests since these labels are available in
the ProteomeScout database. However, there is a significantly larger number of ‘Disease’-
related variants available in the UniProtKB database. Therefore, we also tested the relationship
between the likelihood of being labeled as disease-related in UniProtKB [35] with PTMs using
the same analysis by cross-referencing from this set to the ProteomeScout database file using
the API. We observed similar trends with regards to study bias—disease-mutation containing
proteins were much more likely to have more Gene Ontology terms and PTMs. Therefore, we
controlled for study bias in this set in the same manner, by creating a background consisting of
only the mutations from proteins that contain at least one disease-annotated mutation. Of the
68,819 mutations in UniProtKB, 21,999 are labeled with the annotation ‘Disease’ (32%). How-
ever, when we identified the subset of proteins with at least one disease-labeled mutation and
re-evaluate the annotation associated with mutations in that subset of proteins the proportion
of disease mutations goes from 32% to 68%. This suggests two possibilities: 1) certain proteins
are hubs for pathogenicity or 2) there is bias in the annotation of disease mutations. In this sec-
ond “rich-get-richer” scenario, the identification of a disease-related mutation on a protein
may lead to focused efforts on identification of other mutations on that protein that also result
in a disease annotation. There tends to be clustering of disease annotated mutations on pro-
teins (S3 Table), which supports both hypotheses.

Despite the inherent differences of the two mutation datasets, with regard to their size and
distribution of pathogenic/disease to total mutation ratio (68% vs. 10%), we performed the
same statistical analysis of testing for enrichment of disease mutations set near known PTMs
(Table 1). Ubiquitination and tyrosine phosphorylation continue to be enriched—they are
much more likely to be near a disease-related mutation than would be expected by random
chance. However, there is a change in their significance, relative to the findings in the dbSNP
pathogenic set and no other modifications are enriched. Considering this, the exact conclusions
are highly dependent on the set of mutations and their disease annotations. As a corollary,
these results are also dependent on the current state of PTM knowledge. In particular, most
PTMs such as sumoylation, myristoylation, and methylation, have too few annotations for suf-
ficient statistical testing. As PTMmeasurement and discovery expands, particularly for those
PTMs with few ProteomeScout annotations, we (and others) can test for a relationship with
disease-related mutations in the future. The dependence on the data of mutations used and
state of PTM knowledge on the findings highlights the importance for a framework that
enables the easy reproducibility of current results, extensibility to different analysis types, and
the re-analysis at a future date when knowledge has changed.
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Using PTMs to predict the effect of mutations
Given that there is consistent insight to pathogenicity based on proximity to PTMs, we sought
to identify whether knowing the proximity or number of modifications near a mutation could
be helpful in determining the impact of a mutation. S2 Table lists the sites of human dbSNP
mutations. Not surprisingly, 21 of the top 28 mutations with the largest number of nearby
modifications are on the tumor suppressor protein TP53. Also, in the top 100 of mutations,
ranked by number of nearby modifications, are a series of RAF1 mutations occurring between
positions R256 and V263, Fig 4A and 4B. When phosphorylated, S259 is recognized by 14-3-3,
whose binding negatively regulates RAF1 activity and subsequently decreases MAPK activation
[21, 22]. Multiple genetic studies have identified RAF1 mutations near S259 in patients with
Noonan and LEOPARD Syndrome, both syndromes which show a characteristic increase in
MAPK activation [19, 20]. Multiple independent studies have verified that a number of these
mutations reduce binding to 14-3-3 and increase MAPK activation, including R256S, S257L,
S259F, T260I/R, and P261A/S/L [19, 20, 23]. Based on these results, it is clear that these dis-
ease-related mutations act through the disruption of the recognition and regulation of PTMs
and highlights the utility of understanding the relationship between mutations and
modifications.

The ProteomeScout protein view [16] of this region of RAF1 highlights the density of phos-
phorylation sites and known mutations. In addition to S259 phosphorylation, which has a well-
understood role in regulating RAF1 activity, phosphorylation has been observed on other
nearby phosphorylation sites including S257, T258, and T260, Fig 4A. ProteomeScout currently

Fig 4. Predicting effect of RAF1mutations. (A) Full length RAF1 from ProteomeScout [16] with PTM annotations, domains, mutations from dbSNP, and
Scansite predictions. (B) RAF1 in the area of interest near S259, which is involved in 14-3-3 recognition. (C) Quantitative measurements of phosphorylation
on S257, T258 and S259 from a study of human embryonic stem cells without conditioning and with conditioning for stem cell differentiation (PMA treatment)
[24]. Data from study downloaded from ProteomeScout [16].

doi:10.1371/journal.pone.0144692.g004
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includes one experiment with quantitative measurements of phosphorylation in this region. Rig-
bolt et al. identified phosphorylation of S257, T258, and S259 in human embryonic stem cells
(hESCs) and quantitatively measured their relative phosphorylation levels in response to differ-
entiation. Fig 4C contains the plot of ProteomeScout data from [24] for this region of phosphor-
ylation sites in changing to non-conditioned media (NCM) or in response to phorbol
12-myristate 13-acetate (PMA), treatments that initiate stem cell differentiation, compared to
the pre-treated samples. The three sites in the region of interest, which are in the concentrated
region of mutations found in Noonan and LEOPARD syndrome samples, follow the same pat-
tern and exhibit no relative change until after 24 hours of treatment, where they decrease in
phosphorylation. We were surprised the quantitative data amongst the three sites were identical.
Upon revisiting the original supplementary information on this dataset in Rigbolt et al., the data
is faithfully represented in ProteomeScout, but the assignment score suggests the specific site of
modification was not accurately identified. However, given multiple sources of identification for
these phosphorylation sites [23, 27, 35–43] it is likely that this experiment indicates that at least
in hESCs, phosphorylation occurs on some subset of these sites and that they demonstrate a
dynamic response to initiation of stem cell differentiation. Phosphorylation on these alternate
sites is not currently appreciated as playing a role in regulating 14-3-3 activity, yet this may rep-
resent a process by which traditional S259/14-3-3 recognition is altered. It also expands the pos-
sibility of mechanisms by which these mutations affect protein function and regulation, and
may help lead to hypotheses of how V263A plays a role in development of Noonan Syndrome,
despite having no measurable effect on 14-3-3 binding [23].
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