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ARTICLE

A Systematic Evaluation of Effect of Adherence Patterns 
on the Sample Size and Power of a Clinical Study

Surulivelrajan Mallayasamy1, Ayyappa Chaturvedula1,*, Terrence Blaschke2 and Michael J. Fossler3

The objective of our study was to evaluate the effect of adherence patterns on the sample size and power of a clinical trial. 
Simulations from a population pharmacokinetic/pharmacodynamic (PK/PD) model linked to an adherence model were used. 
Four types of drug characteristics, such as long (~35 hours) and short (~12 hours) half- life in combination with earlier or 
delayed time to reach steady- state PD end points were studied. Adherence patterns were simulated using Markov chains. Our 
results clearly demonstrate the significant impact of varying levels and patterns of nonadherence on the sample size and 
power of a study. For drugs with short half- lives the evidence to support efficacy could be diluted by various patterns of 
nonadherence that would make its efficacy indistinguishable from the response to placebo. Prospectively utilizing clinical 
trial simulations with thorough incorporation of various adherence patterns would provide valuable information when 
 designing a trial.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 818–828; doi:10.1002/psp4.12361; published online on 28 October 2018.

Medication adherence has been defined as a process 
by which a patient takes their medications as prescribed 
and is comprised of three components: initiation, which 

indicates that the first dose has been taken; implemen-
tation, a measure of the fidelity of the individual’s dos-
ing regimen compared with the prescribed regimen; and 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
✔  Although the importance of adherence is well recog-
nized in the clinical pharmacology community, its incor-
poration and utility in clinical trial simulations is suboptimal. 
Considering adherence as a static or summary variable 
based on pill counts may not be sufficient to predict the 
impact of nonadherence in trials designed to determine 
the efficacy of a drug. We show that it is important to in-
corporate the magnitude and patterns of nonadherence in 
clinical trial simulations.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  This study quantifies the impact of adherence patterns 
on the sample size and power of a hypothetical trial, giving 
careful consideration to its PK/PD properties of the com-
pound under study. Using Monte Carlo simulations, we 
clearly demonstrate the impact of various patterns of non-
adherence in conjunction with the PK/PD properties of the 
compound on sample size requirements.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  This study provides compelling evidence for integrating 
adherence patterns along with population PK/PD models 
in clinical trial simulations. It particularly illustrates the im-
pact of different scenarios for the PK/PD characteristics, 

including a compound with a long half- life that rapidly at-
tains steady- state PD effects. In combination with full ad-
herence, this scenario required the smallest sample size 
and had optimal power. At the other extreme, a compound 
with a short half- life, a delayed onset of its PD effect, onset, 
and combined with poor adherence may result in a trial 
outcome that fails to demonstrate a significant difference 
compared to the placebo group, resulting in a type II statis-
tical error, unless sample sizes are very large. Adherence 
patterns in conjunction with PK/PD characteristics of com-
pound can greatly affect the outcome of a clinical study 
and, therefore, require careful consideration in the design 
of a study.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  Thoughtful simulations of clinical trials using popula-
tion PK/PD models linked with quantitative adherence 
models provide valuable information on study design as-
pects. There are a number of clinical trial simulation pro-
grams available that could be used for such simulations. 
Collecting data on adherence patterns in specific popula-
tions early in the drug development programs would 
greatly assist in informing clinical trial simulations.
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persistence, which is the time from the initiation to the 
cessation of drug therapy.1 For a more thorough treat-
ment of this concept, readers are referred to Vrijens 
et al., Vrijens and Urquhart,1,2 and Blaschke et al.3 
Nonadherence to prescribed medications is a well- known 
phenomenon in the medical community dating back to 
the days of Hippocrates. Much of the older literature on 
this subject referred to this phenomenon as “compliance.” 
The Ascertaining Barriers for Compliance (the ABC proj-
ect) proposed new terminology and has recommended 
the use of the term “adherence” rather than “compliance” 
because of the negative connotation associated with the 
term “compliance,” implying that patients are subservient 
to prescribers. Nonadherence to medications is a world-
wide phenomenon and it has been found that in developed 
countries, adherence rate, expressed as a percent of pre-
scribed doses taken, averages around 50% for chronic 
illnesses.4 Recent divergent results of several large phase 
III clinical trials of pre- exposure prophylaxis to prevent 
acquisition of human immunodeficiency virus5–11 serves 
as a wakeup call for drug developers to take action on 
the most relevant covariate that determines therapeutic 
efficacy—whether or not the participant in a clinical trial 
actually takes the drug under study as required by the 
protocol. Several thought- provoking commentaries have 
been published on the need for collecting and monitoring 
adherence in clinical trials.3,12 In a progressive move, reg-
ulatory bodies have realized the importance of adherence 
and have updated recommendations to improve adher-
ence in clinical trials. In the draft guidance on “Enrichment 
strategies for clinical trials to support approval of human 
drugs and biological products,” the US Food and Drug 
Administration (FDA) recommends practices that en-
courage adherence by making participants aware of the 
conditions and demands of clinical trials, and using ad-
herence prompts and alert systems, such as “smart bot-
tles,” to monitor study drug use.13 A recent addendum to 
the International Conference on Harmonization E9 guid-
ance recognizes adherence as an important intercurrent 
event that can offer important information on treatment 
effect.14 This addendum proposes to precisely define the 
treatment effects (estimands) in a clinical trial considering 
the intercurrent events.15 This can be considered a major 
improvement over the standard “intent to treat” approach 
currently used in the majority of randomized clinical trials. 
In another innovative move, the FDA approved the first- 
ever “digital pill” for tracking and monitoring adherence 
in patients diagnosed with schizophrenia, an encouraging 
development for drug developers, medical practitioners, 
and patients to appropriately address adherence issues. 
Encouraging and monitoring adherence can help drug 
developers to separate the true efficacy and toxicity sig-
nals from noise by ensuring that trial participants take the 
drug(s) under study as required by the protocol. The im-
proved reliability of early proof- of- principle and proof- of- 
concept studies due to significantly better adherence fits 
well with the paradigm of “Learn- Confirm” for drug devel-
opment proposed by Lewis Sheiner.16

As the pharmaceutical industry and regulatory agencies 
continue to adopt the model- informed drug development 

philosophy,17 clinical trial simulation (CTS) is increasingly 
being used as a tool for designing clinical trials.18–20 The 
models most used in CTS are population pharmacokinetic 
(PK), pharmacodynamic (PD) models along with the import-
ant intercurrent behaviors, such as adherence and drop-
out models that are very likely to influence the outcome. 
However, in most CTSs, adherence is not modeled with the 
granularity that is necessary, and traditional measures of ad-
herence in actual clinical trials, such as pill counts and pa-
tient diaries, are generally biased toward adherence and do 
not provide the fine granularity necessary in a quantitative 
framework to inform the analysis of the trial data. Adherence 
to medications is often reported as a summary variable, 
such as total number of doses taken or missed using pill 
counts. However, it is very likely that specific patterns of 
dose- taking result in particular therapeutic outcomes and 
different patterns of adherence may lead to a wide distribu-
tion of outcomes. Markov chain models of adherence have 
been proposed to inform CTSs by providing discrete time 
series of dose- taking behavior.18,21

In this study, we have incorporated various adherence 
patterns along with the PK/PD properties of drug molecules 
that are commonly encountered in drug development into 
a model framework. Our goal was to evaluate the effect of 
varying adherence patterns on the sample size and power of 
clinical studies using CTS in particular to avoid a type I error 
for drugs that are efficacious.

METHODS

The approach was to simulate the attainment of a PD 
end point from linked adherence, PK and PD submod-
els, as shown in Figure 1. Various PK and PD parameters 
of the “drug” or “compound” under investigation were 

Figure 1 Linked adherence, population pharmacokinetic 
(PK) and pharmacodynamic (PD) models used in simulations. 
Adherence model: two- state (dose taken = 1, dose missed = 0), 
discrete time, Markov Chain model with transition probabilities 
(P01, P00, P10, and P11) to simulate adherence patterns. 
Population PK model: two- compartment model with first order 
absorption and elimination parameterized as clearance (CL), 
central volume (Vc), peripheral volume (Vp), intercompartmental 
clearance (Q), and absorption rate constant (Ka). PD model: 
indirect (inhibitory) response model, where drug concentration 
inhibits the production rate (R0) and response is cleared by a 
turnover rate constant of kout.
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systematically altered to allow the findings of the simula-
tions to mimic results that would apply to actual clinical 
trials. Within each combination of differing drug proper-
ties, varying adherence patterns were evaluated by sys-
tematically altering the adherence model input parameters. 
Details of the PK, PD, and adherence submodels are pro-
vided in the following sections.

Population PK model
A two- compartment open model with first order absorption 
and elimination was used as a structural model. The sto-
chastic model included an exponential error (30% coeffi-
cient of variance (CV)) for the between- subject variability in 
the parameters of clearance and volume of distribution. A 
proportional error model (30% CV) was used as the resid-
ual variability model. Two PK scenarios were simulated by 
altering clearance: Scenario A = a long half- life compound 
(~35 hours); and Scenario B = a short half- life compound 
(~12 hours). The PK parameters used in simulations are 
shown in Table 1.

Population PD model
An indirect response model in which the “drug” acts by in-
hibiting a biomarker related to the efficacy of the drug was 
used as the structural PD model. Inhibition of the biomarker 
for PD was assumed to be reversible with discontinuation 
of drug. An exponential error model (40% CV) was used 
for between- subject variability on half- maximal inhibitory 
concentration, Kin, and Kout parameters. A proportional 
error model (40% CV) was used as the residual variability 
model. Two PD scenarios were simulated by altering Kin:  
Scenario C = faster onset of action (~2 weeks to reach 
steady- state); and Scenario D = slower onset of action 
(~4 weeks to reach steady- state). The PD parameters used 
in simulations are shown in Table 1.

Adherence model
A first order, homogenous, two- state Markov chain model 
was used for simulating adherence patterns. Two states 
of the Markov model were dose taken = 1 and dose  
missed = 0. The Markov model was parameterized using 
the following transition probability matrix, as shown below:

[
P00 P01

P10 P11

]

Where P is the probability of transition from one state to 
another (e.g., 0–1) or staying within the same state (e.g., 0–0) 
in fixed discrete time steps (1 day in this case). Using this 
transition matrix structure above, 200 adherence patterns 
were generated. The full adherence dataset had no missing 
doses. By varying P00 and P01 from 0.5 to 1, varying ad-
herence patterns ranging from 50−100% of adherence were 
generated. Simulated Markov chains were summarized by 
two metrics, drug holidays per month, and nontherapeutic 
time (NTT). Drug holidays per month were calculated as the 
sum of missing doses in a 30- day period. Given the once- 
daily dosing in the simulation study, the duration of action 
for each dose was assumed to be 24 hours. The NTT was 
calculated as the cumulative time (in days) that a sequential 
dose was missed in a Markov chain. As NTT is a cumulative 
measure of the entire Markov chain it is a pattern indica-
tor, unlike the number of holidays per month. The Markov 
chains were simulated using the R software package version 
3.3.2.22

Simulation of clinical trials
Four representative clinical trial scenarios were created by 
combining different properties of PK and PD parameters, 
as described above:

1. Long half-life drug with rapid onset of action (des-
ignated AC in Table 1).

2. Long half-life drug with delayed onset of action (desig-
nated AD in Table 1).

3. Short half-life drug with rapid onset of action (desig-
nated BC in Table 1).

4. Short half-life drug with delayed onset of action (desig-
nated BD in Table 1).

For each representative combined PK/PD property, the 
effect of adherence patterns (50%, 60%, 70%, 80%, 90%, 
and 100%) was evaluated in a simulated clinical trial. Thus, a 
total of 24 clinical trials were simulated representing 6 adher-
ence patterns for each of the 4 representative drug properties. 

Table 1 PK/PD characteristics of simulated scenarios

PK/PD parameters [units]
AC (long half- life and 

rapid onset)
AD (long half- life and 

delayed onset)
BC (short half- life and 

rapid onset)
BD (short half- life and 

delayed onset)

Absorption rate constant 
(Ka) [h

−1]
1 1 1 1

Central volume (Vc) [L] 534 534 534 534

Peripheral volume (Vp) [L] 1,530 1,530 1,530 1,530

Clearance (CL) [L/h] 50a 50a 150b 150b

Intercompartmental 
clearance (Q) [L]

144 144 144 144

Rate of production (Kin) [h
−1] 1 1 1 1

Turnover rate (Kout) [h
−1] 0.0165c 0.01d 0.0165c 0.01d

Inhibitory concentration- 50 
(IC50) [ng/mL]

1 1 1 1

PK/PD, pharmacokinetic/pharmacodynamic.
aLong half- life characteristic. bShort half- life characteristic. cRapid PD onset characteristic. dDelayed onset of PD characteristic.
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Each clinical trial included 200 virtual subjects. This number 
was based on the size of a typical phase II study. A once- daily 
dosing regimen was used. The duration of the trial was set at 
6 months (24 weeks). PK samples were simulated at 0, 2, 4, 
6, 8, 10, 12, and 24 hours on day 10 at steady- state. The PD 
variable was simulated every day for the entire study period in 
24- hour intervals for further processing. The R code used for 
dataset preparation is provided in the Data S1. Simulations 
were conducted using NONMEM, version 7.3 (ICON, Ellicott 
City, MD) in conjunction with a g95 (64- bit) compiler using 
Perl- Speaks NONMEM, version 4.6.0 (PSN) as an interface 
to run NONMEM.

Sample size and power calculations
Calculation of sample size. Sample size and power was 
calculated using the two- sample, continuous outcome, 
two- tailed t test approach, with type I and type II errors 
fixed at 5% and 10%, respectively.23

A type I error is the incorrect rejection of a true null hy-
pothesis (the error of rejecting a null hypothesis when it is 
actually true), whereas a type II error is incorrectly retaining a 
false null hypothesis. Sample size was calculated as follows:

Where Zα is a type I error (1.96 for two- tailed test at 5%), Zβ 
is a type II error (1.28 for two- tailed test at 10%), delta (Δ) is 
the absolute mean difference between test (μ1) and placebo 
(μ2) groups, and σ is the pooled SD calculated as follows:

σ=

√
S12+S22

2

Where S1 and S2 are SDs of test and placebo groups, 
respectively. The simulated PD data point at the last day of 
the 24th week was used for calculation of μ1 and S1. For 
the placebo response (μ2) and SD (S2), PD data at baseline 
(time = 0) was utilized. Mean values of the placebo group 
were empirically fixed at a particular value to achieve various 
effect sizes. The placebo response was assumed to follow 
proportional error and S2 was scaled at each empirical pla-
cebo mean value.

Calculation of power. 

Beta=Φ

[(
Δ

σ

)(√
N

2

)
−Zα

]

Φ is a function to convert beta to Z values and N is the 
sample size. Estimates of (1−beta) are converted to percent-
age power. Power was calculated, fixing sample size to 100. 
This number was selected to give the optimal power for a 
group with the most favorable variables, like long half- life 
and rapid onset with full adherence and a Δ of 0.2.

Both sample size and power were estimated at var-
ious Δ values ranging from 0.1−1 with increments of 0.1. 
Comparison of results was made at Δ of 0.2, 90% power, 
and adherence scenarios of 50–100% for sample size cal-
culations. For calculation of power, comparisons were made 
at Δ of 0.2, sample size of 100, and adherence scenarios of 
50–100%.

Relation between adherence patterns and NTT
To understand the relation between various adherence 
patterns and NTT, five simulated subjects from 70% ad-
herence rate with differing NTTs were selected. Their PK 
profile is simulated for a period of 1 month. The simulated 
PK profile is overlaid with their adherence pattern for the 
same period in a plot for comparison.

RESULTS

The results from this CTS study clearly demonstrate the im-
pact of various scenarios of nonadherence on the sample 
sizes needed to achieve a statistically significant outcome 
for forgiving (long terminal half- life) and nonforgiving (short 
terminal half- life) drugs. Depending on the pattern of non-
adherence, the calculated mean drug holidays per month 
ranged from 3−15 days. As expected, the calculated NTT 
exhibited an increasing trend with increasing nonadher-
ence rates (Table S1).

As noted earlier the sample size was calculated using 
the two- sample, continuous outcome, two- tailed, t test ap-
proach, with type I and type II errors fixed at 5% and 10%, 
respectively. Power was calculated by fixing type I errors at 
5% and sample sizes as 100. Comparisons were made at 
Δ of 0.2. When the impact of PK/PD characteristics on the 
sample size and power were evaluated, the drug feature of 
long half- life and rapid onset of effect (AC) had the most 
forgiveness to nonadherence when compared with other 
scenarios. Adherence levels indicated here are summary 
adherence measures derived from varying adherence pat-
terns and expressed as average adherence rate. Simulated 
PK profiles of 5 subjects with an average 70% adherence, 
but with different NTTs, were generated and are shown in 
Figure 2. Note that the differences in adherence patterns 
led to different NTTs and consequently different PK profiles, 
sample sizes, and power of a study.

With full (100%) adherence, the sample size required for 
this group was 100. When the adherence patterns resulted in 
an overall adherence of about 50%, the required sample size 
increased to 202 (a twofold increase). The sample size for 
long half- life and delayed PD onset group (AD) with full ad-
herence was 105, which increased to 351(3.5- fold increase) 
for the 50% adherence category. The drug feature of short 
half- life and delayed onset of PD (BD) had the most unfa-
vorable profile. The sample size in this group for the full ad-
herence scenario was 249, which was 2.5 times higher than 
the comparable group of AC category. In this group (BD), 
when adherence levels reached 80%, the mean value of the 
test group reached the levels of the placebo group; there-
fore, sample size was not calculated below this adherence 
level. The effect of various adherence patterns (50–100%) 
on the sample size for the four PK/PD characteristics stud-
ied is shown in Figure 3. Sample sizes for the full adherence 
scenarios were much lower than the various poor adherence 
scenarios across various PK/PD characteristics studied by 
CTS. A comprehensive plot of delta vs. sample size for all 
delta sizes and adherence rate is presented in Figure 4. The 
effect of various adherence patterns on the PD outcome of 
placebo and test groups in four PK/PD characteristics are 
also presented in a comprehensive plot (Figure S1).

Samplesize (N)=2 (Zα +Zβ)
2
(
σ

Δ

)2
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The statistical power for the long half- life and rapid onset 
of the PD group (AC) was 90% at the full adherence rate 
and, as expected, gradually decreased along with the drop 
in adherence. At adherence rates in the range of 50%, the 

power decreased to 63%. For the long half- life and de-
layed onset of the PD group (AD), the power was 88% even 
with full adherence and decreased to 41% with adherence 
patterns near 50%. Short half- life and delayed onset of 

Figure 2 The plot illustrates plasma concentration profile of five subjects for 30 days, with an average adherence of 70% and 
nontherapeutic times (NTTs in days) ranging from 1−6. Solid black points represent doses taken and red points represent missed 
doses. Two sequential missing of doses were considered as one unit of NTT. Variation in NTTs are due to the difference in adherence 
patterns even though all of them had an aggregate adherence rate around 70%. PK, pharmacokinetic.
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the PD group (BD) had a power of only 54% even at full 
adherence. As the overall adherence rate declined in this 
group (BD), the study power decreased further. At nominal 
adherence rates of 80% and below in this group (BD), the 
CTS showed that the mean values of the test and placebo 
groups were not different and, therefore, power was not 
calculated. The results demonstrated that favorable PK/PD 
profiles of long half- life and rapid PD onset along with full 
adherence provided adequate statistical power, whereas 
groups lacking one or more of these characteristics did 
not attain adequate power. The effect of various adherence 
patterns (50–100%) on the statistical power for the four 
PK/PD characteristics at Δ of 0.2 is shown in Figure 5. A 
comprehensive plot of delta vs. power for all delta sizes 
and adherence rate is presented in Figure 6.

DISCUSSION

In a recent review of 218 failed phase II and III studies, “lack 
of efficacy” was reported as the reason for failure in 52% of 

the studies.24 This underscores the need to investigate the un-
derlying causes for the “lack of efficacy,” which might be the 
correct result but also might not be correct, due to any num-
ber of reasons, one of which is poor adherence of clinical trial 
subjects to the protocol- specified drug regimen. Harter and 
Peck25 described the effect of different sources of variability 
on therapeutic outcomes using data from theophylline. They 
identified drug formulation, adherence to therapy, PK and 
PD as sources of variability, and used “propagation of error” 
techniques to explain the combined effect of these sources 
on the clinical responses to theophylline. Together, all of these 
sources described 79% of the variability, with PK and adher-
ence accounting for 67% of the total variability. In their analy-
sis, the authors showed the importance of reducing the major 
sources of variability in response, in particular “compliance,” in 
order to reduce variability in therapeutic outcomes. It has been 
emphasized that adherence monitoring should be considered 
an important component of drug development and with the 
advent of new advances in ways to measure adherence26 it is 
possible to quantify and enhance adherence in clinical trials.

Figure 3 Effect of adherence pattern on the sample size for drug characteristics AC, AD, BC, and BD at the delta level 0.2. Markov 
model was used to produce various adherence patterns with average adherence rates (summarized as percentage of missed doses) 
from 50−100%. Specific combinations of transition probabilities (P01 and P10) produce a characteristic adherence pattern with an 
average adherence rate. Sum of missed doses in a month represented as drug holidays/month for another perspective on adherence 
pattern. For example, the median drug holidays per month for the 50% adherence group were 15. Holidays/month reduced as 
adherence rate increased. AC, long half- life and rapid onset of pharmacodynamics (PDs); AD, long half- life and delayed onset of PDs; 
BC, short half- life and rapid onset of PDs; BD, short half- life and delayed onset of PDs. In the groups labeled as “Not- Effective,” the 
mean value of the test drug overlapped with the mean values of the placebo group. Because the clinical simulation scenarios are with 
a drug that is active, not effective would represent a type II error, incorrectly retaining a false null hypothesis (also known as a “false- 
negative” finding).
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Next, we discuss three clinical examples that we be-
lieve would have been predictable using the framework 
of the prospective use of CTS. In a weight loss study of 
DOV21947, there was a clear benefit of therapy in adherent 
vs. nonadherent subjects. In this study, plasma concentra-
tions of DOV21947 were used to classify adherence be-
havior as a dichotomous variable.27 This was a twice- daily 
dosing study with an 8- week duration. This example fits 
well into our scenario of short half- life (given b.i.d. dosing) 
drug category (BD), in which adherence had a large impact 
on the PD measure, in this case, weight loss. Although this 
study was not powered adequately before implementation, 
it could nevertheless retrospectively differentiate outcomes 
based on the monitoring of adherence using concentration 
measurements of the study medication. The second exam-
ple is a study of imatinib in patients with myeloid leukemia, 
in which there was a strong correlation between adherence 
determined by electronic monitoring (MEMS- based) and a 

major molecular response that was measured.28 Imatinib 
has a half- life of ~18 hours, but its active metabolite has 
a half- life of ~40 hours.29 Based on parent drug half- life, it 
could be considered closer to the BD scenario in our sim-
ulations. The third example is the striking dependence of 
adherence to the antiretroviral drug, tenofovir, to prevent 
human immunodeficiency virus 1 infection, known as pre- 
exposure prophylaxis.3 Tenofovir and its active intracellular 
metabolite tenofovir diphosphate have ~18 and 60- hour 
half- lives, respectively. Based on the metabolite half- life and 
slower buildup of active metabolite, tenofovir is closer to the 
AD scenario in our simulations. However, multiple failures in 
large pre- exposure prophylaxis clinical trials indicate that for-
giveness is low in this particular therapeutic area. Adherence 
patterns are particularly important in this indication, as it is 
important to maintain tenofovir concentrations above pro-
tection threshold levels at all times of potential viral insult. In 
addition, tissue- specific metabolism of tenofovir has been 

Figure 4 This plot illustrates delta (absolute mean difference value between test and placebo) vs. sample size for all simulated 
pharmacokinetic/pharmacodynamic (PK/PD) characteristics. AC, long half- life and rapid onset of PDs; AD, long half- life and delayed 
onset of PDs; BC, short half- life and rapid onset of PDs; BD, short half- life and delayed onset of PDs. In the groups AC and AD, all 
adherence rates are represented. In the groups BC and BD, ineffective adherence rates, which resulted in similar mean values for the 
test group compared to the placebo group were dropped.
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reported,30 which results in variable concentrations at dif-
ferent tissue sites, like rectal and vaginal tissues, which are 
sites of possible viral insult. Such variability calls for optimal 
adherence as a key component to ensure prophylaxis.

Although the simulations presented in this article are the-
oretical in nature, they incorporate commonly encountered 
PK/PD characteristics and their variability and also incor-
porated various adherence patterns into the PK/PD model. 
Scenarios with higher than 40% CV in between- subject 
variability in PK/PD parameters and effect of nonadherence 
were not evaluated in our report. It is recommended to con-
sult literature in specific therapeutic areas and use appro-
priate parameters to get more realistic assessment of the 
impact of nonadherence on sample size. The current CTS 
framework recommended here is not common practice 
in the pharmacometric community nor has it had a place 
in classical statistical power or sample size calculations. 
Nonadherence is known to impact clinical trial outcomes 
by affecting the statistical power of the study and meth-
ods to handle nonadherence using CTS21 and during data 

analysis have been explored.31 Inclusion of adherence pat-
terns along with various PK/PD characteristics in the current 
simulations has revealed the impact of these variables on 
sample size and power. The availability of such information 
could have helped investigators of the above examples to 
come up with better study designs, potentially increasing 
chances of an informative trial, whether positive or negative. 
We strongly recommend including adherence patterns into 
a CTS framework to provide more realistic phase II/III out-
come predictions.

Effect size (E) is also an important determinant of sample 
size. Effect size is the absolute mean difference (DeltaorΔ) 
between groups normalized by the SD (σ).

E =
|μ1−μ2|

σ

In the present study, the impact of adherence patterns 
on sample size and power was illustrated at Δ of 0.2. This 
represents E values ranging from 0.2−0.4 for the current 
simulations, given varying σ due to the effect of a particular 
adherence pattern. This effect size range is considered to be 

Figure 5 Effect of adherence pattern on the power for drug characteristics AC, AD, BC, and BD at the delta level 0.2. The Markov 
model was used to produce various adherence patterns with average adherence rates (summarized as percentage of missed doses) 
from 50−100%. Specific combinations of transition probabilities (P01 and P10) produce a characteristic adherence pattern with an 
average adherence rate. The sum of missed doses in a month was represented as drug holidays/month for another perspective on 
adherence pattern. For example, the median drug holidays per month for 50% adherence group were 15. Holidays/month reduced 
as adherence rate increased. AC, long half- life and rapid onset of pharmacodynamics (PDs); AD, long half- life and delayed onset of 
PDs; BC, short half- life and rapid onset of PD; BD, short half- life and delayed onset of PDs. In the groups labeled as “Not- Effective,” 
the mean value of the test drug overlapped with the mean values of the placebo group. Because the clinical simulation scenarios are 
with a drug that is active, not effective would represent a type II error, incorrectly retaining a false null hypothesis (also known as a 
“false- negative” finding).
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small32 and, therefore, this Δ value was chosen for a conser-
vative evaluation. Fukunaga et al.33 studied the effect sizes 
in 145 trials from 90 test drugs for indications, including 
schizophrenia, asthma, hypertension, and diabetes. Effect 
sizes ranged from −0.64 to 1.94 in their study with the av-
erage of 0.19. The mean effect sizes in diabetes were much 
larger (0.48) compared with other indications (0.04−0.17). 
Our decision to use the range of 0.2–0.4 as effect size is in 
line with these findings.

Our current analysis provides a justification for quan-
titatively considering adherence in CTS to understand 
the impact of adherence patterns on outcomes. The CTS 
framework is relevant for phase II, phase III, and potentially 
even in the postmarketing stages of drug development, in 
which population PK/PD models are available. The cur-
rent framework can be utilized to explore various possible 
scenarios with different levels of variability in PK and PD 

models, drugs with nonlinear PKs, variability in maximal re-
sponse, and prolonged offset of PD effects. Patient dropout 
scenarios, variations in time of medicine intake (dose time 
errors), and nonadherence in the presence of drug- induced 
adverse effects can also be explored with the current 
framework for more granular CTS. A recent report elegantly 
considers the interaction between poor response and drop-
out rates in obesity trials in a pharmacometric model frame-
work to predict the outcomes.34 In addition, the input model 
to describe adherence could be varied depending on the 
source and type of nonadherence of interest (variation in 
dose timing, longer holidays, and nonpersistence, etc.). A 
particular type of scenario of interest to consider as an input 
model is when adherence declines due to drug- induced 
side effects or impact of other aspects of quality of life (e.g., 
weight gain). In the current simulation, the PD component 
was a reversible process and the impact of nonadherence 

Figure 6 This plot illustrates delta (absolute mean difference value between test and placebo) vs. power for all simulated 
pharmacokinetic/pharmacodynamic (PK/PD) characteristics. AC, long half- life and rapid onset of PDs; AD, long half- life and delayed 
onset of PDs; BC, short half- life and rapid onset of PDs; BD, short half- life and delayed onset of PDs. In the groups AC and AD, all 
adherence rates are represented. In the groups BC and BD, ineffective adherence rates, which resulted in similar mean values for the 
test group compared to the placebo group were dropped.
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could be reversed by enhancing adherence. However, in the 
case of irreversible PD outcomes, like rejection post organ 
transplant and development of resistance to anti- infectives, 
suboptimal adherence and unfavorable patterns of adher-
ence could result in the complete failure of therapy. These 
kinds of outcomes could be studied and possibly predicted 
using a pharmacometric framework that includes a consid-
eration of medication adherence. An important question, 
which should be asked by anyone contemplating simu-
lating adherence as part of the development of a clinical 
trial, is “What level of nonadherence should I use for my 
simulations?” Without prior knowledge on potential adher-
ence patterns, it is difficult to specify a particular level or 
pattern of nonadherence, and it might be argued that sev-
eral patterns of nonadherence should be explored in clinical 
trial simulations to anticipate potential effects of poor ad-
herence. This also points out the importance of collecting 
adherence profiles for specific study population(s) using an 
appropriate measure of adherence monitoring, and to po-
tentially prospectively stratify the results based on adher-
ence when seeking regulatory approval. This is one of the 
recommendations from the FDA guidance on enrichment 
strategies for clinical trials.13 A precedent of prerandomiza-
tion screens of adherence to enroll adherent participants 
has been reported. In an early trial, the Veterans Affairs 
Cooperative Hypertension studies utilized placebo pills of 
riboflavin during prerandomization visits. Only subjects who 
showed florescence in their urine were subsequently ran-
domized to treatments.35 Similarly, The Physician’s Health 
study utilized a prerandomized placebo run- in to identify 
subjects with optimal adherence before beginning actual 
study visits.36 With the technological advances and avail-
ability of several adherence monitoring tools,37 prerandom-
ization periods in clinical trials could be a way to collect 
adherence patterns before and within- study during phase 
I and II and even in some phase III trials. This approach 
could also inform subsequent trials using CTS combined 
with realistic information about potential adherence and 
also gauging the potential impact of real- world adherence 
behavior on drug efficacy. Improving adherence in clinical 
trials may enhance the probability of showing drug efficacy 
(method- effectiveness). In the postmarketing environment, 
adherence- related problems will impact the efficacy of the 
therapy (also termed use- effectiveness), if proper plans are 
not in place to support better adherence, which might in-
clude adherence monitoring and interventions in certain 
diseases and settings. Such analyses may also be support-
ive of decisions on recommending adherence interventions 
or monitoring in drug labeling.

CONCLUSION

Our study assessed the impact of different patterns of 
adherence and various PK/PD scenarios on the sample 
size and power of clinical trials. The PK/PD characteris-
tics of long half- life and rapid onset of action offer some 
therapeutic forgiveness and tolerance to poor adherence. 
Drugs with a short half- life and delayed onset of action 
may require a higher sample size and have reduced power 

when adherence is suboptimal. In fact, the low adherence 
scenarios in this PK/PD group may seem to be ineffective 
when compared to placebo, possibly resulting in type II 
errors during clinical development. A decrease in the ad-
herence rate from 100% to 50% led to large increases in 
sample size in order to attain statistical significance across 
all the PK/PD scenarios studied. The findings support the 
value of incorporating realistic adherence patterns in CTS 
prior to the finalization of the study design by providing 
accurate estimates of the sample size and power of the 
proposed study.
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