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What are obligate intracellular bacteria and why should we care?

As their designation implies, obligate intracellular bacteria are microbes that have developed

lifestyles so closely entwined with the cells of the hosts they infect that they can reproduce only

within the confines of these cells. Among this group of bacteria are several pathogenic species

with a significant impact on human health. For instance, Chlamydia spp. are responsible for

millions of cases of urogenital, ocular, and respiratory infections every year [1]. Moreover,

Coxiella burnetii is the agent of Q fever [2], whereas members of the order Rickettsiales (specif-

ically the genera Rickettsia, Ehrlichia, and Anaplasma) cause life-threatening vector-borne dis-

eases, such as spotted fever and typhus [3].

While these pathogens are all restricted to life in an intracellular niche, they differ in the

ways they reproduce and engage with their host cells. Chlamydia spp., Ehrlichia spp., Ana-
plasma spp., and C. burnetii have biphasic life cycles, in which the bacteria alternate between

infectious (environmentally stable) and replicative (metabolically highly active) forms inside

specialized membrane-enclosed vacuoles [1–3]. In contrast, Rickettsia spp. escape their vacu-

oles after uptake and replicate in the host cytosol without undergoing developmental transi-

tions [3]. The various obligate intracellular lifestyles are enabled by distinct sets of virulence

factors, which, for instance, engage in the subversion of host defenses and the hijacking of host

resources and machineries.

Studying the molecular basis of these intimate relationships between host and bacteria can

uncover unknown aspects of host–pathogen interactions and new targets for pharmacological

intervention to help relieve the significant disease burden of intracellular infections. However,

historically, the study of obligate intracellular bacteria was neglected due to the impeding lack

of tools enabling their molecular genetic manipulation. While whole-genome sequencing pro-

vided the opportunity to predict their virulence traits, in the absence of genetic tools, direct

links to specific bacterial genes could not be formally demonstrated.

Fortunately, recent years have seen a significant expansion of our genetic toolbox for these

important pathogens. Here, we summarize these developments, with a focus on Chlamydia
spp., along with a brief overview for other obligate intracellular bacteria. Furthermore, we pro-

vide examples of insights into chlamydial biology enabled by the expanded toolbox, and we

conclude with a discussion on future perspectives for the molecular genetic manipulation of

this group of bacteria.
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Why is the genetic manipulation of obligate intracellular bacteria

so challenging?

A major factor restricting the genetic tractability of obligate intracellular bacteria is their main

defining characteristic, i.e., their intracellular lifestyle. Delivery of DNA into bacteria residing

within host cells is difficult. Therefore, most approaches that depend on DNA delivery require

the bacteria first to be isolated before they can be modified extracellularly and then reintro-

duced into suitable host cells [4–7]. However, the distinct developmental forms of some spe-

cies can be differentially receptive for DNA uptake, with the infective forms being generally

considered less amenable to modification due to their rigid cell walls, condensed nucleoids,

and/or reduced metabolic activities [8,9].

As a consequence of the resulting low transformation efficiencies, selection and recovery of

modified bacteria typically requires the expansion of a very low number of transformed bacte-

ria through passage in cell culture, a process that can take days to weeks. Notably, antibiotic

resistance genes are commonly used as selection markers, but the list of antibiotics that can be

used is limited by regulatory prohibitions. Moreover, antibiotics that cannot access the intra-

cellular site of bacterial replication in an active form, or induce spontaneous resistance at a

high frequency, cannot be used. On an encouraging note, several nonantibiotic selection

markers, for instance, based on herbicide resistance or complementation of amino acid auxot-

rophies, have already been introduced in some obligate intracellular species [10–12].

The strict intracellular lifestyle also complicates the recovery of clonal strains of modified

bacteria because in the absence of a possibility for host cell-free cultivation, clones cannot be

obtained simply by picking colonies from agar plates. Plaque purification is applicable to cer-

tain obligate intracellular bacteria, such as some Chlamydia and Rickettsia spp. [13,14]. How-

ever, when plaque purification is not possible, clonal strains instead need to be recovered by

the slow process of limiting dilution [15] or by technically more demanding techniques, such

as micromanipulation [16], laser microdissection [17], or cell sorting [18].

Overall, while becoming technically increasingly feasible, the genetic manipulation of obli-

gate intracellular bacteria remains laborious and time-consuming. For example, clones of

transformed Escherichia coli may be obtained overnight, while the generation of plaque-puri-

fied transformed Chlamydia spp. takes at least a month (Fig 1). Moreover, the genetic manipu-

lation of obligate intracellular bacteria is not only complicated by technical difficulties, but also

by the fact that many genes with roles in host–pathogen interactions are essential for the ability

of these pathogens to replicate and can therefore not be disrupted easily.

Clearly, these hurdles could be overcome if host cell-free cultivation was possible. Indeed,

this is well illustrated by the case of C. burnetii, whose genetic toolbox has been greatly

expanded following the development of an axenic medium [19]. Unfortunately, efforts to

repeat this feat for other obligate intracellular bacteria have so far only resulted in axenic

media that enable survival with detectable metabolic activity [20–22], while media that allow

these bacteria to replicate under host cell-free conditions still await development.

What tools for genetic manipulation of obligate intracellular

bacteria have been developed so far?

Transformation protocols

Genetic manipulation of bacteria often starts with a transformation step in which the bacteria

are stimulated to take up and incorporate exogenous DNA. A CaCl2-based chemical transfor-

mation method has been widely adopted for transformation of host cell-free (purified) Chla-
mydia spp. [4,23–25], while electroporation is the method of choice for other obligate
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Fig 1. A timeline for the generation of transformed bacteria in C. trachomatis and E. coli.

https://doi.org/10.1371/journal.ppat.1010669.g001
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intracellular bacteria [5–7]. In attempts to bypass the need for purified bacteria, polyamidoa-

mine dendrimers were successfully tested in Chlamydia spp. [26,27] and Anaplasma phagocy-
tophilum [28] to introduce plasmids into bacteria residing in host cells. Yet, dendrimer-based

protocols have not yet been further developed and thus remain at a proof-of-principle stage.

Of note, in Chlamydia trachomatis, the fact that DNA, including plasmids, can be naturally

transferred between coinfecting strains through lateral gene transfer has also been exploited to

introduce DNA [29].

Shuttle vectors for gene expression

Shuttle vectors are plasmids that can be engineered in a convenient system such as E. coli
and then transferred through transformation to the host of interest, where the plasmids are

stably maintained to enable expression of genes. Shuttle vectors have been developed for

several species of obligate intracellular bacteria with C. trachomatis currently having one of

the most versatile arsenals of vectors. These vectors are commonly based on the endoge-

nous plasmid of C. trachomatis serovar L2 and contain various selection markers and pro-

moter systems, including such that enable inducible gene expression [4,30,31]. More

recently, shuttle vectors for other Chlamydia spp. have been developed as well [23–25], and

attempts are underway to develop a broad-spectrum vector system [32]. For Rickettsia spp.,

vectors were constructed based on endogenous plasmids found in the spotted fever group

species Rickettsia amblyommatis and were shown to be stably maintained in members from

both the spotted fever and typhus groups of the genus [33,34]. Finally, vectors have also

been created for C. burnetii based on plasmid backbones previously used in Legionella
pneumophila [35,36] and, more recently, based on an endogenous plasmid from C. burnetii
itself [37].

Targeted modifications in bacterial chromosomes

Site-specific mutations in genomes of obligate intracellular bacteria have principally been

generated by using site-specific transposons, the proprietary TargeTron system, or allelic

exchange approaches. A transposon system enabling single copy integration of genes at a

specific chromosomal site has for instance been described for C. burnetii [38], while similar

approaches have so far not been established in Chlamydia spp. In contrast, the TargeTron

system, which takes advantage of the ability of mobile group II introns to insert themselves

into the bacterial genome and which in contrast to the transposon system can be engineered

to target a specific site of choice, has been widely applied in C. trachomatis, in particular to

disrupt genes coding for secreted effector proteins [39–41]. Beyond Chlamydia spp., how-

ever, the use of TargeTron in obligate intracellular bacteria has so far been limited to Ehrli-
chia chaffeensis [7] and Rickettsia rickettsii [42]. Targeted modification by allelic exchange,

a process that replaces a selected stretch of DNA via homologous recombination and

enables the most versatile modifications, was enabled in C. trachomatis by the development

of fluorescence-reported allelic exchange mutagenesis (FRAEM) [43]. Its latest implementa-

tion, exploiting the Cre-lox system for site-specific recombination, even allows for the mar-

kerless deletion of operon-localized genes avoiding polar effects [29]. Allelic exchange has

also been successfully used to disrupt genes in C. burnetii [44], E. chaffeensis [7], and Rick-
ettsia prowazekii [45]. Finally, worth mentioning is that the feasibility of generating condi-

tional knockdowns in C. trachomatis using CRISPR interference has recently been

demonstrated [46,47], which now facilitates the study of essential genes that cannot be dis-

rupted by the approaches mentioned above [48,49].
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Random mutagenesis methods

Bacterial genomes can be randomly mutagenized by various means, but the main methods

that have been used for obligate intracellular bacteria so far are transposon mutagenesis and

exposure to chemical mutagens. Chemical methods have so far been the mainstay of random

mutagenesis in Chlamydia spp. [50–53], for which successful Himar1-based transposon muta-

genesis was only recently reported [54,55]. The latter has, on the other hand, been more com-

monly used in other obligate intracellular bacteria, including C. burnetii [56], E. chaffeensis [7],

A. phagocytophilum [6], and R. prowazekii [57]. Both mutagenesis methods allow the genera-

tion of mutant libraries, which can be used in forward and reverse genetic approaches, i.e., for

the identification of mutants that have desired traits or defects in specific genes. An advantage

of the chemical mutagenesis approach is that it can also generate hypomorphic alleles, which

can facilitate the study of essential genes. In addition, it often introduces multiple mutations

per strain; therefore, fewer mutants may need to be screened. However, associating phenotypes

with specific chemically induced point mutations is more tedious compared to the identifica-

tion of single transposon integration sites. In Chlamydia, this typically involves whole-genome

sequencing in combination with genetic mapping approaches based on the generation of

recombinant strains [51,58]. Moreover, strains with point mutations in specific genes can be

found either through whole-genome sequencing of entire collections of mutated strains or

through a targeted search approach named TILLING (targeting induced local lesions in

genomes) [50,52].

What has the application of genetic tools taught us so far about

Chlamydia spp.?

The ability to disrupt genes and to then complement the observed phenotypic defects by

restoring their expression, allows us to unequivocally assign functions to specific genes. More-

over, the expression of tagged proteins facilitates studies of their localization and interactors,

while the expression of modified protein variants can help identifying functional domains.

Hence, a versatile genetic toolbox is a powerful asset for in-depth gene characterizations (Fig

2).

In C. trachomatis, the application of these novel approaches has in particular advanced our

knowledge of its repertoire of secreted virulence factors and thus our understanding of key

aspects of Chlamydia’s interaction with host cells. To give examples, two C. trachomatis effec-

tors, i.e., TarP and TmeA, were shown to promote host cell invasion via remodeling of the

actin cytoskeleton at the invasion site [29,59–61]. Moreover, functions could be assigned to a

significant number of the so-called inclusion membrane proteins (Incs), a class of secreted

effectors that decorate the membrane of the Chlamydia vacuole (called inclusion). For

instance, IncA was shown to mediate homotypic inclusion fusion [39], IncD and IncV to

establish contact sites between the inclusion and the endoplasmic reticulum [62,63], and IncE

and CpoS to modulate host membrane trafficking [41,64–66]. CpoS deficiency had a particu-

larly detrimental effect on bacterial replication, as it resulted in a premature death of the

infected cell, presumably as a result of premature inclusion lysis [40,41]. Interestingly, inclu-

sion instability was also noted in cells infected with various other Inc mutants [40], including

such deficient for InaC, an Inc that promotes microtubule stabilization and actin cage forma-

tion at the periphery of the inclusion [52,67,68]. Finally, concerning Chlamydia exit from host

cells, we learned that the Incs MrcA and CT228 regulate myosin II motor protein activity to

promote or suppress exit by extrusion [69,70], while the secreted protease CPAF and the plas-

mid-encoded factor PGP4 contribute to bacterial egress by host cell lysis [71].
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The possibility for genetic manipulation has also empowered the use of reporter genes. For

instance, the expression of fluorescent proteins in Chlamydia spp., now routinely applied, can

ease the analysis of infection-related processes, such as adhesion, entry, and bacterial growth

[72]. Moreover, their use for monitoring promoter activities and developmental transitions

now also allows us to decode the mysteries of Chlamydia’s developmental biology, which, for

example, recently revealed that the transition of the replicative form of C. trachomatis into the

infectious form is regulated by bacteria-intrinsic not external cues [73]. In addition, it was

shown that the use of luciferase-expressing Chlamydia muridarum strains can enable in vivo

imaging of Chlamydia infections in mice [74]. The application of this novel tool uncovered an

unanticipated spread of the bacteria from the primary infection site, the genital tract, to other

organs, followed by a long-lasting colonization of the mouse intestine [75]. Of note, the plas-

mid-encoded effector PGP3 and several chromosomal-encoded bacterial genes were later

identified as virulence factors necessary for C. muridarum to survive the acidic conditions in

the stomach and to colonize the colon [76–78]. Because these virulence factors were also

required for hydrosalpinx induction, intestinal colonization was proposed to be a key event in

promoting upper genital tract pathology in infected mice [76,78].

What further developments can we expect in the future for the

genetic manipulation of Chlamydia spp.?

In spite of all the progress made in the genetic manipulation of obligate intracellular bacteria,

major technical hurdles remain that significantly restrict the biological insights we can gain.

Fig 2. The benefits of a versatile genetic toolbox in the exploration of gene functions.

https://doi.org/10.1371/journal.ppat.1010669.g002
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For instance, considering the case of C. trachomatis, it should now principally be feasible to

integrate or replace genes or regulatory elements at any desired site in the chlamydial chromo-

some or to markerlessly remove genes or larger genomic regions. However, in practice, this

remains technically difficult, as it requires recovery of rare double cross-over allelic exchange

events. This could be significantly eased if counterselectable markers, already described for C.

burnetii [44], would be available for Chlamydia spp. as well. The use of temperature-sensitive

alleles has recently been proposed as one possible solution [58].

Another expected major milestone in Chlamydia will be the development of saturation

mutagenesis enabling transposon-insertion sequencing. It appears that many secreted Chla-
mydia effectors are nonessential in cell culture, suggesting either an inbuilt redundancy of

effector functions or more likely context-specific roles. For instance, certain functions might

be relevant only in specific host species, tissues, or cell types, or only in the context of an in

vivo infection, for instance, to promote immune evasion or dissemination. Transposon-inser-

tion sequencing holds great promise in identifying essential genes and genes providing such

context-specific fitness benefits. While the low transformation efficiencies in Chlamydia have

been considered a major obstacle for establishing such approach, the recent development of

inducible transposon mutagenesis in C. trachomatis suggests that it can be bypassed [79].

Finally, a better understanding of Chlamydia’s unique developmental biology will also

require a further refinement of our capabilities to study the function of essential genes, such as

by developing more tightly controlled inducible expression systems to improve conditional

gene expression and disruption approaches. Again, most recent developments in the field,

such as the description of riboswitches for translational control of gene expression in Chla-
mydia [79,80], provide a highly encouraging perspective.

Taken together, while there are still many obstacles in our way, we can be confident that the

establishment and refinement of novel genetic tools for obligate intracellular bacteria, such as

Chlamydia spp. and beyond, will continue at fast pace. Clearly, these advances will further rev-

olutionize both the ease and depth with which we can decipher the secret ways by which these

pathogens modulate host cell biology and cause diseases.
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