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Abstract

Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell biology. The scale
and complexity of these networks, however, render their analysis using experimental biology approaches alone very
challenging. As a result, computational methods have been developed and combined with experimental biology
approaches, producing powerful tools for the analysis of these networks. These computational methods mostly fall on
either end of a spectrum of model parameterization. On one end is a class of structural network analysis methods; these
typically use the network connectivity alone to generate hypotheses about global properties. On the other end is a class of
dynamic network analysis methods; these use, in addition to the connectivity, kinetic parameters of the biochemical
reactions to predict the network’s dynamic behavior. These predictions provide detailed insights into the properties that
determine aspects of the network’s structure and behavior. However, the difficulty of obtaining numerical values of kinetic
parameters is widely recognized to limit the applicability of this latter class of methods. Several researchers have observed
that the connectivity of a network alone can provide significant insights into its dynamics. Motivated by this fundamental
observation, we present the signaling Petri net, a non-parametric model of cellular signaling networks, and the signaling
Petri net-based simulator, a Petri net execution strategy for characterizing the dynamics of signal flow through a signaling
network using token distribution and sampling. The result is a very fast method, which can analyze large-scale networks,
and provide insights into the trends of molecules’ activity-levels in response to an external stimulus, based solely on the
network’s connectivity. We have implemented the signaling Petri net-based simulator in the PathwayOracle toolkit, which is
publicly available at http://bioinfo.cs.rice.edu/pathwayoracle. Using this method, we studied a MAPK1,2 and AKT signaling
network downstream from EGFR in two breast tumor cell lines. We analyzed, both experimentally and computationally, the
activity level of several molecules in response to a targeted manipulation of TSC2 and mTOR-Raptor. The results from our
method agreed with experimental results in greater than 90% of the cases considered, and in those where they did not
agree, our approach provided valuable insights into discrepancies between known network connectivities and experimental

observations.
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Introduction

Signaling networks are complex, interdependent cascades of
signals that process extracellular stimuli, received at the plasma
membrane of a cell, and funnel them to the nucleus, where they
enter the gene regulatory system. These signaling networks
underlie how cells communicate with one another, and how they
make decisions about their phenotypic changes, such as division,
differentiation, and death. Further, malfunction of these networks
may alter phenotypic changes that cells are supposed to undergo
under normal conditions, and potentially lead to devastating
consequences on the organism. For example, altered cellular
signaling networks can give rise to the oncogenic properties of
cancer cells [1,2], increase a person’s susceptibility to heart disease
[3], and have been shown to be responsible for many other
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devastating diseases such as congenital abnormalities, metabolic
disorders and immunological abnormalities [1,4].

In light of the crucial role signaling networks play in the
proper functioning of cells and biological systems as a whole, and
given the grave consequences their alterations may have on the
behavior of cells, elucidating the connections in the networks,
and understanding how they operate, are two central questions
in cell biology. However, unlike the “pathway view” of signaling
as linear cascades, signaling networks are highly interconnected,
involve cross-talk among several pathways, and contain feedback
and feed-forward loops [5]. Figure 1 illustrates this issue in a
network of signaling cascades, which is stimulated by EGF and
contains several players in cancer pathways. For example,
multiple paths lead from EGFR to mTOR-Raptor, resulting in
feed-forward loops. Some of these paths activate mTOR-Raptor,
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Author Summary

Many cellular behaviors including growth, differentiation,
and movement are influenced by external stimuli. Such
external stimuli are obtained, processed, and carried to the
nucleus by the signaling network—a dense network of
cellular biochemical reactions. Beyond being interesting
for their role in directing cellular behavior, deleterious
changes in a cell's signaling network can alter a cell’s
responses to external stimuli, giving rise to devastating
diseases such as cancer. As a result, building accurate
mathematical and computational models of cellular
signaling networks is a major endeavor in biology. The
scale and complexity of these networks render them
difficult to analyze by experimental techniques alone,
which has led to the development of computational
analysis methods. In this paper, we present a novel
computational simulation technique that can provide
qualitatively accurate predictions of the behavior of a
cellular signaling network without requiring detailed
knowledge of the signaling network’s parameters. Our
approach makes use of recent discoveries that network
structure alone can determine many aspects of a
network’s dynamics. When compared against experi-
mental results, our method correctly predicted 90% of
the cases considered. In those where it did not agree, our
approach provided valuable insights into discrepancies
between known network structure and experimental
observations.

Growth
Factors EGF

Signaling Petri Net-Based Simulator

while others inhibit it. Further, the network contains two
feedback loops, one from p70S6K to EGFR and another from
MAPKI,2 to EGFR.

These and other complexities make it very difficult to analyze
signaling networks by experimental biology approaches alone. As a
result, computational methods have been developed and com-
bined with experimental biology approaches, producing powerful
tools for the analysis of these networks [6]. These computational
methods produce hypotheses that guide the experimental design,
leading to more informative experiments, while experimental
results help refine the computational models, resulting in more
accurate predictive tools.

In a recent survey, Papin et al. classified existing computational
methods into two categories: structural and dynamic network analysis
[6]. Structural network analysis is mainly based on the network’s
connectivity, which is typically readily available from numerous
public signaling network databases (e.g., [7-9]), and makes
inferences about global network properties as well as individual
protein functions. This category can be further refined into two
sub-categories, both of which are solely based on connectivity
information, yet differ in the type of answers they provide. For
example, the methods described in [10-13] infer ‘static”
properties of the network, such as numbers of paths, reachability
results, etc. In a series of papers, Palsson and co-workers [6,14—16]
introduced extreme pathway analysis techniques, which are more
appropriate for metabolic networks, yet have been applied to
signaling networks to characterize various properties of networks,
such as redundancy and cross-talk. Similar analyses have also been

Figure 1. The Model Signaling Network. A MAPK1,2 and AKT network downstream from EGFR, which we assembled from various sources, and used
for the case study analysis in this work. An edge from u to v ending with an arrow indicates an activating reaction, while an edge ending with a plunger
indicates an inhibiting reaction. With the exception of TSC2, all nodes have self-inhibitory edges, which were added to model the external cellular
machinery that regulates the concentration of the active form of the proteins [36-43]. Colors were selected to enhance readability of the network.

doi:10.1371/journal.pcbi.1000005.g001
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formalized and conducted using the principles of S- and T-
invariants in Petri Nets (e.g., [17-20]).

Methods for dynamic network analysis use, in addition to the
network connectivity, the kinetic parameters of the biochemical
reactions. The goal of these methods is to model the actual kinetics of
the network and obtain through simulation the actual quantities of
proteins involved in signal transduction. One of the most widely used
techniques in this category is systems of ordinary differential
equations (ODEs) (e.g., [21-25]). Within such a system, each
reaction is modeled by a series of equations connecting reactant
concentrations to product concentrations through differential
relationships involving reaction rate constants. Given the difficulty
of obtaining the numerical values of kinetic parameters [19,26] and
standardization of the parameters and models [27], the applicability
of these methods is limited in practice to small-scale networks [6,28].

Petri Nets have also been used for simulating the dynamics of
signaling networks [29-31]. While such approaches somewhat relax
the necessity for biologically exact kinetic parameters, current Petri
Net-based approaches still require the selection of weights and/or
probability distributions for individual interactions in the model. As a
result, selecting the values for Petri Net parameters presents
challenges similar to those encountered in ODE modeling.

Structural network analysis assumes mainly connectivity infor-
mation about the model, and provides insights into global, static
properties of the network. Dynamic analysis in general assumes
numerical values of the kinetic parameters, and provides predictions
of network dynamics by quantifying the change in concentration and
activity-level (the concentration of the active form of a given protein)
of the individual proteins and complexes in the network. To obtain a
more detailed analysis one must either solve parameter optimization
problems for a large number of molecules and interactions or
conversely experimentally derive these values.

Given the difficulty of obtaining numerical values of kinetic
parameters [19,26] and the implications this has on the
applicability of dynamic analysis methods [6], it is imperative to
develop innovative approaches that combine the attractive low
requirements of structural network analysis techniques with the
detailed answers provided by dynamic analysis techniques—
specifically the response of individual proteins to signals which
travel through the network.

Several recent efforts in this direction have produced encour-
aging results. An approach using a boolean network simulation
method, based on work in the area of gene regulatory networks,
successfully used only signaling network connectivity information
to predict the speed of signal transduction through a stomata
signaling network [32]. The use of piecewise linear systems of
ODEs have also had success in analyzing some of the dynamics of
gene regulatory and signaling networks without using exact kinetic
parameters (e.g., [33-35]). The obstacle to extending the method
in [32] to model individual protein responses to signal transduc-
tion is the boolean model used to discretize the signal as it
propagates. In a boolean model, the signal is either present or
absent at each node in the network. Such two-state models of
signal transduction simplify the underlying biochemistry to the
point where it is difficult to model changes in protein
concentration more precisely than present or absent. Modeling
such gradients of concentration changes and the effects of those
changes may be important to predicting individual protein
responses, motivating our effort to devise more fine-grained ways
to model and simulate the dynamics of signaling networks. The
challenges to using linear-piecewise ODEs to model a signaling
network center around the issue of identifying all the ODEs
required to model the underlying network as well as scalability
issues involved in simulating large systems of ODEs.
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In this paper, we extend the synchronized Petri net model and
firing policy such that the resulting framework models cellular
signaling processes. We call this extension the signaling Petri net
(SPN). By coupling this with a novel strategy for Petri net
execution and sampling, we obtain a method capable of
characterizing some dynamics of signaling networks while using
only connectivity information about these networks.

To validate our method, we studied the MAPK1,2 and AKT
network shown in Figure 1 in two breast cancer cell lines. This
network was chosen because the EGFR receptor and its
downstream signaling network play a very important role in
development, differentiation, and oncogenic transformation. Two
very important signaling molecules within the cell are MAPK and
AKT, both of which can be activated by EGFR, and contains
several potential regulatory paths between them. We constructed a
model network of EGF regulation of MAPK and AKT which
includes several feedback and feed-forward loops all of which were
constructed based on experimental findings from different
laboratories around the world [36-43]. We analyzed, both
experimentally and computationally, the change in activity-level
of several proteins in response to targeted manipulation of TSC2
and mTOR-Raptor. Using the model network, the predictions
from our method agreed with experimental results in over 90% of
the cases, and in those where they did not agree, our method
correctly identified discrepancies that could be traced back to
incompleteness in the network connectivity model.

Materials and Methods

Our approach combines elements of the boolean network
simulator in [18] with a synchronized Petri net model [44]. In [18],
Li et al. present a non-parametric approach that accurately predicts
the speed of signal propagation through a network. However, as their
method assumes a binary model of activation—every protein is either
active (true) or inactive (false—modeling a range of activity-levels is
difficult. Petri nets, while able to model concentrations using tokens,
require parameters describing the kinetic characteristics of the
network, which are typically difficult to obtain.

Our method models signal flow as the pattern of token
accumulation and dissipation within places (proteins) over time
in the Petri net. Transitions in the network represent directed
protein interactions; each transition models the effect of a source
protein on a target protein. Through transition firings, the source
can influence the number of tokens assigned to the target, called
the foken-count, modeling the way that signals propagate through
protein interactions in cellular signaling networks.

In order to overcome the issue of modeling reaction rates in the
network, signaling dynamics are simulated by executing the
signaling Petri net (SPN) for a set number of steps (called a run)
multiple times, each time beginning at the same initial marking.
For each run, the individual signaling rates are simulated via
generation of random orders of transition firings (interaction
occurrences). When the results of a large enough number of runs
are averaged together, we find that the series of token-counts
correlate with experimentally measured changes in the activity-
levels of individual proteins in the underlying signaling network. In
essence, the tokenized activity-levels computed by our method
should be taken as abstract quantities whose changes over time
correlate to changes that occur in the amounts of active proteins
present in the cell. It is worth noting that some of the most widely
used experimental techniques for protein quantification—western
blots and microarrays—also yield results that are treated as
indications, but not exact measurements, of protein activity-levels
within the cell. Thus in some respects, the predictions returned by
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our SPN-based simulator can be interpreted like the results of a
western blot or microarray experiment looking at changes relative
to “control”.

The key insight behind our approach is the assumption that,
while all network parameters determine the actual signal
propagation to some extent, the network connectivity is the most
significant single determinant. While this is clearly a gross
simplification, several researchers have observed that the connec-
tivity of a biological network dictates, to a great extent, the
network’s dynamics [18,45-47]. Some have conjectured that
biological network connectivities have evolved to have a stabilizing
effect on the overall network behavior, making the network more
resilient to local fluctuations in other network parameters such as
reaction rates and protein binding affinities [45,47]. Here we
present the signaling Petri net (SPN) model and the signaling Petri
net-based simulator whose designs collectively utilize this assump-
tion and couple it with a Petri net tokenization scheme that
quantifies the changes in protein activity-levels that occur as
signals propagate through the network. In the following sections,
we describe the synchronized Petri net, how we extended it to
create the signaling Petri net, and a novel strategy for executing
the signaling Petri net to simulate signaling network dynamics.

Petri Nets

A Petri net is a graph that consists of two types of nodes, places,
and transitions [44]. Edges in the graph, called arcs, are directed and
connect places to transitions or transitions to places. Thus, the

Petri net is a bipartite graph. Formally, a Petri net is a 4-tuple
Q=(P,T,1,0) where

P={p1,po,....pm} 1s the set of places,

T={t,la,...,1,} is the set of transitions,

I={11,09,...,4} 1s the set of input arcs where for all (u,0)el, ueP
and ve7, and

0= {01,09,...,0;} is the set of output arcs where for all (u,0)el, ueT
and veP.

In order to simulate a dynamic process, a number of tokens is
assigned to each place in order to indicate the presence of some
quantitative property. This assignment of tokens to places encodes
the state of the system and is called a marking, denoted m. A
marked Petri net, R ={Q,my), is a Petri net with a marking my, called
the initial marking. For the remainder of this paper, the term Petri
net (PN) refers to a marked Petri net.

Changes in the state of the system are simulated by executing the
Petri net—evaluating the effect of transitions on the marking of the
network. These changes in marking are induced by sequential firing
one or more transitions. When a transition fires, it removes a token
from each place connected to it by input arcs and adds a token to
each place connected to it by output arcs. The number of tokens
removed from inputs and added to outputs can be specified by
weighting the input arcs. However, as our extension does not use
this weighting property, we do not consider this very common PN
formulation here.

A transition can only fire when it is enabled, meaning that each of
its input places has at least one token in the current marking. If a
transition £, when fired on a marking m,, produces marking mj,
then we write m, | Hmy.

This notation can be extended to represent the effect of firing a
series of transitions. A firing sequence, G = (t1,lo,...,t) is a sequence of
transitions. The sequence’s cumulative effect on the system’s state
is denoted my | 6)m,where my is the initial marking and myis the
marking produced by the firing of the sequence of transitions in
the order specified in ©. In this paper, we write m to indicate the
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marking produced by the first g transitions in 6. Therefore, in the
above example, mj =my and m[; =my.

For a more complete introduction to types of Petri nets and
their properties, we refer the reader to [44].

Synchronized Petri nets. Synchronized Petri nets model
systems in which the firing of a transition is triggered by a specific
event that occurs in the environment. The marked Petri net is
extended to include a set of these events and a mapping function
that assigns an event to each transition. When transition t’s
assigned event occurs, transition t is fired. Formally, a
synchronized Petri net is a 3-tuple (R,E,Sync), where [44]:

R is a marked Petri net,

E={ey,e9,...,¢,} is a set of events, and

Syne: T—EU{e} maps each transition in the Petri net to an
event. Event e is the always occurring event. Any transition associated
with e is always immediately fired upon becoming enabled.

When executing a synchronized Petri net, transition t is fired
when its associated event ¢ = Sync(f) occurs. The order in which
events are generated depends upon the environment which
generates them. Just as in the marked Petri net, when a transition
fires, it removes one token from each place connected by input
arcs and gives one token to each place connected by output arcs.

As will be discussed in the next sections, we extend the
synchronized Petri net paradigm to model the dynamics of a
signaling network. To our knowledge, ours is the first use of the
synchronized Petri net to model biochemical systems. In principle
it is well suited to signaling networks since places represent
proteins, tokens represent concentrations, and transitions represent
directed protein interactions. A model of signaling event
occurrence can be used to generate events and fire transitions,
providing a way of simulating the signaling network’s behavior.
These and other design details will be discussed in the next section.

The Signaling Petri Net-Based Simulator

A high-level sketch of our simulator is given is Figure 2. Details
and rationale for specific design decisions will be discussed in
subsequent sections.

During the simulation, the input signaling Petri net is executed
multiple times on a firing sequence constructed by the signaling
event generator. The signaling event generator imposes an
ordering on transition firing such that it creates a two-time scale
simulation. The smaller time scale is discretized as the firing of a
single transition. This unit is referred to as the firng time scale.
Firing steps are nested within a larger time scale, called time blocks,
in which each transition is fired exactly once. Thus, there are | 7
firings per block. Since the simulation is run for the specified
number of time blocks, B, there are B|7]| firing steps in the
simulation.

The time structure for an example simulation is illustrated in
Figure 3. This dual-time approach is necessitated by the rate
parameter sampling strategy we employ. Since the rate parameters
are not known, our method executes many simulation runs (Step 2 in
Figure 2) in order to sample the space of possible rate parameters.
The markings returned by these runs are then averaged (Step 3 in
Figure 2). The only requirement placed on the different rate
parameter values is that all events occur within the same larger time
frame—the time block. Therefore, within every time block all edges
are evaluated once, though not necessarily in the same order.

This idea of evaluating random event orderings within a two-
time scale system has appeared before in the domain of
transcriptional networks [48]. In that study, Chaves et al.
employed a two-time scale formulation of network updates similar
in concept to the one we describe here. In their work, they
assumed a boolean model of regulation and characterized the
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PROCEDURE SIMULATE(S, B, r)
1. Set the initial marking of S
2. Fori=1tor

(a) Generate a random sequence of the events in F

the generated sequence

(¢) Record the number of tokens at each node, for each time step

(b) Simulate the network by executing the transitions associated with the events in

3. For each node, compute the number of tokens at each time unit ¢, averaged over r

Figure 2. A High-Level Outline of the Procedure for Simulating a Signaling Network. The input to the procedure is a signaling Petri net, S,
the number of time units to simulate the network for, B, and the number of runs for which to repeat the simulation, r. The random generation of
event ordering is employed to simulate the stochasticity in reaction rates and the differing times of signal arrivals.

doi:10.1371/journal.pcbi.1000005.g002

effect of different relative rates of transcription within the same
network on the final steady state reached. In contrast, our method
is designed to operate on tokenized models of signaling networks
with the ultimate intent of predicting the activity-level changes of
proteins in the underlying signaling network over time.

In the next sections, we discuss in greater detail the core design
decisions underlying our method: the signaling Petri net, transition
firing, signaling network event generator, constructing the initial
marking for the model, and sampling signaling rates. We then
discuss how our strategy can be used to predict the outcome of
perturbation experiments.

The Signaling Petri Net

The goal of our method is to predict the signal flow through a
cell-specific network under specific experimental conditions. As a
result, the signaling Petri net model must characterize the
connectivity of the signaling network, the connectivity-level
network properties that are unique to the cell type and
experimental conditions under which the network is being studied,
and the signaling processes of activation and inhibition.

The signaling Petri net is a synchronized Petri net with: 1) a
specific way of modeling activating and inhibiting interactions
using places, transitions, and arcs; 2) a one-to-one correspondence
between events and transitions such that every transition is
associated with a unique event; 3) modified rules regarding how
many tokens are moved in response to a transition firing; and 4) a
signaling network event generator.

Places correspond to the activated forms of signaling proteins.
The number of tokens assigned to place p in marking m,, mp),
abstractly represents the amount of active protein p present in that

network state. Signaling interactions are modeled using transitions
and their connected input and output arcs. Each transition, t, is
associated with a unique signaling event, e, such that when e
occurs, transition t fires. Figure 4 shows the equivalent signaling
Petri net for a signaling network.

Formally, a signaling Petri net is a 3-tuple S=(R,E,Sync), where:

R is a marked Petri net,

E is a set of signaling events such that | E| = | 7| and there is no
always occurring event, and

Syne:T—E is a one-to-one mapping which assigns each
transition a unique signaling event.

The initial marking of a signaling Petri net, my, represents the
state of rest from which the network is starting and being simulated.
Proteins whose concentrations are known to be high can be given a
large number of tokens, and those whose concentrations are known
to be low can be assigned few or zero tokens. Attention to the initial
marking is central to modeling cell-specific networks. In many cell
lines, specific proteins are known to contain mutations that render
them perpetually active or inactive [49]. Furthermore, experimental
studies frequently involve the targeted manipulation of various
proteins within the network. Both of these phenomena induce state
changes in certain proteins at various time points that must be
modeled. The way in which these are modeled will be discussed
when the simulator design is explained.

Transition Firing

When a signaling interaction A—B (A activates B) or A4B (A
inhibits B) occurs, it has the effect of changing the state of the system
by modifying the activity-level of A and/or B. Thus, in the SPN
used to model this network, the associated transition, t, will fire at

Edgeurdering|1|2|4|3|4|2|1|3|2|3|1|4|4|2|1|3|

Time steps | | |

Block 1 Block 2 Block 3 Block 4

Time blocks

B

Figure 3. The Effects of Reaction Rates on Signal Propagation. (A) By changing the speed of signaling edge 3, the value of D at the end of a
single simulation step can be reversed. If edge 3 is slower than the cascade B—CAD, then D will be active. If edge 3 is faster than the cascade, then D
will be inactive. (B) An example of how the simulator might evaluate the individual edges during a run. In each time block, every edge is evaluated
once. Each edge evaluation corresponds to one time step. Note that the order of the edge evaluation is shuffled during each time block in order to
sample the space of possible relative signaling rates.

doi:10.1371/journal.pcbi.1000005.9003
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B

Figure 4. An Example Signaling Network and Its Corresponding Petri Net. An example signaling network (A) and its corresponding Petri net
(B). Each signaling protein in the network, A, B, and C, are designated as places pa, ps, and pc. Signaling interactions become a transition node and its
input and output arcs. Note that the connectivity for an activating edge differs from that of an inhibitory edge.

doi:10.1371/journal.pcbi.1000005.9004

time 7 and produce marking m.;; from m,. The way in which
m., is computed from m, depends on the set of input and output
arcs attached to the transition as well as the number of tokens
moved by the transition.

The combination of input and output arcs connected to a
transition is determined exclusively by the type of interaction and
the transition firing model. However, different topologies,
combinations of input and output arcs, are needed to model the
different biochemical processes that mediate protein-protein
interactions in a signaling network. Here we examine four of the
most common biochemical processes, identify the corresponding
topological motifs, and ultimately devise a modeling policy best
suited for non-parametric simulation of signal flow.

In post-translational modification (PTM), a protein mediates the
addition or removal of a phospho group at a specific phosphor-
ylation site on another protein. In GTP/ATP binding, a protein
triggers the exchange of GDP (ADP) from GTP (ATP) on another
protein. In a recruitment process, a protein mediates the relocaliza-
tion of another protein to a different part of the cell. Finally, in a
complexing process, a protein binds to another protein to create a
complex, which can then participate in other reactions. In the first
two processes, the mediating protein usually acts as an enzyme
that participates in the reaction but is not consumed by the
reaction. In the latter two processes, the participating protein often
becomes unavailable to other reactions, transiently while the
protein recruitment is taking place and for longer durations when
complexing occurs. To model these two cases, we identified the
two different token-passing policies implemented by the different
topological motifs depicted in Figure 5.

Token consumption. In this policy, ullv consumes tokens in u
in order to generate new tokens for v. In order to model this, p,, is
connected to transition t; through an arc and p, is connected to t;
through an output arc. When t; fires, some number of tokens in p,
are moved into p,. Similarly, u4v consumes tokens in u in order to
consume tokens in v. This is modeled by connecting p, to t, with an
input arc and p, to ty with an input arc. When t, fires, some number
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of tokens are removed from both p, and p,. This policy models a
recruitment or complexing event in which u binds to another
molecule, thereby creating a molecule of type v. 4 molecule of type u has
been consumed in order to generate or deactivate a molecule of type v.

Token conservation. In this policy, ullv generates new
tokens for v while conserving those in u. In order to model this, p,
is connected to transition t3 through a read arc. Node p, is
connected to ts through an output arc. When ts fires, some
number of tokens in p, is read (but not removed) and copied into
P+~ Similarly, udv consumes tokens in v while conserving those in
u. This is modeled by connecting p,, to t4 with a read arc and p, to
ty with an input arc. When t4 fires, some number of tokens in p,
are read and removed from p,. Enzymes will often behave in this
way: inducing a change in a molecule (v) without themselves
undergoing any change. A molecule of u has induced a change in a
different molecule of type v without itself changing state.

Ideally, for each interaction in the network, the associated
transition could be embedded in the topology corresponding to the
interaction’s underlying biochemical mechanism. However, connec-
tivity-level knowledge of the network does not provide this
information for each interaction. In the absence of these details,
we use one token-passing policy for all interactions in the network.
We implemented and tested both the consuming and conserving
policies and found that token conservation provides significantly
more accurate results when compared to experimentally derived
data. This is not surprising, as post-translational modification and
GTP/ATP binding events are responsible for many activation state
changes in signaling networks [1,50-52]. It is worth noting that our
approach does not restrict the net structure to token conserving
topologies. Thus, it is possible to use the token consumption
topologies where such processes are known to occur. However, as
our focus in this paper is designing a purely non-parametric
simulation method, we consider the use of information regarding the
biological mechanism of signaling as a potential way to further
improve the accuracy of our method’s predictions and identify this as
a direction for future work.
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A

Signaling Petri Net-Based Simulator

B

Figure 5. The Topological Motifs for Differing Signaling Processes. (A) The token consumption motifs for complexing and recruitment.
Transition t; encodes activation of v by the binding or consumption of u. Transition t, encodes deactivation of v by the binding or consumption of u.
In both cases, the number of tokens of p,, decreases immediately after transitions t; and t; fire. (B) The token conserving motifs for PTM and GTP/ATP
binding. Transition t3 encodes enzymatic activation of v by u. Transition t, encodes enzymatic inhibition of v by u. In both cases, the number of
tokens of p, remains unchanged immediately after transitions ts; and t, fire.

doi:10.1371/journal.pcbi.1000005.g005

The transition topologies, as described above, do not designate
how the number of tokens added to or removed from p, is
determined. However, we know that in biochemical signaling
networks concentration has an effect on the strength of a
signaling event [53-55]. Specifically, the higher u’s concentra-
tion, the stronger its effect on v—the more tokens that p, has,
the more tokens of p, should be affected (generated or
consumed).

However, because of the stochastic nature of the underlying
biochemistry, it would be inaccurate to assume that all active u
molecules will always participate in an interaction with v. In order
to accommodate this observation, when transition t fires, we
randomly select the number of p,’s tokens to be involved in the
subsequent evaluation of the transition, which we call a signaling
event. Note that, according to our choice of topology, p,, can always
be identified as the node connected to the transition by a read arc.
In this paper, we assume a uniform distribution for selecting the
number of tokens involved in a given signaling event, but
acknowledge that other distributions may be more appropriate
under certain circumstances and identify this as a topic deserving
further consideration.

Let my(x) denote the number of tokens in node x at time s. For an
interaction (u,v), under the token conservation policy detailed
above, u’s token-count remains unchanged after the firing of t,
whereas Vv’s token-count is updated based on the following
formula:

if u activates v

my(v)

my_1(v) +random(0,m;_ (u))
{ max{0,m,_ (u) —random(0,ms_(u))}

where random(p,q) is a random integer drawn from a uniform
distribution over the range [p,q].

If we employ the policy of token passing with consumption, then
after m,(v) has been computed based on the formula above, m(u) is
updated as:

mg(u) =my_ 1 (u) — min{m,_ (u),|ms(v) —ms_ (v)|}.
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if u inhibits v’

Signaling Network Event Generator

The SPN topology and transition token-number selection policy
alone do not specify the speed with which individual signaling
interactions occur. However, such rates must be accounted for
when simulating a signaling network. ODEs characteristically
model such details as reaction rate constants; parameterized Petri
nets specify these in a variety of ways including transition firing
rates and firing probabilities [17,30]. In synchronized Petri nets,
the environment controls the generation of events. Thus, the
signaling network event generator is responsible for controlling the
timing and ordering of signaling events. However, as our objective
is a non-parametric simulation method, our approach must either
estimate these parameters or operate without explicit knowledge of
them.

Estimating reaction rates using only connectivity is currently
beyond the predictive or inferential capabilities of computers.
While there has been some work in the area of predicting reaction
rates, all results of which we are aware require knowledge about
the mechanism of signaling (e.g., [56]). As a result, without
enriching the SPN model, it is doubtful that rate parameters can
be accurately estimated.

For this reason, the signaling network event generator operates
without explicit knowledge of the rate parameters. To compensate
for this “missing” knowledge, we make use of an observation of
signaling networks discussed earlier: a network’s connectivity
determines its dynamics. Several studies have found that the
connectivity of biochemical networks desensitizes them to small
fluctuations in the kinetic biochemical parameters [45-47].
Understood within the context of evolution — a stochastic process
that tweaks signaling network parameters across generations — this
is a highly desirable property as it ensures that an offspring
remains viable despite fluctuations in the exact tuning of its cellular
machinery. If this property holds, then small fluctuations in the
rate parameters should have a marginal effect on the overall
propagation of signal through the network. We can consider these
small effects to be noise obscuring the underlying dynamics of the
network connectivity. By taking many samples of the network
dynamics under a variety of reaction rate assignments and then
averaging these dynamics, we simultaneously reduce the noise
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introduced by any one rate assignment and strengthen the
underlying dynamic characteristics of the network’s connectivity.

However, since reaction rate constants can vary by several
orders of magnitude—from 107'° to 10% the task of correctly
selecting parameters close to the true parameters is non-trivial. In
fact, without having some estimate of the actual rate parameters, it
is unclear as to how to measure closeness at all. Clearly, these are
among the issues that make parameter estimation so difficult for
ODE and Petri net approaches. Since our comparisons will be
relative and not absolute, we take a relative approach to modeling
rate parameters. The space of possible rate values is the space of
possible signaling event orderings.

This idea is illustrated in Figure 3A. Protein A affects the activity
of protein D through two separate pathways. Assuming that A is
active to begin with, the relative speed of these two pathways
determines the final activity of D. If the pathway through C is
faster than the pathway BIID, then D will be active. However, if
the pathway speeds are reversed, then D will remain inactive. The
overall outcome of this network can be represented without any
use of numeric reaction rates by representing the reaction rates as
an ordering over all the edges in the network. We can extend this
idea to the SPN by observing that there exists a unique event for
each signaling edge in the signaling network.

This sampling strategy is the motivation for the dual-time
framework depicted in Figure 3B and implemented by the
signaling network event generator shown in Figure 6. Time blocks
are the larger time intervals during which every signaling event
occurs exactly once. Since every transition in the SPN is associated
with a unique event, each transition will fire exactly once in each
time block. Transition firings are the smaller time units that impose a
strict sequential order on the occurrence of signaling events. While
this strict sequentiality of firing models relative reaction rates, it
also discretizes the effect of signaling events. Though this is
consistent with the definition of transition firing in discrete time
Petri nets (only one transition is evaluated at a given point in time)
[44], in biological signaling networks there is no such serial
evaluation constraint. However, our validation with experimental
data suggests that this discretization approximation does not affect
the overall validity of the simulation results.

PROCEDURE GENERATESIGNALINGEVENTS(E, n)
1. k=|E|
2. o an an empty array of size (k x n)
3.i=1
4. forb=1ton
(a) E'=E
(b) while E' # 0

i. e = a random event from E'

ii. ofi]=e
iii, B = E' — {e}
iv.i=i+1

5. Return o

Figure 6. The Algorithm That Implements the Signaling
Network Event Generator. This routine generates the time block/
firing structure. Given a set of events, E, and the number of blocks for
which the SPN will be executed, n, GENERATESIGNALINGEVENTS generates n
blocks of events, each consisting of |E| events ordered randomly. In
each block, every event in E occurs exactly once.
doi:10.1371/journal.pcbi.1000005.9006
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Defining the Initial State

As mentioned previously, the initial state of the SPN is the initial
marking, my. As the SPN provides no explicit information on how
this marking should be built, we propose three ways to construct
the initial state: zero, basal, or experimentally derived. In a zero
mnitial state, the simulator initializes all proteins to have zero
tokens. The basal initial state is a random distribution of activation
levels intended to model the cell when no impulses due directly to
external stimuli are propagating through the signaling network.
Though a basal network is considered at rest, in general it will not
have a zero marking since signal flows are known to occur even in
unstimulated signaling networks through autocrine and paracrine
secretions by the cells. The experimentally derived initial state is
based on knowledge about the activity levels of various proteins

just prior to the addition of the external stimuli.

When accurate experimental data is available such as results from
microarrays or western blots, the experimentally derived initial state
may be the most accurate. A challenge in using experimental data,
however, is determining how best to assign numbers of tokens based
on the experimentally observed activity levels.

In the absence of reliable experimental data, the basal initial
state seems more accurate than the zero initial state. However, it
presents the challenge of properly selecting the basal activity-levels
to assign to each protein in the model network. In [18], a basal
initial state was constructed by activating a small number of
randomly selected proteins in the signaling network. However, the
work in [18] was done using a boolean model. Translating this
approach into a tokenized model creates the additional complexity
of determining how many tokens each basally active protein
should receive. The correct values are likely to depend on the
specific signaling network and experimental conditions.

We performed preliminary tests to compare the effect of using
different basal versus zero markings on the outcome of the
simulator. We found that the basal and zero states produced
indistinguishable predictions so long as less than 30% of the
proteins were activated and a small number of tokens (<5) were
used when constructing the basal marking. This is not as surprising
as it may seem at first. Inhibitory edges will quickly consume a
small number of tokens scattered throughout the network,
effectively returning much of the network to the zero state before
a stimulation event can propagate through.

Furthermore, while validating our method, we also compared
the predictions produced by SPNs based on a zero initial state and
experimentally derived initial state. These, too, did not produce
noticeably different final results for similar reasons as discussed
above. Details of these comparisons will be discussed further in the
Results and Discussion sections.

However, since all three initial state construction strategies yield
qualitatively identical predictions, using zero initial states has the
advantage of invoking the fewest unnecessary assumptions about
the network (as in the case of the basal initial state) and requiring
the least experimental data (as in the case of the experimentally
derived state). Nonetheless, in our implementation of the tool, we
allow for using any one of these three initial state construction
strategies.

Modeling Cell-Specific Signaling Networks

Whereas consensus signaling networks typically represent the
connectivity in normal cells, many experiments are conducted on
abnormal cells in which oncogenic mutations, gene knockouts, and
pharmacological inhibitors have altered the behavior of various
signaling nodes in the network. In an SPN, these alterations to the
signaling network can be modeled by adding/removing transitions
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(and associated input/output arcs) and explicitly setting the token
count for various proteins in the initial state.

The two network alterations which are commonly induced by
oncogenic mutations, gene knockouts, or pharmacological inhib-
itors are constitutively high or low protein activity-levels, meaning
that a protein is either unable to be inhibited or unable to be
activated. The simulator allows for proteins to be specified as
either fixed High or Low. Here we explain how these are modeled
by changes to the SPN.

If protein u is fixed high, then this protein cannot be inhibited.
Thus, all transitions that remove tokens from p, are removed from
the SPN. The fact that u is high, however, also suggests that it
maintains a higher activity level in general. Therefore, in the initial
state, my(p,) = H, where H is a non-zero number of tokens. Since
all inhibiting transitions have been removed from the SPN,
throughout any execution, place p, will always have at least H
tokens.

In experiments, we have observed that the choice of the value of
H does not change the relative outcome of the simulations. While
H will affect the actual number of tokens present in a given place
as well as the number of time blocks required to observe certain
activity-level changes, the relative changes in activity-level
(number of tokens) among different proteins (places) does not
change. As a result, one is free to select any reasonable value of H
(for our experiments, we used H=10) as long as this H is held
constant across all simulations whose results will be compared.

If protein u 1s fixed low, then this protein cannot be activated.
Thus, all transitions that add tokens to p, are removed from the
SPN. The fact that u is low, however, also suggests that it
maintains a constantly low activity level in general. Therefore, in
the initial state, m(p,) = L, where L is a small number of tokens (in
our simulations we use L=0). Since p, is only inhibited, we
observed that all constitutively low proteins quickly had their
marking reduced to zero.

Unlike the value of H, extra caution must be taken when
selecting values for representing L. A value of L that is too large
can destabilize the early propagation of signal through the
network. In our experiments, we obtained best results for values
of L very close to or equal to zero (L=2). Beyond this, the final
results obtained depended on other values in the network, the
strength of the signal, and the duration of the simulation.

Simulating a Signaling Network

Figure 7 provides more detailed versions of the simulation
algorithm outlined in Figure 2. Steps 1 and 2 of the SIMULATE
procedure constructs the initial marking and net topology to
incorporate perpetually high proteins, H, and perpetually low
proteins, L. In this paper, proteins that are assigned high activity-
levels receive an initial token count of 10 in order to model a
higher-than-average initial activity-level. As discussed earlier,
using other values of H scale the activity-levels of all the proteins
in the network, but will not qualitatively change their relative
activities.

The loop in Step 3 runs r individual simulation runs. Each run
receives a different event ordering, 6°, thereby implementing the
Interaction rate sampling strategy. The time block/step structure is
contained within the ordering ¢ (see Figure 6C). As a result, the
SPN execution step simulates the events by firing their associated
transition. Only those markings that correspond to time block
boundaries are sampled.

After SIMULATE finishes collecting the time block markings from
all the runs, Step 4 computes the average markings for each time
block and Step 5 returns these averages.
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PROCEDURE SIMULATE(S, H, L, B, )

1. Foreachpe H

e mo(p) = 10;
o I=1—{(pt):teTand (tp) & O}

2. Foreachpe L

e moy(p) =0;
o I=I1—{(t,p):teT}

3. fori=1tor

e ¢° = GenerateSignalingEvents(E, B);
o Execute m&!o)mi—,m;

4. Foreachpe Pand 0<b< B

. ﬁb(p} = ,l- 2,21 m§1|T|(p);

5. Return (m,, my,...,mpg)

Figure 7. The Procedure for Simulating a Signaling Petri Net.
SimuLaTE predicts the signal flow through the SPN S. The simulation is
run for B time blocks; the results of r runs are averaged to produce the
final result. Most of the work is done by the signaling Petri net
execution procedure detailed in the preceding sections. This execution
actually performs an individual run. This procedure takes the initial
marking, mg, and applies the sequence of transitions triggered by the
event sequence, c®. This ordering, generated by the algorithm in
Figure 6, has the dual time structure in which each block of edges
contains every event in E exactly once. Each firing evaluates the effect
of one transition. The markings at the end of each time block are
extracted in Step 5.

doi:10.1371/journal.pcbi.1000005.9007

Simulating a Perturbation Experiment

We tested the accuracy and performance of our method by
simulating the effect of two different targeted manipulations to a
well-known signaling network. We compared these predictions to
experimental results produced by performing the actual manip-
ulations on two separate cancer cell lines.

The perturbations we considered in this study altered the
constitutive activity-level of various proteins in the network (as
opposed to affecting specific signaling interactions). Therefore, we
modeled the perturbations as changes in the high and low
proteins—H and L for the control (unperturbed) network and H?
and LP for the perturbed network.

A variant of the SIMULATE method was required to quantify how
a perturbation changed the protein token-counts for each time
block. Figure 8 shows the algorithm we used. In the procedure
DIFFERENTIALSIMULATE, the input S provides the consensus SPN.
Inputs H® and L° specify the control high and low proteins, the
inputs H” and L specify the perturbed high and low proteins.
After Steps 1-5 construct two separate SPNs for the control and
perturbed conditions, the loop in Step 6 performs r independent
simulations over the control and perturbed models. Step 6d
computes the difference between the markings at the end of each
time block in the perturbed and control networks. The marking
difference d;:mf —m; yields the marking d; where d]’ )=
) (v)—mg(v) for each veP. Following the loop, the marking
differences are averaged to obtain the time series (4,4o,...,4p)
where 4,(v) is the average change in the token-count for protein v
at time block b.

For values of |4,|>0 for a given molecule v, we can conclude
that the perturbation caused a change in the activity-level of v at
time block b only if the difference observed is statistically
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| PROCEDURE DIFFERENTIALSIMULATE(S, H®, L°, HP, L?, B, r)
1. §°=8,57=8;
2. For each p € H®
(a) m§(p) =10 and I¢ = I° — {(p,t) : t € T* and (¢, p) ¢ O}
3. Foreachpe L*
(a) m§(p) =0 and I° = I° - {(t,p) : t € T°};
4. For each v € HP

(a) mf(v) =10 and I? = I” — {(v,t) : t € T? and (t,v) & OF}

=]

. For each v € L7
(a) mf(v) =0and I” = IP — {(t,v) : t € TP};
6. fori=1tor
(a) o° = GenerateSignalingEvents(E, T');
(b) Execute mflo)mf, . ;
(¢) Execute mf‘,’in}mfm.i:
(d) Forj=0to B
Lodj=mf, —mj;

7. Foreachpe Pand0<b< B

(a) As(p) = 1 X0, di(p);
8. Return (A, Ag, ..., Ag);

Figure 8. The Algorithm for Predicting the Effect on Signal
Propagation of a Targeted Manipulation. The algorithm for
predicting the effect on signal propagation of a targeted manipulation
on signaling network with connectivity G. The ‘c’ and ‘p’ superscripts
are used to denote parameters in the control and perturbed versions,
respectively, of the SPN.

doi:10.1371/journal.pcbi.1000005.9008

significant. We use a t-test to determine whether this change is
statistically significant for protein v at time block b. Computing the
t-test for two distributions (control and perturbation) requires
knowledge of the mean (u., and w,;) as well as the variance
ag and 0'[2, for both distributions. In order to obtain these
parameters” for the control network, a large number, X, of
independent simulations is run. Simulation i provides a single

series of markings, (m’l i, ... ,m’B). The mean is then computed:

i
b(v)

oy

m
Hepy= - X

The variance is computed similarly:

(7))
b(v) Hepy

X—-1

)<

i=1

2
Gc,b,v -

The parameters p,;, and 0-121,b,v for the perturbed network are
computed as described above by substituting the perturbed network
for the control network. Using these parameters, the t-value for
molecule v at time block b can be computed from the formula

Hepw—Hp by
t—valye= by _Trby

The statistical significance of the difference can then be obtained by
comparing the t-value to the desired critical value.

Note that the DIFFERENTIALSIMULATE procedure and the
associated significance test can predict the effect not only of
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perturbations, but also of any two different experimental (or
cellular) conditions imposed on the same signaling network. As
a result, in addition to perturbation experiments, our method
can also be used to study the effects of other phenomena that
induce changes in the propagation of signal through a signaling
network.

Cell-Specific Signaling Network Models

Figure 1 shows the signaling network we analyzed. We obtained
the core connectivity from a published literature survey on the
EGFR network [57]. We added to this several other well-
established interactions taken from literature [36-—43]. The
response of this network to various perturbations was measured
and simulated in two separate breast cancer cell lines: MDA231
and BT549. The core signaling Petri net used, SE°™ is captured
by the following signaling proteins and interactions: places (the set
P): VEGFR, VSRC, VRacy VMEKK4s VMEK4> VINKs VMEKK6: VMEK6
VSTAT> VGrb2; VShes VSOS; VRBs VELKs VBAD> VNFKB> VRAS, VGABI»
VPIP3, VPI3K> VPDKI> VPTEN, Ve-Rab VAKT;VLKBI, VMEK, VGSK3f
VAMPK> VTSC2> VMAPKI,25 VRSK> VRhebs VmTOR-Raptors V4EBPI1,
Vp70S86K> Vp38» and VpS6-

Protein interaction network motifs (the combination of arcs and
transitions): VEGFR—VGrb2, VGrb2=>Vshes VShe>VS0S; VSOS—>VRAS»

VGrb2™>VGABI,  VGABI™VPI3Ks  VEGFR™VSRC,  VSRCVSTAT,
VPISK—VPIP3> VPIP3VPDKI> VRAS™Ve-Rafs VPDKIT>VAKT, VRAS™
VRacs VRac>VMEKK4; VMEKK4 >VMEK4> VMEK4 >VJNK, VJNK—™

VSTAT; VRac>VMEKK6> VMEKK6VMEK6; VMEK6>Vp38, Vp3g—
VSTAT> VPDKI1™>Vp70S6K> VPTENTVAKT; VAKTVe-Rap Vz\K'l‘_lvGSKS‘/f;
VARTIVTSC2, VAKTTVAMPK, VAKTTVBAD, VAKT—VNFKB, VAKT—
Vp7086K>  VLKBI™VAMPK> VMEK VMAPKI,2; VMAPKI,2>VRB)
VMAPK1,2>VELK> VMAPKI1,2>VSTAT, VGSK3>VTsC2, VAMPK ™
VTSC2, VMAPK1,2‘|VEGFR, VI\IAPKI,Q-IVTSCZ: VMAPK1,2>Vp70S6K>
VMAPK1,2>VRSK> VRsK 1VTsc2, VTsc2 TVRnebs VRheb™VmTOR-Raptors
V‘\Kv,-_)VmTOR—Raplorz Vll\TOR-Raplur_)V4EBP1 5 vmTOR—Raplor_>
Vp70S6K> Vp70$6K%VE('}FR; VSRC—IVSRC; VRac‘|VRac,, VMEKKLI-—IVMEKK-’I-;
VMEK4 TVMER 45 V,]NK“Y]NK, VMEKK6TVMEKKG ~VMEK6 TVMEKGs
VSTATIVSTAT, VGrb2TVGrb2, VShe1Vshes VsosTVsos, VrasTVras
Ve-RatVeRats VMEK TVMEK, VMAPKl,ﬁVMAPKl,Q, VRBIVRB, VELKT
VELK> VRSKTVRSK> VGABITVGABI, Veips1Vprps, Vp38‘|Vp38, VpIsk 1
VPISK> VPDKITVPDKI, VAKTIVAKT, VBADIVBAD, VNFKBIVNFKB
VAMPK—IVAI\/IPK) VmTOR-Ruptor_|VmTOR—Raptor: Vp7()SﬁK-|Vp7()S6K>
VpSG""pss, VaEBP1 1V4EBPI -

Notice that the last several edges are self-inhibitory loops (e.g.,
VRasTVRas)- These loops are used to model regulatory mechanisms
that are not present in the model network.

For molecules that do not have specific inhibitory edges
modeled in the network, we use the self-inhibitory loop to prevent
exponential increase in the token counts and to model inhibitory
mechanisms beyond the scope of the network. For example,
consider the molecule Ras in the network shown in Figure 1. In
the model, this protein is not inhibited. However, biologically we
know that Ras has intrinsic GTPase function which inactivate
itself. In order to model this, we introduce a self-inhibitory loop.

The differences between the two cell-specific networks are
captured by following activity assignments to various proteins in
the SPN. In the MDA231 cell line, HM® = {vp,.,, vigr} and
IM*=@. In the BT549 cell line, H®'={vpgr} and
L= {VPrEN-

Of the two perturbations we considered, one significantly
knocked down the activity-level of TSC2 and the other knocked
down mTOR-Raptor. While the core SPN still modeled these
networks, separate perturbed activity-assignments were required for
each cell line-perturbation pairing: LMPT3C?=TMBU (v o001,
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MB-mTOR _ y MB BT-TSC2 _ v BT p
L =L U {anl‘(')RfRaptor}a L =L"uU {V'I‘SCQ} and
LBT-mTOR _ LBTU
- {VmTOR-Ru])t()r} .

Setup for Perturbation Experiments

Cell culture and stimulation. Human MDA-MB-231
(MDA231) and BT549 breast cancer cells routinely
maintained in RPMI supplemented with 10% FBS. For signaling
experiments, logarithmically growing cells were serum-starved for
16 hours and then subjected to treatments by epidermal growth
factor (EGF) (20 ng/mL) (Cell Signaling Technology, Beverly,
Massachusetts) for 30 minutes. Controls were incubated for
corresponding times with DMSO. To knock down TSC2, cells
were treated with short interfering RNA (siRNA) (Dharmacon,
Lafayette, Colorado) for 72 hours prior to EGF stimulation. Control
cells were transfected with non-targeting (N/T) siRNA (Dharmacon,
Lafayette, Colorado) prior to EGF treatment.

were

Antibodies. The following antibodies were used for
immunoblotting: anti-phospho-p44/42 MAPK, anti-phospho-
GSK3p (S21/89); anti-phospho-AKT(ser473); anti-phospho-
TSC2(T1462);  anti-phospho-mTOR(S2448);  anti-phospho-
P70S6K(T389)  (Cell  Signaling  Technology,  Boston,
Massachusetts); and anti-f-Actin  (Sigma-Aldrich, St. Louis,
Missouri).

SDS-PAGE and immunoblotting. Cells were lysed by
incubation on ice for 15 minutes in a sample lysis buffer
(50 mM Hepes, 150 mM NaCl, 1 mM EGTA, 10 mM Sodium
Pyrophosphate, pH 7.4, 100 nM NaF, 1.5 mM MgCI2, 10%
glycerol, 1% Triton X-100 plus protease inhibitors; aprotinin,
bestatin, leupeptin, E-64, and pepstatin A). Cell lysates were
centrifuged at 15,000 g for 20 minutes at 4°C. The supernatant
was frozen and stored at —20°C. Protein concentrations were
determined using a protein-assay system (BCA, Bio-Rad,
Hercules, California), with BSA as a standard. For immuno-
blotting, proteins (25 [g) were separated by SDS-PAGE and
transferred to Hybond-C membrane (GE Healthcare, Piscataway,
New Jersey). Blots were blocked for 60 minutes and incubated
with primary antibodies overnight, followed by goat anti-mouse
IgG-HRP (1:30,000; Cell Signaling Technology, Boston,
Massachusetts) or goat anti-rabbit IgG-HRP (1:10,000; Cell
Signaling Technology) for 1 hour. Secondary antibodies were
detected by enhanced chemiluminescence (ECL) reagent (GE
Healthcare, Piscataway, New Jersey). All experiments were
repeated a minimum of three independent times.

Setup for perturbation simulations. 1o select the block
duration parameter, B, we compared the experimentally derived fold
change of AK'T in the MDAZ231 cell line to the AKT fold changes
predicted for B =10, 20, 50, 100, and 1000. We found B =20 to be
the best fit and used this value for all simulations in this study.

We also experimented with input parameter r, the numbers of
individual simulation runs averaged per simulation. We tried a
range extending from =100 to r=1000. We found that no
observable changes occurred in trends for r=400. Therefore,
7=400 was used for all simulations in this study.

We considered both the zero and experimentally derived initial
states as the initial markings for the TSC inhibition simulations.
The experimental states for both cell lines were derived from
western blots produced from cells that were incubated in DMSO
and serum-starved for 16 hours. Unsampled molecules were
assigned a marking of zero. The number of tokens assigned to
each sampled molecule was directly proportional to the darkness
of the line on the western blot. This assignment was done by hand,
though devising automated and standardized methods for the
construction of experimentally derived initial states is an important
direction for future work. Since most of the molecules in the
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network were not sampled, only mTOR-Raptor, TSC2, GSK3,
p70S6K, AKT, and MAPK were given non-zero markings. The
initial markings used are shown in Table 1.

Since experimental results for the mTOR-Raptor mhibition
were obtained from literature, we did not have experimental
results for construction of experimentally derived initial states.
Therefore, we used the zero initial states for the mTOR-Raptor
inhibition simulations.

Results

In order to evaluate the accuracy of our simulation method, we
tested its predictions of the effect of targeted manipulations on two
cell-specific versions of the signaling network depicted in Figure 1.
In each cell line, a TSC2-specific siRNA was applied and the
concentration of several key proteins in the EGFR network were
sampled 30 minutes after stimulation with EGF. This was
repeated in the absence of the TSC2 siRNA in order to obtain
the concentration in the control network. We also collected a
corpus of literature detailing the response of signaling proteins
activity-levels to the inhibition of mTOR-Raptor using Rapamya-
cin [43,58]. Predictions were generated by our simulator for the
TSC2 and mTOR-Raptor perturbations in both cell lines.

Simulation

To simulate a perturbation, we used two networks both based
on the signaling network shown in Figure 1: the control network
for the cell line and the perturbed network for the cell line. The
control networks for the cell lines were different because it was
important to model the cell-specific mutations. In the case of the
BT549 cell line, there is a mutation that leads to the loss of PTEN,
which makes AKT always active. In the MDA231 cell line, there is
a mutation in Ras, which makes it always active. As shown in the
formulation of the model, these are modeled using fixed activity
assignments in the simulator.

The TSC2 (mTOR-Raptor) perturbed network for a cell line
was created by taking the control network and fixing the activity-
level of TSC2 (mTOR-Raptor) to zero for the duration of the
simulation, effectively simulating the pharmacological inhibition of
the protein. For each cell-line/perturbation pair, we ran the
simulator on the control and perturbed networks using the
DIFFERENTIALSIMULATE procedure in Figure 8 which computed the
change in token-counts induced by the perturbation for all
proteins in the model. These change plots are shown in Figure 9
for TSC2 and in Figure 10 for mTOR-Raptor. We ran the
simulations using both experimentally derived initial states as well

Table 1. Experimentally Derived Initial Markings Used in the
Simulations.
Molecule MB231 BT549
TSC2 TSC2
Control Inhibited Control Inhibited
mTOR-Raptor 0 1 5 5
TSC2 0 0 6 0
GSK3p 5 3 3 6
p70S6K 0 2 0 0
AKT 0 0 7 7
MAPK 2 6 1 2
doi:10.1371/journal.pcbi.1000005.t001
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as zero Initial states. The initial state used did not change the
overall trends observed in the simulations.

Using the t-test described in the Methods section, we also
computed the statistical significance of the final time block (b = 20)
for each molecule considered. For each molecule considered, 400
runs, 20 time blocks, and 50 samples were used. With the
exception of GSK3f which did not show a significant response to
the perturbation, the changes of all other proteins sampled were
beyond the 0.05 significance level (see Table 2). The statistical
insignificance of the change in GSK3f is not surprising since, as
shown in Figure 1, GSK3p is solely activated by LKB, a molecule
fixed high in both cell lines. Thus, we should not expect either
perturbation to have a significant effect on the activity of GSK3,
which is what the t-value indicates.

Cell Line Western Blot Results

Signaling Petri Net-Based Simulator

Experimental Results

After the TSC2 perturbation was applied to a cell line, the
protein concentrations were collected using western blots. Details
are given in the Materials and Methods section. The western blot
results are shown in Figure 9.

Discussion

As can be seen in Table 3, our method correctly predicted the
relative protein activity-level changes induced by the TSC2
perturbation in both cell lines, for most molecules sampled.
Notice that no change (—) was reported for the predicted response of
MAPK to the TSC2 perturbation despite the fact that a small
change did occur in its marking during the simulation (see Figure 9)

Simulation Results

0 W (p)maPKi,2

MDA231 M M ¥ B (p)esksb
5w + (p)prosek

- (p)Tsc2

= == == == (p)akT
B B B (p) mTOR
== [ == (pMAPK1,2
BT549 I N B (p)Gsk3b
—- ~ (p)p70S6K

(p)Tsc2

Figure 9. The Results of the TSC2 Perturbation Experiments and Simulations. In the western blots, columns (or lanes) are as follows: (1)
non-targeting (NT) control siRNA, (2) NT siRNA+EGF, (3) TSC2 siRNA, (4) TSC2 siRNA+EGF. The effect of the TSC2 siRNA on a given molecule can be
assessed by comparing column 4 against column 2. For each molecule in the western blot, there is a corresponding simulation curve showing the
predicted change in protein activity over time. For the purposes of this analysis, we compared the concentration change after 20 time steps (the left-
most data points in the plots) for each molecule. Each simulation point corresponds to the average of 400 measurements that were computed using
the procedure described in Figure 8. Experimentally derived initial states were used in the simulations. The results of both the experiments and

simulations are qualitatively summarized in Table 3.
doi:10.1371/journal.pcbi.1000005.9009
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Figure 10. The Predicted Response of the Network to an mTOR-Raptor Perturbation. The predicted response of the network to a mTOR-
Raptor perturbation in the (A) MDA231 and (B) BT549 cell lines. Our method predicts that the amount of available AKT increases in response to the
perturbation, which is in agreement with results published in the literature [43,58]. Our method also predicts that the activity-level of p70SéK in the
MDA231 cell line decreases in response to the perturbation, which has been observed experimentally [59]. Each point corresponds to the average of
400 measurements that were computed using the procedure described in Figure 8.

doi:10.1371/journal.pcbi.1000005.g010

and the t-value for the change is significant (see Table 2). At first,
interpreting this value as no change may seem misleading. However,
one of the significant challenges in experimental perturbation
experiments 1Is separating true system responses from the
background noise created by experimental variables that cannot
be precisely controlled (among them cell population sizes,
variability in microarray antibody binding effectiveness, and
limited sensitivity of hardware and software used to quantify
experimental results). As a result, a common practice is to only
consider those substantial changes that are well beyond the
background noise level. Our interpretation of the small predicted
change in MAPK as no change reflects the fact that such small
changes would not be detectable in microarray or western blot
results. Thus, though such a small fluctuation might have occurred
in the real data, it would not have been detected by the biologists
and most likely would appear in the experimental data to have not
changed.

Similar reasoning guided our decision to characterize the
simulation (and experimental) results as either up (1), down (| ),
or no change (—) in general. Since the amount of protein

Table 2. The T-Values for the Molecules Sampled in the
Microarray.

Molecule t-Value in MDA231 t-Value in BT549
mTOR-Raptor 41.72 30.53

TSC2 21.65 8.28

GSK3p 0.42 0.10

p70S6K 14.22 5.83

AKT 6.60 9.55

MAPK 16.35 18.93

The critical value for an alpha value of 0.05 with 50 samples is 2.0086. Note that
the t-values for all molecules except for GSK3f are larger than this value,
confirming that these changes are statistically significantly.
doi:10.1371/journal.pcbi.1000005.t002
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registered In a microarray or western blot is not always a reliable
indicator of the exact amount of protein (or protein form) being
measured, biologists are often reluctant to report degrees of
increases or decreases—preferring binary observations such as up
or down which are less subject to influence by extraneous
experimental conditions. It is true that our simulation method
produces precisely quantified increases or decreases which can be
taken to indicate degrees of change in response to perturbations.
However, as experimental techniques cannot reliably measure
degrees of increase or decrease, we judged the binary (up or down)
characterization to be a more reliable way of validating our
method. Certainly, our method provides additional information of

Table 3. Summary of the Effect of Perturbation Reported by
Experimental and Simulated Methods.

Molecule MB231 BT549
Experiment Simulation Experiment Simulation

mTOR-Raptor i T T or — i
TSC2 U l I I
GSK3p - - - -
p7056K 1 1 U )
AKT | or — | l |
MAPK - - - -

The up arrow (1) indicates that the perturbation caused a rise in the level of
the phosphorylated protein; the straight line (—) indicates no change; and the
down arrow (| ) indicates that a decrease occurred. Values in the Experiment
column were estimated by comparing lanes 4 and 2 in Figure 9. We estimated
the Simulation column by determining whether the top quartile of the
distribution for the final time point was above, below, or at zero. In some cases
it is difficult to judge for certain whether the total quantity of the
phosphorylated protein changed or remained the same—both for the
experimental and computational cases. In these situations, we indicated the
uncertainty by listing the possible changes that the protein could have feasibly
undergone.

doi:10.1371/journal.pcbi.1000005.t003
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degrees of change and we consider studying the accuracy of these
degrees to be an important area for future work.

Our method also correctly predicted the activity-level change of
AKT in response to mTOR-Raptor inhibition as reported by a
number of studies [43,58]. Further, our method predicted that,
when mTOR-Raptor is inhibited, the level of p70S6K in the
MDA231 cell line decreased, which also had been observed
experimentally [59].

The only incorrect prediction made by our method was the
activity-level change of p70S6K in the BT549 cell line. However,
BT549 cells contain an RB mutation [49] which could alter
p70S6K phosphorylation [60]. It is a strength of our simulator that
the discrepancy between our method’s predictions and the
experimental results identified a section of the model in which
additional connectivity has been found which might account for
the difference observed.

The predictions made by our simulator would be exceedingly
difficult to derive by visual or manual inspection. Table 4 shows the
number of paths between several pairs of compounds within the
network. Where there is more than one path connecting two
molecules, feed forward and feed backward loops are present.
Attempting to determine, by hand, how these different loops will
interact with one another is, by itself, a difficult endeavor even when
not considering the additional task of deriving the rest of the network
dynamics simultaneously. For the larger networks that are now
becoming available, computational analysis becomes even more
crucial to obtaining insights into the dynamic behavior of the network.

Despite the complexity of the network dynamics, it was
straightforward to find and integrate the connectivity information
used to build it. Most of the information sources [36-43]
established the exustence of various pathways and provided few or
no biochemical or kinetic details. As a result, the literature we used
would have provided little assistance is building a parameterized
Petri net or ODE model. Due to the proliferation of curated
signaling network repositories and searchable literature archives,
connectivity information is relatively abundant which makes the
ad hoc assembly of networks a relatively straightforward endeavor.
This further underscores the advantage of using our method over
ODEs or parameterized Petri nets to quickly model and
characterize some of the dynamics of a signaling network.

For simulations that will be compared to experimental results, the
time parameter must be selected carefully. The time parameter, B,
indicates how many time blocks our method will simulate. The time
block is an abstract unit of time. Therefore, before comparing
experimental results and predictions, it is necessary to determine how
many seconds, minutes, or hours correspond to a time block. This
can be done by comparing a prediction of the simulator with the
experimentally measured activity-level of one or two proteins at
several time points in order to determine what time blocks
correspond to the different sampled time points. In the present
study, we calibrated our time blocks only once for two cell lines and
six experimental conditions (two cell lines, with/without TSC2,
with/without mTOR-Raptor). To select the time parameter we used
the experimentally measured activity changes in two proteins at two
time points. In contrast to other predictive dynamic analysis tools
which require multiple time points and multiple protein samples in
order to calibrate simulation and model parameters, our method has
relatively low time and resource investment.

Besides the time parameter, the other component of our
simulations which involved experimentally obtained knowledge
was the initial states. The experimentally derived initial states
require that some experimental data be available providing
information on the initial concentrations of individual signaling
proteins in the network prior to stimulation. However, in the
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Table 4. Number of Paths Connecting Several Pairs of
Compounds in the EGFR Model Used in Our Simulations

Source Protein Destination Protein Number of Paths

EGFR TSC2 7
AKT mTOR-Raptor 6
MEK EGFR 4
AKT p70S6K 8

The multiple paths connecting pairs of proteins highlight the complex
interactions present within the network that give rise to its overall dynamic
behavior.

doi:10.1371/journal.pcbi.1000005.t004

network that we considered here, the overall behavior of the
network and of individual signaling proteins was resilient to
changes in the initial states used. Zero and experimentally derived
both produced the same overall change predictions. Thus, while
experimentally derived initial states may be important for the
simulation of some networks, it may well be the case that many
networks (such as the one we considered in this paper) can be
simulated without this knowledge—further reducing the experi-
mental work that must be done prior to simulation.

The fact that our simulator produced accurate predictions for a
variety of experimental conditions using the one core network
model and set of simulation parameters also distinguishes our
method from other predictive approaches. The only aspects of the
model that were modified during the simulations were activity-
levels reflecting the immediate effects of either the underlying
tumor mutations (Ras and PTEN) or the perturbations (mTOR-
Raptor and TSC2 targeted manipulation). In contrast, the
accuracy of ODEs and Petri nets predictions are known to be
sensitive to small changes to the model. For comparative studies
such as the one conducted in this paper, an ODE or
parameterized Petri net model might need to be re-constructed
with different parameters for each experimental condition of
interest. As a result, while it is possible to obtain our simulation
results using these models, it remains beyond the capabilities of
any existing ODE or parameterized Petri net system to provide
insights into the effects of experimental conditions on the dynamic
behavior of a signaling network with so little initial time and
resource investment.

Though our method’s predictions will not be as accurate as the
results returned by a correctly parameterized ODE, biologists
using our method can derive information about a network’s
dynamic behavior without having to conduct extensive experi-
mentation and computationally expensive parameter estimation.
This novel capability offers scientists the exciting prospect of being
able to test hypotheses regarding signal propagation in silico. As a
result, by using our method researchers can evaluate a wide array
of network responses in order to determine the most promising
experiments before even entering the laboratory.
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