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The suprachiasmatic nucleus (SCN) in the anterior hypothalamus is the major circadian pacemaker in humans. Melatonin is a key hormone se-
creted by the pineal gland in response to darkness. Light-induced stimuli are transmitted along the retinohypothalamic tract to the SCN. Activa-
tion of the SCN inhibits the production of melatonin by the pineal gland through a complex neural pathway passing through the superior cervical 
ganglion. Accordingly, when light is unavailable, the pineal gland secretes melatonin. The circadian rhythm modulates sleep-wake cycles as well 
as many physiological functions of the endocrine system, including core body temperature, pulse rate, oxygen consumption, hormone levels, 
metabolism, and gastrointestinal function. In neurodegenerative disorders, the sleep-wake cycle is disrupted and circadian regulation is altered, 
which accelerates disease progression, further disrupting circadian regulation and setting up a vicious cycle. Melatonin plays a critical role in 
the regulation of circadian rhythms and is a multifunctional pleiotropic agent with broad neuroprotective effects in neurodegenerative disorders, 
viral or autoimmune diseases, and cancer. In this review, I discuss the neuroprotective functions of melatonin in circadian regulation and its 
roles in promoting anti-inflammatory activity, enhancing immune system functions, and preventing alterations in glucose metabolism and mito-
chondrial dysfunction in neurodegenerative disorders and autoimmune central nervous system diseases. 
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Introduction 
Various life phenomena, such as development, physiology, 

metabolism, and behavior, are governed by periodic patterns 

that arise from the body’s internal biological clocks (central 

and peripheral oscillators), collectively referred to as the cir-

cadian rhythm or circadian clock network. The human circa-

dian period generally has a cycle length of approximately 24.2 

hours [1]. The circadian rhythm modulates various physiolog-

ical functions of the endocrine system, including core body 

temperature, pulse rate, metabolism, sleep-wake cycles, and 

gastrointestinal function [2,3]. In humans, the suprachiasmat-

ic nucleus (SCN) in the anterior hypothalamus is the major 

circadian pacemaker. Melatonin controls SCN activity 

through a feedback mechanism involving two G protein-cou-

pled melatonin receptors, MT1 and MT2, expressed within 

the SCN. Melatonin activity in the SCN regulates circadian 

rhythms such as the sleep-wake, neuroendocrine, and body 

temperature cycles [4]. Circadian rhythms allow humans to 

adapt their biological functions to cyclical changes occurring 

in their environment, such as the daylight cycle. Moreover, 

synchronization of peripheral oscillators by melatonin reflects 

adaptation to internal and external environmental cues, such 

as humans waking up in the morning, eating breakfast, and 

getting energized [5].  

Alzheimer disease (AD) and Parkinson disease (PD) are 

chronic neurodegenerative diseases (ND). The degenerative 

process in ND often produces sleep disorders, including irreg-

ular sleep patterns, such as daytime napping and nighttime 
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awakening. Emerging evidence has linked sleep disorders to 

manifestation of aggravated symptoms of memory loss and 

increased risk of developing AD [6,7]. In a recent multicenter 

study, 66% of patients with PD complained of sleep problems 

and these disturbances were associated with reduced quality 

of life and a greater burden of non-motor symptoms [8]. Mul-

tiple lines of evidence have suggested that dysregulation of 

circadian rhythms associated with the occurrence of non-mo-

tor symptoms of PD, especially sleep-wake disorders [2]. Iso-

lated or idiopathic rapid eye movement (REM) sleep behavior 

disorder (iRBD) is an established prodromal biomarker of sy-

nucleinopathies, such as dementia with Lewy bodies (DLB) or 

PD. Several recent studies have shown that altered regulation 

of circadian rhythms may be an early marker of the conver-

sion of iRBD into clinically evident synucleinopathies [9,10]. 

As such, it may be important to employ disease-modifying 

treatments to promote circadian regulation in patients experi-

encing iRBD. 

In addition to acting as a chronobiotic hormone, many pre-

clinical studies have demonstrated that melatonin is also a 

cytoprotective hormone with anti-inflammatory activity, en-

hances the immune system, and prevents dysregulation of 

glucose metabolism. Melatonin has therefore been used as an 

oncostatic agent in several cancers [11], and the effectiveness 

of melatonin therapy for viral infection or autoimmune cen-

tral nervous system (CNS) disease has been evaluated in pre-

clinical and clinical studies [12,13]. 

In this review, I discuss the neuroprotective functions of mel-

atonin with respect to circadian regulation and evaluate the 

therapeutic benefits of melatonin-mediated anti-inflammato-

ry activity, immune system enhancement, and prevention of 

dysregulation of glucose metabolism in neurodegenerative 

disorders and autoimmune CNS disease. 

Melatonin 
Endogenous melatonin 
Melatonin or 5 methoxy-N-acetyltryptamine was discovered 

in and extracted from the bovine pineal gland in 1958 by Le-

rner et al. [14]. Melatonin is mainly secreted by the pineal 

gland. Extrapineal melatonin synthesis has been detected in 

the cerebellum, platelets, lymphocytes, bone marrow cells, 

retina, skin, and especially in the gastrointestinal tract [5]. Se-

rum melatonin concentrations vary with age. Secretion of 

melatonin is very low in the period from infancy to 3 months 

of age, and then increases and acquires a normal diurnal 

rhythm at 6 months of age. After reaching a peak at 1 to 3 

years of age, nocturnal concentrations are maximal between 

the 4th and 7th years of age [4,15], and then are dramatically 

reduced from ages of 15 to 20 years, probably due to the rapid 

increase in body size during childhood and puberty without 

an accompanying increase in the rate of secretion. Melatonin 

secretion declines progressively in adulthood until 70 to 90 

years of age, which is attributable to the age-related degener-

ation of the pineal gland [16]. 

As noted above, two types of melatonin receptors are highly 

expressed in the SCN. When melatonin binds to the MT1 re-

ceptor, it activates protein kinase C, resulting in a reduction of 

the SCN-alerting signal. The MT2 receptor is a guanine cy-

clase pathway inhibitor, and when melatonin binds to MT2 

receptor, it results in a phase shift in the circadian rhythm [1]. 

Exogenous melatonin 
Melatonin is an indoleamine secreted by the mammalian pi-

neal gland as a neurohormone; however, it has also been 

found in both vertebrate and invertebrate animals, bacteria, 

fungi, algae, and plants [17,18]. In all melatonin-producing 

organisms, melatonin is synthesized from the aromatic amino 

acid tryptophan. In mammalian systems, tryptophan is hy-

droxylated to 5-hydroxytryptophan, followed by decarboxyl-

ation to form serotonin (5-hydroxytryptamine, 5-HT) [19]. In 

plant systems, the hydroxylation and decarboxylation steps 

are reversed, and serotonin synthesis proceeds through an in-

termediate tryptamine metabolite [20]. Melatonin can also be 

synthesized by enterochromaffin cells and released into the 

circulation in response to ingestion of food containing trypto-

phan [21]. Because of the potential health effects of mela-

tonin, the melatonin content of many foods has been tested 

over the past decades, and melatonin has been identified and 

quantified in both animal foods and edible plants [16]. Mela-

tonin is a popular supplement and can be easily purchased 

from drug and health food stores in a variety of formulations. 

However, the melatonin content often differs significantly 

from label claims across brands, supplement types, and lots. 

In addition, serotonin—a precursor of melatonin, is an im-

portant neurotransmitter and a controlled substance—is not 

available in supplement form. Therefore, manufacturers 

should ensure that melatonin supplements meet label re-

quirements and are free from contaminants like serotonin 

[22]. 

In the last decade, numerous melatonin receptor agonists and 

immediate-release melatonin (IRM) or prolonged-release 

melatonin (PRM) products have been introduced into the 
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market. At higher doses (3–5 mg) of IRM, a direct chronobiot-

ic and hypnotic effect is observed. However, the hypnotic ef-

fects of IRM are limited because of its short half-life and con-

sumption at night, when the concentration of endogenous 

plasma melatonin is already high [1]. Ramelteon is a selective 

MT1 and MT2 receptor agonist and exhibits a 10-fold greater 

affinity for MT1 than MT2. The absolute bioavailability of ra-

melteon is 1.8% (range, 0.5%–12%), with maximum concen-

trations achieved within 0.5–1 hour, and the elimination half-

life is 1.36 ±  0.49 hours [23]. This drug has been approved for 

the treatment of sleep-onset insomnia in adults [24]. Agomel-

atine, which is an MT1 and MT2 agonist and also a serotonin 

5-HT2C antagonist, has been approved for the treatment of 

depression in both Europe and Australia. Tasimelteon was 

approved in the United States in 2014 for the treatment of 

non-24-hour sleep-wake disorder [25]. The potency of PRM 

appeared to increase over time, reaching a plateau after 3 

weeks [25]. Based on clinical evidence, PRM was not ap-

proved for the treatment of sleep-onset or sleep-maintenance 

insomnia in the United States; however, it was approved in 

Europe and Korea and is recommended as a first-line treat-

ment for insomnia characterized by poor sleep quality in pa-

tients aged 55 years and older [26,27]. Although it is not cov-

ered by insurance, PRM is the only prescribed melatonin 

product in Korea. 

Melatonin and neurodegenerative disorders 
Circadian rhythm dysregulation in 
neurodegenerative disorders 
Circadian dysregulation and disease progression are interre-

lated. Aging is associated with reduced production of mela-

tonin, which is considered a crucial modifying factor of neu-

rodegenerative disorders. In AD, due to degenerative changes 

in the pineal gland and impairment of the SCN, production of 

the pineal hormone melatonin is reduced, and the circadian 

rhythm is altered [28]. Chronobiological disturbances such as 

sundowning also play a role in accelerating the progression of 

mental decline, agitation and confusion in patients with AD 

[29]. Sleep-wake status is an important factor in the produc-

tion of amyloid beta peptide (Aβ), and Aβ concentrations have 

been shown to increase during awakening and decrease 

during sleep [30]. 

PD is characterized by motor and non-motor symptoms and 

is the second most common ND. Circadian rhythm dysregu-

lation is considered one of the non-motor features of PD and 

appears prior to the onset of motor symptoms [31]. Changes 

in the thermoregulatory circadian rhythm have been recently 

shown to be associated with REM sleep behavior disorder 

(RBD) with α-synucleinopathy [32], and while decreased heart 

rate variability is found in PD patients through-out the day, it 

is more severe at night [33]. Gastrointestinal dysfunction in 

PD has also been associated with dysregulated circadian 

rhythms [34]. A study reported a blunted regulation of secre-

tion of melatonin by the circadian rhythm in PD, which is 

characterized by the reduced secretion of melatonin for 24 

hours and decreased amplitude of the melatonin secretion 

rhythm [35]. Increasing evidence indicates that the expression 

of circadian rhythm genes is abnormal in various PD animal 

models. The Bmal1 and Bmal2 genes were significantly de-

creased in patients with PD, while relative Bmal1 expression 

was positively correlated with PD severity [36,37]. Several 

mechanisms of dysregulation of circadian rhythms in PD have 

been postulated: overexpression of alpha-synuclein resulted 

in this SCN protein in a transgenic mouse PD. In the mid-

brain, MT1 and MT2 receptors modulate the mesocorticolim-

bic and nigrostriatal dopaminergic pathways, and the sub-

stantia nigra of patients with PD exhibited decreased expres-

sion of MT1 and MT2 receptors [38]. 

It is thought that iRBD is a manifestation of the prodromal 

stages of most, if not all, cases of the synucleinopathies PD 

and DLB, and less commonly of multiple system atrophy [39]. 

Clinical synucleinopathies are generally accompanied by sub-

stantial dysfunction of the circadian system. Since endoge-

nous melatonin signaling is dampened in synucleinopathies, 

it can be hypothesized that melatonin may improve RBD by 

restructuring and resynchronizing circadian rhythmicity. In a 

clinical study, patients with RBD did not show circadian 

rhythmicity for the clock genes Per2, Bmal1, and Nr1d1. In 

addition, the melatonin profile in patients with RBD was de-

layed by 2 hours compared to that in controls [40]. Two recent 

prospective studies showed that isolated RBD patients had al-

tered circadian rest-activity patterns as compared with 

healthy controls [9,10] and that patients who converted to PD 

took more naps and had lower levels of physical activity 

during the active period with higher activity fragmentation 

than those who did not convert to PD at baseline. These re-

sults suggest that alterations in rest-activity patterns are tem-

porally related to the conversion of α-synucleinopathies [10]. 

Disruption of the circadian rhythm leads to changes in neu-

roinflammation, increased oxidative stress, and reduced met-

abolic clearance in microglial and neuronal cells within the 

brain. Activation of the glymphatic system, by which the brain 
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clears neurotoxic waste products such as amyloid plaques 

produced during wakefulness, is a major function of sleep 

that is impaired in neurodegenerative disorders [30]. Reduced 

sleep and fragmented sleep-wake cycles have been suggested 

to increase the risk of ND onset and exacerbate disease pro-

gression. The neurodegeneration caused by neurodegenera-

tive disorders such as AD and PD can negatively affect neural 

pathways and subsequently desynchronize the clock, which 

negatively affects sleep. Additionally, these phenomena con-

tribute to a vicious cycle of bidirectional interactions between 

circadian rhythms dysregulation and neurodegeneration [38]. 

Neuroprotective role of melatonin in alteration of 
circadian rhythms 
In addition to its functions as a chronobiotic hormone, sever-

al preclinical studies have demonstrated that melatonin has 

also been shown to be a cytoprotective hormone. Melatonin 

can exert such effects either by acting through specific recep-

tors on the plasma membrane or nucleus or by binding with 

intracellular proteins. In AD, melatonin inhibits the secretion 

of beta amyloid precursor protein soluble derivatives, sup-

presses Aβ β-sheet and amyloid fibril formation, and inhibits 

Aβ aggregation [41]. Abnormal Aβ deposition induces func-

tional insufficiency of mitochondrial respiratory chain com-

plexes, leading to mitochondrial dysfunction and increased 

oxidative stress [42]. Melatonin prevents mitochondrial tran-

sition pore opening, intramitochondrial lipid peroxidation, 

mitochondrial DNA oxidation, and cell death [43]. Calcium 

overload, glutamate excitotoxicity, and reactive oxygen spe-

cies (ROS) in the brain can cause AD-related neurodegenera-

tion [44]. Melatonin prevents calcium overload by inhibiting 

voltage-gated calcium channels, suppresses glutamate excito-

toxicity by inhibiting N-methyl-D-aspartate glutamate recep-

tors, and reduces oxidative stress by scavenging ROS. Mela-

tonin also repairs neuronal glucose metabolism, increasing 

tau N-acetylglucosamine acylation and thereby decreasing 

tau hyperphosphorylation [45]. In PD, the ability of melatonin 

to reverse insulin resistance is also important [46]. It has been 

reported that melatonin has a neuroprotective effect on dopa-

minergic neurons in animal models of PD [38]. 

Melatonin therapy and neurodegenerative disorders 
Many open-label pilot studies and case series have been pub-

lished addressing melatonin therapy for neurodegenerative 

disorders. I reviewed randomized placebo-controlled trials 

(RCTs) specifically focusing on AD, PD, and RBD for this re-

view. Five RCTs evaluated AD [47-51], four assessed PD [52-

55], and two focused on RBD with or without PD [56,57]. The 

most important limitation of the interpretation of the results 

was that the melatonin formulations and dosages identified in 

these RCTs were different. All studies found that melatonin is 

a safe drug with low toxicity, and several studies suggested 

that melatonin treatment improves daytime performance and 

subjective sleep quality in AD, and improved non-motor 

symptoms and cognition in PD. However, none of these stud-

ies found significant improvements in nighttime sleep vari-

ables such as sleep latency and total sleep time. With regard 

to subjective symptoms of RBD as assessed using actigraphy, 

there were no effective changes attributable to melatonin ad-

ministration. The results of these studies are summarized in 

Table 1. The duration of the trial, method of sleep assessment, 

variables regarding the intake of melatonin (e.g., drug intake 

time, dosage, etc.), heterogeneity of disease, and expression 

of melatonin receptors may have been responsible for the 

negative outcomes. One recent study has shown that the pre-

ferred time for melatonin administration is around 10 to 11 

PM, and the timing of impulses to circadian system seems de-

cisive and needs to be kept “always-at-the-same-clock-time.” 

[58]. In AD, the symptoms of sleep problems gradually im-

proved and reached stable plateau levels after 12 weeks of 

melatonin supplementation, and a significantly reduced rate 

of decline in cognitive function has been reported after 12 and 

24 weeks of treatment with PRM [51]. The effects of long-term 

melatonin therapy on early AD might be important; however, 

it is unclear whether the increased efficacy of long-term mela-

tonin therapy in patients with AD represents recovery of MT1/

MT2 receptors lost in AD or an enhancement of circadian 

rhythms, and further clinical studies are needed to identify 

the mechanisms responsibly. In addition, the required dos-

age, timing of administration, and duration of melatonin ther-

apy required for treating a given neurodegenerative disorder 

will likely differ and will require optimization.

Melatonin and autoimmune central 
nervous system disease 
Maladaptive responses to environmental stress weaken the 

body’s resistance to other environmental stimuli, such as 

pathogenic organisms. Environmental stimuli to the nervous 

system affect the immune, inflammatory, and endocrine sys-

tems. On this conceptual basis, the day/light photoperiod is a 

basic environmental cue for all organisms and can also influ-

ence the immune and inflammatory systems [59]. Melatonin 

is a major mediator of these effects. Additionally, melatonin 

has anti-inflammatory, immunomodulatory, and antiapop-
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totic functions, as well as neuroprotective effects. Figure 1 de-

picts the signaling cascades that give rise to the protective ef-

fect of melatonin against neurodegenerative disorders and 

autoimmune CNS diseases. Owing to the multiple locations of 

formation and expression of melatonin receptors, this hor-

mone is gaining interest as a possible therapeutic agent for 

autoimmune and inflammatory processes. The therapeutic 

effects of melatonin include providing potential relief in some 

systemic autoimmune diseases; however, the evidence is still 

weak. 

Anti-inflammatory and immunomodulatory effects 
of melatonin 
Several animal and clinical studies have evaluated the role of 

melatonin in multiple sclerosis (MS), which is one of the 

chronic neuroinflammatory demyelinating diseases and oc-

curs mainly in young- to middle-aged women. Clinically, MS 

is characterized by recurrent attacks of neuroinflammation in 

the CNS, causing demyelinating neurological injury and phys-

ical disability [60]. 

The exact etiology of MS is unknown; however, epidemiologi-

cal data indicate both environmental and genetic factors are 

involved [61]. In MS, T cells are activated outside the CNS and 

play critical roles in disrupting the blood-brain barrier, acti-

vating macrophages, and attacking myelin [62]. T cells are re-

activated by surface antigen-presenting cells by releasing as-

sociated antigens to CD4+ T helper cells in the periphery and 

by generating autoreactive proinflammatory cytokines. These 

immune cells trigger a cascade of inflammatory events, in the 

CNS, including increased expression of proinflammatory cy-

tokines such as interleukin-12 (IL-12), IL-23, interferon-γ 
(IFN-γ), tumor necrosis factor-α, which induce additional in-

flammatory cells along with astrocyte and microglial cells [63]. 

Therefore, MS disease-modifying therapies aim to improve the 

regeneration of CNS by modulating the inflammatory/im-

mune state [64]. In vivo studies have demonstrated that high 

doses of melatonin stimulated the immune system by increas-

ing T-cell activity and lymphocytes, producing several humoral 

responses. Melatonin has been shown to decrease the periph-

eral and central Th1/Th17 ratios, and to increase regulatory 

responses such as IL-10 synthesis and T regulatory (Treg) cell 

frequency. The expressions of IFN-γ, IL-17, IL-6, and CCL20 

were also suppressed following melatonin treatment [65]. 

Experimental autoimmune encephalitis (EAE) is an animal 

model of MS that shares many of the clinical and histopatho-

logical features of human MS and is used to understand the 

pathophysiological characteristics of MS. When melatonin 
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was administered to mice daily beginning the day of EAE in-

duction, the severity of clinical symptoms was reduced with-

out altering the time of onset EAE [66]. In another study, the 

duration and severity of the disease were significantly reduced 

in the melatonin group although paralysis was evident in both 

melatonin-treated and vehicle-treated groups [67]. There 

have been few case-control or cohort studies regarding mela-

tonin therapy in patients with MS. Most of the clinical studies 

used melatonin as a supplementary therapy in addition to 

INF-β-1b [68]. There are limitations to the interpretation of 

melatonin therapy in these clinical studies. 

In a study involving 75 patients with rheumatoid arthritis, a 

daily dose of 10-mg melatonin shows a slowly developing an-

tioxidant profile in patients, but no improvement in clinical 

symptoms was evident [69]. Furthermore, in a study using the 

pristane-induced mouse model of systemic lupus erythema-

tosus, melatonin had a beneficial effect by decreasing IL-6 

and IL-13 production [70]. Several experimental studies re-

ported beneficial effects of melatonin against ulcerative colitis 

due to modulation of the inflammatory pathway and oxidative 

stress [71]. In a clinical study, 60 patients with ulcerative coli-

tis have prescribed either mesalazine with melatonin (5 mg) 

or a placebo daily at bedtime. In the melatonin group, serum 

C-reactive protein concentrations remained within normal 

range and remission states were sustained during the study 

period (12 months) [72]. Although many experimental studies 

have found beneficial effects of melatonin in animal models 

of systemic autoimmune diseases, several clinical studies had 

small sample sizes, and some measured only indices of quali-

ty of life with clinical symptoms and did not quantify bio-

markers of immune and inflammatory modulation. 

These results highlight the need for more systematic and de-

tailed clinical studies regarding the immunomodulatory and 

anti-inflammatory effects of melatonin as a neuroprotective 

agent. 

Conclusions 
Circadian regulation is a key factor contributing to the pro-

gression of neurodegenerative disorders. Neurodegenerative 

disorders may increase the vulnerability of the body’s internal 

clock network to the disruptive effect of external conditions, 

Figure 1 Mechanisms on therapeutic targets of melatonin for neurodegenerative disorders and autoimmune CNS

ICAM, intracellular adhesion molecule; NF-κB, nuclear factor kappa B; IFN, interferon; Treg, T regulatory; Th, T helper; IL, interleukin; CNS, central ner-
vous system disease.
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such as a weak light/dark zeitgeber. Maladaptive responses to 

environmental stress could affect the immune, inflammatory, 

and endocrine systems, and, it can either be a risk or trigger 

for autoimmune disease. Melatonin is an important mediator 

of circadian regulation and stabilization of environmental 

stress. In addition, many in vivo and in vitro studies have 

demonstrated the neuroprotective effects of melatonin thera-

py. Given the ability of exogenously administered melatonin 

to mitigate the loss of endogenous night signals, improve cir-

cadian rhythm, and enhance other anti-inflammatory effects 

with immunomodulation, melatonin therapy might be a 

promising early intervention for many disease states. Howev-

er, it should be noted that high-quality clinical studies are 

lacking, and additional studies are needed to assess the po-

tential roles of supplemental melatonin in disease manage-

ment. 
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