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Recent years have seen an increase in the use of multi-echo fMRI designs by cognitive
neuroscientists. Acquiring multiple echoes allows one to increase contrast-to-noise;
reduce signal dropout and thermal noise; and identify nuisance signal components
in BOLD data. At the same time, multi-echo acquisitions increase data processing
complexity and may incur a cost to the temporal and spatial resolution of the acquired
data. Here, we re-examine a multi-echo dataset previously analyzed using multi-
echo independent components analysis (ME-ICA) and focused on hippocampal activity
during the overtly spoken recall of recent and remote autobiographical memories.
The goal of the present series of analyses was to determine if ME-ICA’s theoretical
denoising benefits might lead to a practical difference in the overall conclusions reached.
Compared to single-echo (SE) data, ME-ICA led to qualitatively different findings
regarding hippocampal contributions to autobiographical recall: whereas the SE analysis
largely failed to reveal hippocampal activity relative to an active baseline, ME-ICA
results supported predictions of the Standard Model of Consolidation and a time limited
hippocampal involvement. These data provide a practical example of the benefits multi-
echo denoising in a naturalistic memory paradigm and demonstrate how they can be
used to address long-standing theoretical questions.

Keywords: autobiographical memory, fMRI, hippocampus, multi-echo fMRI, time

INTRODUCTION

Naturalistic fMRI paradigms seek to improve our understanding of the neural bases of “everyday”
behavior and strive to be less artificial than more traditional laboratory paradigms (e.g., Hasson
and Honey, 2012; Haxby et al., 2020). Naturalistic experiments might involve scanning participants
while they watch or describe a popular television show (Chen et al., 2017), read complex narrative
passages in the scanner (Finn et al., 2018), or engage in spontaneous conversation with another
individual (Jasmin et al., 2019). Although naturalistic paradigms offer opportunities to study brain-
behavior relationships beyond those observable in more tightly controlled paradigms, they can also
pose additional challenges.

For studies involving spoken responses, the basic act of speaking in an fMRI environment
represents a potential issue. Speech will necessarily produce head motion, and if speech is
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continuous (e.g., Chen et al., 2017; Jasmin et al., 2019)
then approaches that require responses between volume
acquisitions (e.g., Gracco et al., 2005) or censor specific frames
containing speech data (Siegel et al., 2013) are not applicable.
Instead, one might be better served by applying recent fMRI
timeseries denoising approaches, such as multi-echo independent
components analysis (ME-ICA), to remove nuisance signal from
one’s data [see Caballero-Gaudes and Reynolds (2017)].

Multi-echo-ICA involves decomposing the multi-echo
timeseries into ICA components that are identified as “BOLD-
like” and “noise-like,” combining the signal across multiple
echoes in each TR, and subsequently regressing the noise-like
timeseries identified in ICA from the combined data [see Kundu
et al. (2012, 2013, 2017), Gonzalez-Castillo et al. (2016), and
Power et al. (2018)]. Although ME-ICA is employed to improve
overall data quality, its practical benefit should be balanced
against its costs. It requires an up-front decision to collect
multiple echoes and the expertise to design and implement
specific sequences that allow for it. It will also increase the
complexity of one’s preprocessing pipeline and involves steps
that may not be implemented in all analysis packages. The
additional time required to collect multiple echoes effectively
results in slower TRs [typically on the order of 10%, but the cost
will depend on the specific number of echoes and echo times
(TEs) selected]. Offsetting this TR increase can be accomplished
with an increased voxel size, reduction in overall coverage, or
through added acceleration and/or multiband.

In this report, the practical benefits of ME-ICA processing are
assessed using a recently acquired naturalistic dataset intended
to study human memory function (Gilmore et al., 2021a).
Forty participants freely and overtly recalled recent and remote
autobiographical events for periods of approximately 2 min
while undergoing fMRI. As a control task, participants were
asked to verbally describe complex photographs. One notable
finding from these data was evidence supporting a temporally
graded and time-limited role of the hippocampus in the recall
of autobiographical memories—an issue that has been discussed
at length with several established “camps” in the literature
[for recent reviews of various hypotheses, see Squire et al.
(2015), Barry and Maguire (2019), Yonelinas et al. (2019), and
Gilboa and Moscovitch (2021)]. Overt recall was employed to
provide experimental knowledge of the type of information being
retrieved during recall (Gilmore et al., 2021b) as this, along with
the age of a recalled memory (which itself can also be more easily
ascertained using overt recall), appears to be a critical variable
in the debate of hippocampal contributions to remote retrieval.
The present report revisits these data to ask a practical question:
was ME-ICA denoising necessary to observe the differences
found during this task? Or, stated differently, would we have
obtained the same results without using a multi-echo approach?
In the present report, results of the ME-ICA processed data were
therefore compared to a standard single-echo (SE) processing
stream (Table 1). This comparison was possible because the
middle echo of the fMRI data was matched for typical scan
acquisition parameters used in any number of memory studies
(TE, voxel size, etc.) without the need for additional acceleration
that would have impaired the SE data quality.

MATERIALS AND METHODS

Participants
Data for this experiment were taken from a previously published
lab dataset (Gilmore et al., 2021a,b). Participants consisted of
40 right-handed young adult participants (23 female; mean
age = 24.2 years old) who were native English speakers with
normal or corrected-to-normal vision and reported no history of
psychiatric or neurologic illness. Informed consent was obtained
from all participants and the experiment was approved by
the NIH Institutional Review Board (clinical trials number
NCT00001360). Participants received monetary compensation
for their participation.

Stimuli
Stimuli consisted of 48 photographic images depicting people
engaged in various activities. Images were sized at 525 × 395
pixels (screen resolution: 1,920 × 1,080 pixels) and presented
against a black background. Stimuli were presented using
PsychoPy2 software (Peirce, 2007; RRID: SCR_006571) on an HP
desk- top computer running Windows 10.

Autobiographical Recall Task
In this task, participants retrieved and described autobiographical
memories in response to photographic picture cues. For each
trial, participants were first directed to recall an event from one
of three different time periods [earlier in the same day (“Today”),
6–18 months prior, or 5–10 years prior]. Participants were given a
choice of two photographic cues and had 11 s to select the picture
they preferred, which they indicated via button press response.
The screen was replaced with a fixation cross once a response was
made, and at the end of the selection period an enlarged version
of the selected image was presented in the center of the screen
for 5 s. Participants used this period to think back to a specific
autobiographical event.

Following picture presentation, participants were given 116 s
to describe an event while a white fixation cross was presented
centrally. Participants were instructed to describe each event in
as much detail as possible for the full duration of each trial.
Additional task details are described in Gilmore et al. (2021a).
A 2.2 s red fixation cross indicated the end of each trial, and trials
were separated by a 19.8 s fixation period. One trial from each
of the three time periods was included in each Autobiographical
Recall task scan run.

Participants were given practice with the task before scanning,
and if the events described were not specific, participants were
re-instructed and given further practice until specific episodes
were being described. During this time, participants were also
instructed not to repeat event descriptions in the experiment.

Picture Description Control Task
As an active control task, participants described events being
depicted in cue photographs. The trial timing and structure was
identical to that used for the autobiographical recall task, except
participants were instructed during the 5 s picture display period
to scrutinize the image so that they could describe it in as much
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TABLE 1 | Summary of analysis pipelines compared in this report.

Standard Processing (2nd echo only) ME-ICA denoising (three echoes)

First four frames removed First four frames removed for each TE

Timeseries despiked Timeseries despiked for each TE

Slice-time corrected Slice-time corrected for each TE

Volume registration (rigid body) Volume registration for each TE

ICA denoising: identifies “BOLD-like” and “noise-like” components across TEs

“Optimally combined” linear combination of TEs weighted by each voxel’s T2
∗

“Noise-like” components regressed from the optimally combined data

EPI registered to MP-RAGE Optimally combined data registered to MP-RAGE

Timeseries data smoothed and converted to % signal change Timeseries data smoothed and converted to % signal change

Data registered to Talairach atlas (TT_N27) Data registered to Talairach atlas (TT_N27)

GLM-based mass univariate analysis GLM-based mass univariate analysis

detail as possible when it was removed, rather than use it to
recall a memory. As before, trials were separated by 19.8 s of
fixation, and three trials were included per picture description
control task run.

Audio Recording, Transcript Scoring, and
Alignment of Spoken Responses to the
BOLD Timeseries
The processing steps associated with the recording and scoring
of spoken responses have been described in detail previously
(Gilmore et al., 2021a,b). Briefly, recorded audio was transcribed
and scored for content using an adapted form of the
Autobiographical Interview (Levine et al., 2002; Gaesser et al.,
2011). This procedure separates “Internal” (episodic) details
specific to the event details from other types of “External”
details. Subcategories of Internal details included: Activities,
Objects, Perceptual, Person, Place, Thought/Emotion, Time,
and Miscellaneous. External detail types included Episodic (i.e.,
details from other events), Repetitions, Semantic statements,
and a catch-all “Other External” category. Timestamps for each
spoken word and phrase were generated and matched with the
text in transcripts, and different categories of recalled content
were converted into event-related regressors for fMRI data
analysis, as will be described below.

fMRI Data Acquisition
Data were acquired on a General Electric Discovery MR750 3.0T
scanner, using a 32-channel phased-array head coil. Functional
images were acquired using a BOLD-contrast sensitive multi-
echo echo-planar sequence [Array Spatial Sensitivity Encoding
Technique (ASSET) acceleration factor = 2, TEs = 12.5, 27.6, and
42.7 ms, TR = 2,200 ms, flip angle = 75◦, 64 × 64 matrix, in-
plane resolution = 3.2 mm × 3.2 mm]. Whole-brain EPI volumes
(MR frames) of 33 interleaved, 3.5 mm-thick oblique slices were
obtained every 2.2 s. Slices were manually aligned to the AC-
PC axis. A high-resolution T1 structural image was also obtained
for each subject (TE = 3.47 ms, TR = 2.53 s, TI = 900 ms, flip
angle = 7◦, 172 slices of 1 mm × 1 mm × 1 mm voxels).

Foam pillows were provided for all participants to help
stabilize head position and scanner noise was attenuated using

foam ear plugs and a noise-canceling headset. This headset was
also used to communicate with the participant during their time
in the scanner. Heart rate was recorded via a sensor placed on the
left middle finger and a belt monitored respiration.

fMRI Processing: Single-Echo (Standard)
Analysis
fMRI data were processed following a standard SE preprocessing
routine in AFNI (RRID: SCR_005927) to reduce noise and
facilitate across-subject comparisons. This processing stream
used the 2nd collected echo (TE = 27.6 ms), as this TE is
within the typical range SE fMRI paradigms use to study
autobiographical recall (e.g., Abraham et al., 2008; Weiler et al.,
2010; Gilmore et al., 2018; St Jacques et al., 2018), including
those focusing on the MTL or hippocampus (e.g., Svoboda
and Levine, 2009; Bonnici and Maguire, 2012; Thakral et al.,
2020). Steps included removal of the first four frames to
remove potential T1 equilibration effects (3dTcat), despiking to
remove large transients in the timeseries (3dDespike), slice-time
correction (3dTshift) and frame-by-frame rigid-body realignment
to the first volume of each run (3dvolreg). Data from each
scan run were blurred with a 4 mm FWHM smoothing kernel
to approximate the smoothness and minimum cluster extents
required to maintain a corrected p < 0.05 for whole-brain effects
in the ME-ICA pipeline (k ≥ 17 for SE data; k ≥ 18 for ME-
ICA data, see Voxelwise analysis of temporal distance effects). Data
were registered to each individual’s T1 image, normalized by the
grand mean of each run, and then resampled into 3-mm isotropic
voxels and linearly transformed into Talairach atlas space.

fMRI Processing: Multi-Echo ICA
Multi-echo data were also preprocessed using AFNI, using the
same procedures described in previous publications of these data
(Gilmore et al., 2021a,b). Initial steps for each TE of each run were
identical to those used in the SE processing stream included a
removal of the first four frames, despiking, slice-time correction,
and rigid-body volume registration. Following these initial steps,
data from the three echoes acquired for each run were used to
remove additional noise using ME-ICA (Kundu et al., 2012) as
implemented in the meica.py AFNI function.
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This procedure initially calculates a weighted average of
the different echo times (“optimally combined” data), which
serves to increase contrast-to-noise, reduce signal dropout due
to susceptibility artifact, and reduce thermal noise within each
voxel. The resulting image is also registered to the corresponding
anatomical scan. Separately, the individual echo timeseries data
are submitted to an ICA, and the known properties of T2

∗ signal
decay over time (across the echoes) are used to separate putatively
neural components from artifactual components, such as thermal
noise or head motion (Power et al., 2018). To be retained,
components must show a strong fit with a model that assumes a
temporal dependence on signal intensity and also a poor fit with a
model that assumes temporal independence (Kundu et al., 2012).
Components determined to be noise are then regressed from the
optimally combined data. Selection criteria were left at the default
settings of AFNI’s tedana.py function. Across all included runs,
an average of 74.7 (±10.9) components were identified following
decomposition and 41.3 (±10.8) were excluded, resulting in
an average 168.7 (±10.8) nominal degrees of freedom per run.
Following ME-ICA processing, data were spatially blurred with a
Gaussian kernel 3 mm full-width at half-maximum, normalized
by the grand mean of each run, and then resampled into 3-
mm isotropic voxels and linearly transformed into Talairach atlas
space, as in the SE pipeline.

Temporal Signal-to-Noise Comparison
One means of assessing fMRI data quality is to compute its
temporal signal-to-noise (tSNR). tSNR is calculated by dividing
a timeseries mean by its standard deviation, and will be impacted
by nuisance signals related to motion, physiological noise, etc.
(Triantafyllou et al., 2011). Thus, one means of appreciating
the impact of various processing steps is to compare tSNR.
Timeseries tSNR from the SE pipeline were compared to the same
data after the optimal combination step in the ME-ICA pipeline
(i.e., before any ICA denoising was conducted) as well as on the
ICA-denoised ME-ICA data. In all cases, tSNR was calculated
prior to smoothing, rescaling, and detrending.

General Linear Model Creation
Data from both the SE and ME-ICA streams were linearly
detrended and analyzed in AFNI using the same general linear
model (GLM) approach (3dDeconvolve). The initial picture
selection period was modeled using a single HRF across all trial
types convolved with a boxcar of 11 s duration. The subsequent
Picture Display period was also modeled with a single HRF
convolved with a boxcar of 5 s duration. The analysis of recall
effects utilized a mixed block/event related design (Visscher et al.,
2003). Separate regressors modeled sustained effects related to
the narration periods of the Autobiographical Recall and Picture
Description narration periods. These convolved an HRF with
a boxcar of 118.2 s duration in all cases. Additional regressors
coded for transient effects associated with each of the 12 types
of detail derived from the Autobiographical Interview scoring
procedure as described above. Six motion parameters (three
translational, three rotational) were included in each subject’s
GLM as regressors of non-interest.

FIGURE 1 | Whole brain temporal signal-to-noise (tSNR) estimates following
various stages of processing. Values reflect the timeseries mean divided by its
standard deviation prior to smoothing, rescaling, or detrending. Error bars
reflect standard error of the mean. SE, single-echo; OC, optimally combined;
ME-ICA, multi-echo independent components analysis.

Comparing Single-Echo and
Multi-Echo-ICA Effects Within the
Hippocampus
Anterior and posterior regions of the hippocampus were defined
for each participant, using the uncal apex as a landmark as
described previously (Gilmore et al., 2021a). Activity within each
hippocampal ROI was averaged across voxels for each condition,
using the Picture Description control task as a baseline.

To determine the effect of the processing pipeline on the
observed activity differences related to the temporal distance
of each event, a repeated measures ANOVA was constructed.
This included factors of temporal distance (two levels: Today,
5–10 years ago), subregion (two levels: anterior, posterior),
hemisphere (two levels: left, right), and processing pipeline (two
levels: SE, ME-ICA). Pairwise comparisons were conducted to
characterize significant interactions when appropriate.

Activity in each region, for each pipeline, and each temporal
distance was compared against the Picture Description baseline
task, using one-sample t-tests. Due to the large number of
comparisons involved, correction for multiple comparisons
included a Bonferroni approach as well False Discovery Rate
(FDR). The latter was performed in matlab using fdr_bh.m.1

Voxelwise Analysis of Temporal Distance
Effects
To test for effects of the recency or remoteness of a memory on
retrieval-related BOLD activity, a voxelwise whole brain contrast

1https://www.mathworks.com/matlabcentral/fileexchange/27418-fdr_bh
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(paired-samples, two-tailed) of the Today and 5–10 year ago
conditions was performed on the SE and ME-ICA pipeline
data for each subject. Correction to a whole brain p < 0.05
was achieved by requiring a voxelwise p < 0.001 and a
minimum cluster extent of 17 voxels for the SE data and
18 for the ME-ICA data, determined for each pipeline using
AFNI’s 3dClustSim and its non-Gaussian (-acf ) autocorrelation
function (Cox et al., 2017). Both pipelines identified large (< 800
voxel) posterior midline clusters containing three distinct local
maxima. Center of mass coordinates were identified for each
location by incrementing the voxelwise t-statistic threshold
in steps of 0.1 until the three clusters were separated. This

was achieved at t > 5.04 for the SE data and t > 5.36 for
the ME-ICA data.

RESULTS

The effectiveness of denoising was estimated by comparisons of
tSNR for SE data, the multi-echo data following the optimal
combination step (but before ICA denoising was applied), and
after ICA denoising was applied in the ME-ICA data (Figure 1).
A repeated measures ANOVA identified a significant effect of
processing type, F(2,78) = 3735.8, p < 0.001. Pairwise comparisons

FIGURE 2 | Hippocampal results vary across preprocessing streams. (A) Graphic depictions of each manually defined hippocampal subregion. (B) Magnitude
estimates from the single-echo (SE) analysis pipeline, plotted against the Picture Description control task. (C) Magnitude estimates from the multi-echo independent
components analysis (ME-ICA) pipeline, plotted against the Picture Description control task. Asterisks (*) denote p < 0.05. Inset double daggers signify a significant
difference from the Picture Description control task (corrected for multiple comparisons). Error bars reflect within-subject standard error.
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identified a significant increase from the SE to the optimally
combined data, t(39) = 48.3, p < 001, as well as from the optimally
combined to the fully ME-ICA denoised, t(39) = 71.3, p < 0.001.

Within the hippocampus, anterior and posterior hippocampal
subregions (Figure 2A) were manually defined for each
participant as regions of interest (ROIs) and activity in
each condition was averaged for all voxels within each ROI
(Figures 2B,C). A repeated measures ANOVA, with factors of
temporal distance (two levels: Today, 5–10 years ago), subregion
(two levels: anterior, posterior), hemisphere (two levels: left,
right), and pipeline (two levels: SE, ME-ICA) was employed.
There was a significant main effect of pipeline, F(1,39) = 6.83,
p = 0.013, reflecting the larger BOLD response magnitudes
for the SE processed data. This is consistent with prior
investigations comparing SE and ME-ICA processing, which
have observed attenuated BOLD signal change estimates despite
the overall improvement in contrast-to-noise ratios (Gonzalez-
Castillo et al., 2016). No other significant main effects were
observed (ps ≥ 0.276). Consistent with a prior report using
these data (Gilmore et al., 2021a), there was a single two-way
interaction of subregion and temporal distance, F(1,39) = 10.87,
p = 0.002, reflecting different patterns of activity observed in
anterior and posterior hippocampal subregions as a function of

event recency (other two-way interaction ps ≥ 0.138). However,
and critically, this interaction must be qualified by a three-
way interaction among the factors of pipeline, subregion, and
temporal distance, F(2,78) = 4.48, p = 0.041 (other three-way
interaction ps ≥ 0.305). Unpacking this result revealed that
significantly greater activity for recent (Today) than remote (5–
10 year ago) activity was present in posterior, and not anterior,
hippocampal regions, but only for the ME-ICA processed data
[anterior hippocampus: t(39) = 0.717, p = 0.478; posterior
hippocampus: t(39) = 2.91, p = 0.006] and not the SE data
[anterior hippocampus: t(39) = 0.876, p = 0.386; posterior
hippocampus: t(39) = 1.43, p = 0.160]. That is, a finding of
temporally graded activity relied upon the improved denoising
afforded by ME-ICA. No four-way interaction was observed,
F(1,39) = 0.05, p = 0.824.

Hippocampal response magnitudes for each processing stream
and each temporal distance were then compared to the Picture
Description baseline task. A time-limited role, as suggested by the
“Standard Model of Consolidation” (Alvarez and Squire, 1994)
would predict significantly greater activity for recent, but not
remote, time periods when compared to Picture Description,
whereas hypotheses that predict a continuous hippocampal
involvement (e.g., Sekeres et al., 2018) would predict consistent

FIGURE 3 | Voxelwise results for each preprocessing stream. (A) Regions exhibiting greater activity in the Today than 5–10 year ago condition following single-echo
(SE) preprocessing included a large cluster in the posterior midline and inferior parietal lobule bilaterally. No clusters were identified with significantly greater activity
for the 5–10 year ago condition. (B) Regions identified in the same analysis using multi-echo ICA (ME-ICA) data were larger and included several additional clusters
in the right temporal and left frontal cortex. (C) A binarized conjunction image allows for easy visualization of the improved sensitivity offered by ME-ICA processing.
Inset arrows identify significant clusters absent from the SE analysis.
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activation over the baseline task for all retrieval conditions.
Only four of the 16 contrasts were significant following
Bonferroni correction (achieving p < 0.0031): two for ME-ICA
datapoints associated with the Today condition [Right posterior
hippocampus, t(39) = 3.90, p = 0.0004; left posterior hippocampus,
t(39) = 3.38, p = 0.0016] and two SE datapoints, one for the 5–
10 year ago condition [Right anterior hippocampus, t(39) = 3.61,
p = 0.0009] and one for the Today condition [left posterior
hippocampus, t(39) = 3.34, p = 0.0019] (Figures 1B,C). Applying
an FDR correction (Benjamini and Yekutieli, 2001) instead of
Bonferroni did not alter this pattern of results.

Basic conclusions regarding hippocampal participation in
recent and remote recall therefore differ between SE and ME-
ICA processing streams—whereas, the ME-ICA data reflected
a temporally graded and time-limited hippocampal role during
recall, no clear support for any model was revealed by the
SE analysis. However, beneficial effects of ME-ICA processing
would be expected at the whole-brain level as well. Thus, a
voxelwise contrast of activity related to the Today and 5–10 year
ago conditions (paired-samples, two-tailed) was performed
separately on the SE and ME-ICA data. The SE analysis identified
a large cluster in medial parietal cortex, with local maxima
in the mid/posterior cingulate cortex and bilaterally in the
precuneus, as well as bilateral inferior parietal lobule clusters
(Figure 3A and Table 2). Largely convergent results were
obtained following ME-ICA processing, although commonly
identified clusters were larger and additional significant clusters
were identified in left frontal cortex and right lateral temporal
cortex (Figures 3B,C and Table 2). No identified clusters were
unique to the SE data.

DISCUSSION

In this report, we sought to investigate the practical benefits of
an advanced fMRI denoising technique under naturalistic recall
conditions. Given the rise in the number of experiments seeking
to implement more naturalistic paradigms, the comparison of
SE and ME-ICA approaches to data processing might help
investigators optimize their sequence and processing pipeline
selections. At least in the context of the current dataset, the
addition of ME-ICA processing contributed positively to the
interpretability of the obtained results.

The general efficacy of ME-ICA in denoising fMRI data has
been documented elsewhere (Gonzalez-Castillo et al., 2016),
particularly in investigations of functional connectivity (Kundu
et al., 2012, 2013, 2017; Dipasquale et al., 2017; Power et al.,
2018; Lynch et al., 2021). The purpose of this investigation
was not to retread this same ground, but instead to focus
on the practical utility of ME-ICA denoising in a naturalistic
recall paradigm—an approach in which sophisticated denoising
may be particularly important. In this case, ME-ICA-derived
improvements appear to have been necessary for the findings
obtained previously. This is most clearly demonstrated in the
hippocampal results (Figure 2). Data processed in the SE pipeline
failed to reveal any systematic differences as a function of
temporal distance or in comparison to a non-autobiographical

TABLE 2 | Regions identified in the voxelwise analysis of temporal distance effects
for SE and multi-echo-ICA processing streams.

Region X Y Z Cluster size Peak t-statistic

SE processing stream

Medial parietal
cortex

−4 −56 33 848 10.36

Left precuneus −11 −66 30 10.36

Mid-cingulate
cortex

2 −31 27 6.97

Right precuneus 12 −69 33 6.62

Left posterior
inferior parietal
lobule

−46 −62 40 50 4.77

Right posterior
inferior parietal
lobule

50 −55 43 20 4.94

Right intraparietal
sulcus

34 −59 36 19 4.90

ME-ICA processing stream

Medial parietal
cortex

−1 −50 32 1039 7.85

Mid-cingulate
cortex

−1 −31 27 7.42

Right precuneus 8 −69 37 7.85

Left precuneus −11 −66 30 6.86

Left posterior
inferior parietal
lobule

−46 −56 39 148 5.18

Right posterior
inferior parietal
lobule

50 −56 36 75 5.21

Right superior
temporal sulcus

56 −30 -4 60 5.06

Left middle frontal
gyrus

−46 17 41 30 4.53

Medial parietal subregions reflect discrete local maxima within a larger cluster.
Coordinates refer to centers of mass in MNI152 space.

control task, and thus failed to support any specific model
in the literature. In contrast, the ME-ICA data supported
predictions of the Standard Model of Consolidation regarding
both a temporally graded and time-limited role (Alvarez and
Squire, 1994). Moreover, the benefits of ME-ICA were not
restricted to the hippocampus. Voxelwise, whole-brain results
also demonstrated the improved sensitivity of ME-ICA, both
through identification of larger clusters than in the SE data
(Figure 3C and Table 2), as well as the addition of several clusters
not observed in the SE data. The additional clusters seem unlikely
to be spurious findings, but rather captured processes relevant
to the experiment: the cluster identified in left frontal cortex
has previously been associated with autobiographical recall (with
a neurosynth posterior probability of 0.79), whereas the lateral
temporal cluster is typically associated with spoken language
(posterior probability = 0.82).

Naturalistic paradigms, such as the overt cued recall approach
described herein, provide promising avenues for researchers to
ask questions that are difficult, if not impossible, to address using
more limited and controlled laboratory tasks. However, with this
flexibility comes additional concerns of how to make the best
use of acquired data, including concerns regarding how one can
be satisfied that data have been properly denoised. ME-ICA’s
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identification and regression of nuisance components provides
a reliable means of improving timeseries quality (Figure 1). An
important corollary of this improvement is that effects of interest
should be detectable in fewer participants than in a traditional
SE approach (or, as was the case here, improved sensitivity
given the same number of participants). This improvement, it
should be noted, comes despite a numeric loss of effective degrees
of freedom during ICA denoising [for related discussion, see
Gonzalez-Castillo et al. (2016), and Dipasquale et al. (2017)].
Denoising approaches such as ME-ICA may play increasingly
important roles in data processing strategies and offer the
potential to inform long-standing theoretical debates.
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