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enome-wide transcription factor

(TF) binding profiles differ dramati-
cally between cell types. However, not
much is known about the relationship
between cell-type-specific binding patterns
and gene expression. A recent study dem-
onstrated how the same TFs can have
functional roles when binding to largely
non-overlapping genomic regions in
hematopoietic progenitor and mast cells.
Cell-type specific binding profiles of
shared TFs are therefore not merely the
consequence of opportunistic and func-
tionally irrelevant binding to accessible
chromatin, but instead have the potential
to make meaningful contributions to cell-
type specific transcriptional programs.

Transcription factors (TFs) are impor-
tant regulators of cell-type-specific gene
expression, and represent the paradigm for
DNA-binding proteins that influence cel-
lular development. Hematopoiesis has
long served as a model to study the tran-
scriptional control of cell type specifica-
tion, and
elements for several major regulators of
hematopoietic stem cells (HSCs) have
been studied in detail using both mamma-
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lian and lower vertebrate model organ-
isms."'* Nevertheless, much remains to
be learned about the cell-type-specific
transcriptional mechanisms that govern
hematopoietic cell type identity. A thor-
ough investigation into how TFs can con-
tribute  to  distinct  transcriptional
programs, therefore, is critical for under-
standing how cells acquire and maintain
their identity. During hematopoietic stem
cell differentiation and blood cell develop-
ment, it is well known that these cells
share many TFs across distinct lineages.
The PU.1 TF, for example, auto-regulates
itself in 2 different cell types (myeloid and
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B-cells) through co-operative interaction
with distinct cell-specific TFs.® Further-
more, the SCL TF is required not only for
specifications of HSC but also differentia-
tion along the erythroid and megakaryo-
cytic lineages."'® Interestingly, binding
sites for the same TF in 2 cell types have
been shown to be largely non-overlapping
and behave in a cell-type-specific man-
ner.'”!® These findings, therefore, raise
the question as to whether both cell-type-
specific and common TF binding patterns
in the genome have functional consequen-
ces for defining cell fate. Several recent
review papers provided in-depth discus-
sions on what may constitute functional
TF binding, suggestions to discover func-
tional enhancers or indeed if co-operative
TF binding represents a continuum rather
than just 2 states."”** These discussions
revealed many unresolved questions on
the topic including the fundamental need
to identify binding activity that results in
stable cellular states.

In a recent study, we examined the
nature of binding site preferences and co-
occupancy in 2 closely related cell types.*
The cell types compared were primary
mast cells and a multipotent hematopoi-
etic progenitor cell line, HPC7,%* which
we have established as a useful model for
studying early blood stem/progenitor
cells.”>*® Gene expression profiling by
RNA-sequencing (RNA-seq) revealed
many significant differences in the expres-
sion profiles of the 2 cell types. Neverthe-
less, many known TFs display similar
expression in both cell types and this
includes key regulators of hematopoietic
stem cells (i.e., E2A, Erg, Flil, Gata2,
Lmo2, Meisl, PU.1, Runxl, and Scl).
Generation of genome-wide TF binding
maps by chromatin-immunoprecipitation

followed by sequencing (ChIP-seq) of
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Figure 1. Summary of computational and experimental approaches in the genome-wide compari-
son of HPC7 blood progenitor and mast cells. (A) Regression models using differential TF occupancy
and differential gene expression. (B) Motif content analysis of cell-type-specific and common bind-
ing regions. (C) shRNA perturbation experiments compared to TF binding and gene expression

those ‘shared’” TFs uncovered largely non-
overlapping promoter and enhancer occu-
pancy between the 2 cell types. For most of
these HSC TTFs, it was not known whether
(and if so, how) they might have a role in
the transcriptional regulation of mast cells.
Having established a unique large-scale
dataset for comparative analysis, we next
asked the question as to what is the role of
‘shared’ TFs in controlling mast cell spe-
cific transcriptional programs?

We examined the observation of dis-
tinct binding patterns further by quantify-
ing the differences in binding and their
relationship to gene expression in a regres-
sion model (Fig. 1A). Regression models
provide a useful and simple approach to
quantify the relationships between multi-
ple predictor variables (i.e., ‘shared’ TFs)
to a response variable (i.e., gene expres-
sion). Furthermore, the availability of
high resolution genome-wide data (i.e.,
ChIP-seq and RNA-seq) allowed the con-
struction of accurate predictive models.
By considering genes bound by at least
one of these TFs, these models describe
gene expression as a function of combina-
torial effects of one or more relative TF
binding strengths. In the past, other stud-
ies have also utilized regression statistics to
build a variety of prediction models that
include, for example, TF binding data,
histone modification, and consensus bind-
ing motifs.?”*® Until recently, these stud-
ies have focused on predicting gene
expression in one cell type, obtaining high
levels of correlation with observed data.
However, applying the model to another
cell type often results in poor accuracy
since static expression levels were used to

e978173-2

construct the model. Our study, on the
other hand, employed regression models
for 2 cell types to predict changes in gene
expression. Thus, when differential pro-
moter and distal enhancer occupancy were
encoded into the model, quantitative
changes in TF binding were found to be
predictive of quantitative changes in dif-
ferential gene expression. Moreover, pre-
diction accuracy improved when multiple
binding events were taken into account.

Many regression models described so
far assumed that TF binding and gene
expression have a linear relationship.
Although linearity provides an easy means
for performing computations, it is known
that this relationship could be non-linear,
at least for a subset of TFs. Indeed, gene
expression has been shown to be a non-
linear function of TF binding as shown in
an analysis of K562 and GM112878 cell
lines.”” Here, the authors used generalized
additive models®®' (GAMs) to identify
TFs that influence cell-type-specific gene
expression. Similarly, in the HPC7 and
mast data set, using GAMs to predict
changes in differential gene expression
improved prediction accuracy compared
to linear regression in 2 ways: (i) allowing
non-linearity of TF binding and; (ii)
incorporating TF interaction terms to
account for co-operative interaction
between 2 TFs. Importanty, we could
conclude from our modeling that ‘shared’
TFs play an important role in HPC7 and
mast cell transcriptional programs, since
their differential binding is predictive of
expression.

TF binding depends on interactions
with DNA and other TFs at regulatory
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regions, although it has been suggested
that in some occasions it can be largely
driven by its cellular environment with no
functional consequences. We compared
the motif content of common and cell-
type-specific regulatory regions (Fig. 1B)
under the hypothesis that the presence of
binding motifs for ‘shared” TF at cell-
type-specific bound regulatory regions
may provide additional evidence of direct
involvement of the ‘shared’ TFs in cell-
type-specific programs. We uncovered
large numbers of cell-specific and com-
mon binding regions that contained con-
sensus sequence motifs for the ‘shared’
TFs. To further analyze the role of
‘shared” TFs in cell-type-specific genetic
programs, we followed 2 approaches: (i)
we reduced the levels of some of the
‘shared” TFs (E2A, Erg, Flil, Gata2,
Lmo2, PU.1) by performing shRNA per-
turbation experiments (Fig. 1C) and ana-
lyzed the effect on cell-type-specific
genetic programs and; (ii) we mutated the
putative binding motifs present in cell-
type-specific promoters and analyzed the
direct effect on gene expression. Our first
approach showed that individual knock-
down of these regulators significantly
affects large numbers of regulated targets
with significant changes in cell-type-
specific gene expression. Worthy of note,
we also found that reduction of the levels
of one ‘shared’ factor can affect the
recruitment of other ‘shared’ factors. Our
second approach demonstrated that abla-
tion of binding motifs for ‘shared” TFs
resulted in strong reduction or even com-
plete abolition of promoter activity.

Although binding of ‘shared’ TFs with-
out functional consequences cannot be
ruled out for a given specific binding
event, our results clearly indicate that the
same TF can play an active and determi-
nant role in different cell-type-specific
transcriptional programs.

Conclusions and Future
Directions

Our recent analysis of genome-wide
binding sites and gene expression in
HPC7 and mast cells has provided new
insights into our understanding of line-
age-specific
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Figure 2. Schematic of gene regulation by ‘shared’ and mast-specific TFs. Both mast-specific and
‘shared’ TFs are important for cell-type-specific gene regulation. Knocking-down a ‘shared’ TF in
mast cells results in significant changes to gene expression for a large number of mast-specific

during differentiation. Furthermore, it
reports comprehensive genome-scale data
for primary mast cells, where until now
very little genome-wide data existed. The
use of computational and experimental
approaches provided several lines of evi-
dence to show that occupancy of distinct
regions in different cell lineages by the
same TFs are functionally important and
not just a consequence of the cellular envi-
ronment (Fig. 2).

It is well known that combinatorial TF
binding is prevalent in the regulation of
metazoan gene expression. However, the
specific rules governing these TF interac-
tions and the effects of individual regula-
tory elements on gene expression remain
largely unknown, even though they are
recognized to have broad implications for
cellular reprogramming. In a study of dif-
ferentiating embryonic stem cells, for
example, the Isll protein functions as a
component of 2 different regulatory com-

plexes that differ by one TF but lead to
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either spinal or cranial motor neuron for-
mation.>> TF binding site arrangements,
genomic sequence context (e.g., flanking
bases, GC content), enhancer composition
(heterotypic or homotypic arrangements
of TF binding), and DNA tertiary struc-
ture are all expected to influence transcrip-
the

will

tional activity. Elucidation  of
therefore,
improve our understanding of how the
same TF contributes to distinct cell fates.
Research in this area has so far provided

little consensus and one example is dem-

molecular mechanisms,

onstrated by the ‘enhanceosome’ vs. “TF
collective’ debate. The classical example of
TF complex formation as proposed by the
enhanceosome model requires a precise
configuration of multiple TFs to function
as a unit of regulation. In the well-studied
[FN-B enhancer, synergistic interaction
between all essential TFs is necessary and
leads to an ‘all-or-nothing’ response.” At
the opposite end of the spectrum, the ‘TF
collective’ model suggests that the effects
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of TF binding on gene expression are
cumulative with varying degrees of
potency and redundancy. A recent study
comparing TF binding in 2 mouse strains
has shown that both ‘shared’ and cell-
type-specific TFs are important for estab-
lishing the epigenetic and transcriptomic
landscapes in mouse macrophages.’ 4 Of
note, comparison of naturally occurring
single nucleotide polymorphisms (SNPs)
that differed between the 2 mouse strains
revealed strain-specific binding site motifs
that correlated with strain-specific gain or
loss of TF binding and influenced the
recruitment of cell-type-specific factors.
The findings in this study also emphasized
the presence of binding sites and nucleo-
some conformation as important features
for co-operative TF binding although
defined distances between TFs was not
crucial. Integrative analyses taking into
account dynamic binding, sequence infor-
mation and 3-dimensional DNA structure
to infer general principles of transcrip-
tional regulation would, therefore, help to
resolve the disparate findings in this field.
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