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Abstract. The scavenger receptor class B type I  (SR‑BI) 
is a multi‑ligand membrane protein receptor that binds to 
high‑density lipoprotein (HDL) under physiological condi-
tions, promoting the selective uptake of cholesterol esters from 
HDL into cells. SR‑BI also promotes the reverse transport 
of excess cholesterol from peripheral tissues to the liver, 
contributing to the synthesis of bile acids for excretion and 
the removal of excess cholesterol from the body, thereby 
lowering the cholesterol load and exerting anti‑atherosclerotic 
effects. Studies in mice and humans have demonstrated that 
a functional defect of SR‑BI can cause atherosclerotic lesions 
and cardiovascular diseases, such as myocardial infarction 
and stroke. Additionally, SR‑BI in vascular endothelial cells 
promoted the deposition of low‑density lipoprotein under the 
endothelium. Although SR‑BI is widely expressed in various 
tissues and cell types throughout the body, its expression level 
and function vary accordingly. The present review focuses 
on the biological functions and mechanisms of SR‑BI in 
regulating atherosclerosis.
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1. Introduction

The gene sequence of scavenger receptor class B type I (SR‑BI) 
was first determined by Calvo and Vega (1) in 1993 and named 
CLA‑1 (now SCARB1). SR‑BI shares close sequence identity 
with cluster determinant 36 and lysosomal integral membrane 
protein 2 (LIMP‑2). Acton et al (2) proposed that SR‑BI was 
a high‑affinity high‑density lipoprotein (HDL) physiological 
membrane protein receptor that mediated the selective uptake 
of cholesterol esters (CEs) in HDL particles via hepatocytes. 
Subsequent research has focused on the transcriptional regula-
tion, structure and function of SR‑BI. SR‑BI is highly conserved 
across different species, and is widely expressed in different 
tissues, including liver, gonad, adrenal gland, intestinal tract, 
macrophages, endothelial cells (ECs), platelets, placenta, adipo-
cytes and smooth muscle cells (3). SR‑BI is a member of the 
scavenger receptor superfamily and can recognize a variety 
of ligands, including HDL, natural and modified low‑density 
lipoprotein (LDL), very‑low‑density lipoprotein (VLDL), 
anion‑containing phospholipids, lipoprotein a (Lpa), phospha-
tidylserine (PS) and apoptotic cells (4). SR‑B1 has also been 
demonstrated to exhibit a high affinity for native HDL (4,5).

The main physiological function of SR‑BI is binding with 
HDL to mediate the selective uptake and reverse transport of 
cholesterol (3). When circulating LDL particles bind to the 
LDL receptor (LDLR), cholesterol is delivered to cells via 
endocytosis of the holo‑particle (3). After endocytosis, CEs 
carried in LDL are hydrolysed by acid lipase in the lysosome, 
releasing free cholesterol (FC) that is transported to the endo-
plasmic reticulum, where it is either re‑esterified to CEs and 
stored in lipid droplets in the cytoplasm, or transported to the 
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plasma membrane (3). In contrast, the mechanism by which 
CEs in HDL particles enter the cell is completely different from 
internalisation of the CE‑rich lipoprotein particles, which is 
mediated by LDLR. After HDL particles bind to SR‑BI on the 
cell surface, CEs, FC and triglycerides are selectively delivered 
to the inside of the cell through hydrophobic channels formed 
by the extracellular domain of the SR‑BI molecule, while the 
whole lipoprotein particle remains outside the cell (2,6). This 
process results in the selective uptake of cholesterol. In steroido-
genic cells, CEs that enter the cell in this way are hydrolysed by 
hormone‑sensitive lipases before being used (7).

HDL is an anti‑atherosclerotic lipoprotein, possibly due to its 
role in reverse cholesterol transport (RCT) (6). A meta‑analysis 
indicated that a decrease in plasma HDL was associated with 
increased occurrence of atherosclerosis and cardiovascular 
diseases (8). Excess cholesterol in macrophages or foam cells 
in atherosclerotic lesions can be transferred to HDL particles 
through unidirectional outflow mediated by ATP‑binding 
cassette A1 and ATP‑binding cassette G1 (9), or flow to mature 
HDL particles via passive diffusion through hydrophobic chan-
nels formed by the extracellular domain of SR‑B1 molecules (9). 
Both mechanisms decrease the storage of CEs in cells and reduce 
the incidence of atherosclerosis and the risk of cardiovascular 
diseases (9). Mature HDL particles circulate through the blood 
to the liver, where they interact with SR‑BI on the hepatocyte's 
membrane (10). This reverse transport of cholesterol to the liver 
results in the synthesis of bile acids for secretion into the lumen of 
the intestine and the ensuing excretion of excess cholesterol from 
the body (10). Interactions between HDL and SR‑BI on the hepa-
tocyte membrane and the selective uptake of CEs are crucial RCT 
steps, which serve a critical role in cardiovascular protection (11).

2. Structure of SR‑BI

The human SCARB1 gene encoding the SR‑BI protein is 
located at 12q24 on chromosome 12, is ~87 kb in length and 
comprises 13 exons and 12 introns (3). SR‑B1 has a predicted 
molecular weight of 57 kDa and contains multiple glycosyl-
ation sites (3). However, due to post‑translational modification, 
it migrates at ~82 kDa when assessed using SDS‑PAGE (12).

The human SCARB1 mRNA yields five protein variants 
through alternative splicing (3). Isoform 1 is the main gene 
product, consisting of 509 amino acid (aa) residues from 
exons 1‑12. This was the first isoform identified and named 
SR‑BI (3). Isoform 2 comprises 409 aa residues and has the 
same C‑terminus as isoform 1 but lacks aa residues 43‑142. 
Isoform 3 is the longest variant with 552 aa residues. Isoform 4 
(also called SR‑BIII) is a polypeptide comprised of 474 aa, with 
the same C‑terminus as isoform 1, but a different N‑terminus 
(aa 1‑42). Isoform 5 (also called SR‑BII) comprises 506 aa 
residues and has a unique C‑terminus (aa 468‑552).

SR‑B1 has two short intracellular domains at the N‑terminus 
(aa 1‑11) and C‑terminus (aa 462‑509), two transmembrane 
domains (aa 12‑32 and 441‑461) and a large extracellular 
domain containing multiple N‑linked glycosylation sites (3). 
The C‑terminal cytoplasmic domain is essential for SR‑BI 
signal transduction and contains kinase phosphorylation sites 
and protein binding sites, as well as a serine that can be phos-
phorylated by the kinase SIK‑1, which increases the efficiency 
of CEs uptake mediated by SR‑BI (3).

A common C‑terminal sequence (aa 468‑552) in isomers 
1, 2 and 4 includes the VLQEAKL motif that is required 
for binding to the PDZ domain‑containing protein PDZK1, 
which is essential for maintaining the stability and function 
of SR‑BI (13). The other C‑terminal sequence (aa 487‑494), 
IQAYSESL, is a motif required to bind the guanine nucleotide 
exchange factor dedicator of cytokinesis 4 (DOCK4), which 
is essential for the uptake and transendocytosis of LDL in 
ECs (14). Determination of the crystal structure of LIMP‑2, 
a homologue of SR‑B1, provided a basic framework for the 
structure of this protein family (15), which revealed that the 
main extracellular domain of SR‑BI contained an antiparallel 
β‑barrel core and multiple short α‑helical structures that facili-
tated the formation of a hydrophobic channel and promoted 
cholesterol transport.

3. SR‑BI in hepatocytes

SR‑BI on the hepatocyte membrane mediates the selective 
uptake of CEs in plasma HDL particles and the RCT process. 
SR‑B1 is also known to regulate lipoprotein homeostasis, 
inhibit the development of atherosclerosis and reduce the 
incidence of cardiovascular diseases (16,17).

Van Eck et al (18) established SR‑BI knockout (SR‑BI‑/‑) mice 
and fed them a western‑type diet for 20 weeks. Compared with 
wild‑type mice, cholesterol levels in the liver and the expres-
sion of key regulatory factors related to cholesterol homeostasis 
[3‑hydroxy‑3‑methyl‑glutaryl‑coenzyme A (HMG‑CoA) reduc-
tase, LDLR and cholesterol 7α‑hydroxylase] were not affected, 
but a large amount of cholesterol‑rich HDL accumulated in the 
circulatory system along with abnormally large HDL particles, 
which indicated impaired cholesterol delivery to the liver. 
SR‑BI‑deficient mice displayed an ~40% reduction in biliary 
cholesterol content, lipid deposition in the aortic wall and the 
increased occurrence of atherosclerosis, which indicated that the 
RCT process was damaged and the cholesterol clearance capacity 
was impaired (18). Apolipoprotein E (ApoE) single‑knockout 
mice did not usually suffer early atherosclerosis, severe cardiac 
dysfunction, cardiac infarction or premature death when fed a 
standard diet. However, SR‑BI and ApoE double gene knockout 
mice experienced severe hypercholesterolemia after ingesting 
a standard diet, and atherosclerotic lesions appeared in the 
early stages (4‑5 weeks), resulting in coronary artery occlusion, 
myocardial infarction and cardiac dysfunction, with most mice 
dying at 5‑8 weeks of age (19,20). Moreover, after a period of 
high‑fat and high‑cholesterol consumption, SR‑BI and LDLR 
double gene knockout mice exhibited higher cholesterol expres-
sion levels, more severe atherosclerotic lesions and a higher 
incidence of myocardial infarction and mortality, compared 
with LDLR knockout (LDLR‑/‑) mice in the control group (21). 
These studies indicated that SR‑BI serves an important role in 
the prevention of atherosclerosis and the reduction of cardio-
vascular diseases, partly due to selective cholesterol uptake and 
RCT mediated by SR‑BI on the hepatocyte membrane.

SR‑BI on hepatocytes is beneficial to cardiovascular fitness 
through the regulation of HDL cholesterol metabolism (22). 
Liver‑specific SR‑BI deficiency induced atherosclerotic lesions, 
while overexpression of SR‑BI in hepatocytes decreased 
atherosclerosis (22). After transient overexpression of SR‑BI in 
hepatocytes, LDLR‑/‑ mice fed with a high‑fat and high‑cholesterol 
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diet displayed a marked reduction in early and advanced athero-
sclerotic lesions, and also experienced significantly decreased 
HDL cholesterol but unchanged or only modestly reduced 
non‑HDL cholesterol levels (23). Huby et al  (24), produced 
a hypomorphic allele (hypomSR‑BI), an SR‑BI conditional 
knockout mouse model, by targeting the SR‑BI gene through 
loxP site insertion, resulting in a decrease in SR‑BI expression. 
After consuming an atherogenic diet for 11 weeks, plasma total 
cholesterol (TC) levels were increased 2‑fold compared with the 
control group, and hypomSR‑BI‑KO (liver) and SR‑BI‑/‑ mice 
developed severe hypercholesterolemia due to the accumulation 
of VLDL‑sized particles in the circulation (24). The degree 
of atherosclerosis was more severe in hypomSR‑BI mice, 
hypomSR‑BI‑KO (liver) mice and SR‑BI‑/‑ mice compared with 
the control mice, by 2.5‑fold, 32‑fold and 48‑fold, respectively. 
There was no difference in plasma lipid expression levels 
between hypomSR‑BI‑KO (liver) mice and SR‑BI‑/‑ mice. 
However, compared with SR‑BI‑/‑ mice, hypomSR‑BI‑KO (liver) 
mice had fewer atherosclerotic lesions (24). The aforementioned 
studies indicated that SR‑BI expressed in hepatocytes serves a 
critical role in anti‑atherosclerosis, and SR‑BI expressed in other 
tissues or cells also perform anti‑atherosclerotic functions to a 
limited extent.

In addition to the selective uptake of CEs from HDL, 
SR‑BI expressed in the liver can also clear VLDL and Lpa. 
Van Eck et al  (25) demonstrated that at 20 mins after the 
intravenous injection of (125)I‑β‑VLDL, the liver uptake 
ability of SR‑BI‑/‑ mice was decreased by 44% compared with 
that of wild‑type mice, while VLDL in plasma was signifi-
cantly increased (45.9±8.8 vs. 6.1±2.3 µg/ml). A study by 
Yang et al (26) demonstrated that SR‑BI acted as a receptor 
for atherosclerotic particles containing Lpa and mediated the 
selective uptake of lipids in Lpa. SR‑BI‑/‑ mice presented with 
the significantly reduced clearance rate of Lpa in the plasma, 
while SR‑BI overexpression in the liver could significantly 
increase the clearance rate. Humans carry a number of 
different SCARB1 gene mutations that reduce the ability of 
the liver to uptake CEs in HDL and Lpa, resulting in signifi-
cantly elevated plasma HDL and Lpa expression levels (27), 
although this is accompanied by higher HDL levels and the 
risk of cardiovascular disease is significantly increased. The 
aforementioned studies in mice and humans indicated that in 
addition to mediating the reverse transport of cholesterol in 
surrounding tissues to liver cells via HDL particles, generating 
and excreting bile, liver SR‑BI also had an anti‑atherogenic 
role via regulating the homeostasis of lipoproteins in the blood.

4. SR‑BI in endothelial cells

SR‑BI in ECs not only binds with HDL to activate downstream 
signalling pathways (28) or transport HDL to the subintimal 
region via transcytosis (29) to exert an anti‑atherosclerotic effect, 
but also mediates the delivery of LDL into the artery wall via 
transcytosis (14,30), thereby promoting atherosclerosis (Fig. 1).

SR‑BI regulates the function of ECs under the stimulation of 
HDL via activating Src kinases, phosphatidylinositol 3‑kinase 
(PI3K), protein kinase B/mitogen‑activated protein kinases 
and the Rac GTP enzyme, resulting in changes in the actin 
cytoskeleton, promotion of EC migration (Fig. 1), enhancement 
of EC repair and regeneration and improvement of endothelial 

monolayer integrity in vivo (31,32). The HDL/SR‑BI interaction 
induced the phosphorylation of endothelial nitric oxide synthase 
and the synthesis of nitric oxide via phosphorylation of Src kinases, 
protected ECs from apoptosis and promoted the growth and 
migration of ECs (32). Moreover, phosphorylation of Src kinases 
induced by HDL/SR‑BI required the assistance of the adaptor 
protein PDZK1 (3,33). In the aforementioned study, compared 
with the control group, EC‑specific SR‑BI‑overexpressing 
C57BL/6N mice and ApoE‑/‑ mice fed a high‑fat and high‑choles-
terol diet displayed significantly decreased plasma levels of TC 
and FC, while HDL was remarkably increased, and the severity 
of atherosclerosis was decreased. However, for C57BL/6N mice 
and ApoE‑/‑ mice fed a normal chow diet, EC‑specific SR‑BI 
overexpression had no significant effect on plasma lipids and 
lipoproteins (34), suggesting that SR‑BI expressed on ECs may 
serve an important role in the regulation of lipid and lipoprotein 
homeostasis and preventing atherosclerosis.

SR‑BI on ECs also serve a role in transcytosis, trans-
porting plasma lipoproteins to the endometrium  (29,30). 
Rohrer et al (29) indicated that SR‑BI could mediate the trans-
port of HDL in the circulation to the intima of vessels, receive 
cholesterol in foam cells or macrophages and reduce cholesterol 
deposition beneath the arterial endothelium, thereby exerting 
an anti‑atherosclerotic effect. The diameter of translocated 
HDL particles was decreased, but protein moieties remained 
intact (29). A study by Fung et al (35) demonstrated that SR‑BI 
on the brain microvascular endothelium could mediate HDL 
transcytosis, and this process did not depend on the adaptor 
protein PDZK1. Armstrong et al (30) revealed that SR‑BI medi-
ated the transcytosis of LDL in ECs. Overexpression of SR‑BI 
enhanced the endocytosis of LDL in ECs, but the effect was 
significantly reduced when an excess of HDL (a high‑affinity 
ligand for SR‑BI) was administered or the expression of SR‑BI 
was depleted by small interfering RNA‑mediated silencing (30).

A recent study by Huang et al (14) demonstrated that SR‑BI 
mediated LDL transcytosis associated with ECs via DOCK4 
to promote the development of atherosclerosis (Fig.  1). 
Transcytosis of LDL particles through ECs required direct 
binding to SR‑BI expressed on the apical membranes of ECs, 
and an 8 aa (IQAYSESL) cytoplasmic motif in C‑terminus 
of SR‑BI that recruited DOCK4 (36), which promoted the 
internalisation of SR‑BI and transcytosis of LDL across EC 
monolayers by coupling LDL and SR‑BI via Rho GTPases 
Ras‑associated C3 botulinum toxin substrate 1 (Rac1) activa-
tion (14). Selective deletion of SR‑BI in ECs in male and female 
wild‑type, ApoE‑/‑ and LDLR‑/‑ mice had the protective effect 
against atherosclerosis but it did not alter circulating levels of 
TC, HDL or the lipoprotein profile (14). The aforementioned 
results indicated that the role of SR‑BI expressed on ECs in 
atherosclerosis is complex, and diverse results from different 
studies might be related to the metabolic state of the body and 
the cholesterol load, which suggested that accurate individual-
ised treatment in different populations could be achieved when 
formulating anti‑atherosclerosis strategies targeting SR‑BI.

5. SR‑BI in macrophages

The SR‑BI protein was also expressed on macrophages, such as 
Kupffer cells in the liver (37) and foam cells in atherosclerotic 
plaques (38). SR‑BI expressed on macrophages has an important 
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role in selective cholesterol uptake (39), cholesterol efflux (40,41), 
HDL‑induced anti‑inflammatory responses (41,42) and the inhi-
bition of atherosclerotic progression (43).

Tao et al (43) demonstrated that macrophage SR‑BI bound 
to PS and induced Src phosphorylation, which led to the activa-
tion of the downstream molecules PI3K and Rac1, phagocytosis 
and elimination of apoptotic cells in atherosclerotic lesions, 
thereby reducing necrosis, inhibiting inflammatory responses 
and exerting an anti‑atherosclerotic effect. Moreover, SR‑BI 
also mediated HDL‑induced anti‑inflammatory effects by 
inhibiting the activation of NF‑κB and the production of tumor 
necrosis factor α (42).

Although SR‑BI was expressed in many bone marrow‑derived 
cells (BMDCs), including B and T lymphocytes, lymphocyte 
SR‑BI did not affect the development of atherosclerosis (44). 
In order to investigate the role of macrophage SR‑BI in athero-
sclerosis, Van Eck et al (45) used bone marrow transplantation 
technology to specifically regulate the expression of SR‑BI in 
leukocytes of LDLR‑/‑ mice, and indicated that macrophage 
SR‑BI had a unique dual role in the process of atherosclerosis. 
After feeding LDLR‑/‑ mice with a western‑type diet for 9 or 
12  weeks, the presence of SR‑BI in BMDCs reduced the 
development of atherosclerosis. However, after only 4 weeks 
in LDLR‑/‑ mice fed a western diet and wild‑type mice fed a 
high‑cholesterol and high‑cholate diet, expression of SR‑BI 
in BMDCs promoted the development of small fat streak 
lesions (45). In addition, SR‑BI‑null and apoE‑hypomorphic 
(SR‑BI‑/‑/ApoE+/‑) mice transplanted with bone marrow derived 
from SR‑BI+/+/ApoE+/‑ mice and fed a high‑fat high‑cholesterol 
and cholate‑containing diet for 4 weeks revealed a significant 
reduction in the degree of coronary atherosclerosis and the 
incidence of myocardial infarction compared with mice trans-
planted with bone marrow derived from SR‑BI‑/‑ mice (46).

SR‑BI expressed by macrophages has also been revealed 
to mediate cholesterol efflux from macrophages into mature 
HDL particles (40), which is an important stage in the process 
of anti‑atherosclerosis. Compared with the wild‑type group, 
the rate of cholesterol efflux from macrophages isolated 
from SR‑BI‑/‑ mice to mature HDL particles was reduced 
by 20%. In addition, Badeau et al (47) indicated that SR‑BI 
inhibitors significantly reduced cholesterol efflux from THP‑1 
macrophages. A previous clinical study has demonstrated 
that cholesterol outflow to HDL in macrophages from human 
carriers of the SCARB1 gene P297S mutation was significantly 
reduced compared with control subjects (48). In conclusion, 
macrophage SR‑BI exerted an anti‑atherosclerotic effect 
by eliminating apoptotic cells, inducing anti‑inflammatory 
responses and promoting cholesterol efflux.

6. SR‑BI in platelets

Platelets are closely associated with the development of 
atherosclerosis  (49), and their activation and aggregation 
can generate thrombus, accelerate the progression of athero-
sclerotic lesions and subsequently occlude arteries, which 
results in reduced blood/oxygen supply to organs or tissues, 
ultimately leading to the occurrence of cardiovascular events, 
such as myocardial infarction and stroke (49,50). Therefore, 
inhibiting the abnormal aggregation and activation of platelets 
could reduce the occurrence of cardiovascular events (50). 
Valiyaveettil et al (51) found that the SR‑BI protein was present 
in both resting and activated platelets, and that oxidised HDL 
particles could bind to and interact with SR‑BI to inhibit 
platelet activation and aggregation, thereby reducing the risk 
of thrombosis. In addition, Brodde et al (52) demonstrated 
that natural HDL3 (the main component of HDL) bound to 

Figure 1. Schematic. SR‑BI promotes transcytosis of LDL and migration of ECs. SR‑BI, scavenger receptor class B type I; HDL, high‑density lipoprotein; 
LDL, low‑density lipoprotein; EC, endothelial cell; DOCK4, dedicator of cytokinesis 4; PDZK1, PDZ domain‑containing 1.



Molecular Medicine REPORTS  22:  2599-2604,  2020 2603

SR‑BI on platelets and activated the signal pathways, which 
inhibited platelet activation. Furthermore, SR‑BI‑/‑ mice were 
more likely to suffer deep vein thrombosis  (53), and the 
time required for arterial occlusion was shorter in a model 
of FeCl3‑induced arterial thrombosis (54). The increase of 
circulating platelet and bone marrow megakaryocyte numbers 
was impaired in SR‑BI‑/‑ mice when challenged with throm-
bopoietin. However, proplatelets were normally produced by 
megakaryocytes from normolipidemic bone marrow‑specific 
SR‑BI‑/‑ mice (55). Furthermore, studies in humans indicated 
that carriers of the P297S mutation of the SCARB1 gene had 
significantly increased FC levels in platelets and impaired 
platelet function (48).

7. Conclusion

In conclusion, SR‑BI is a multi‑ligand membrane receptor that 
has a high affinity for HDL and is believed to be the physi-
ological receptor for HDL. Expression of SR‑BI in different 
tissues and cell types exhibit different roles in the process of 
atherosclerosis. SR‑BI in hepatocytes and platelets have been 
demonstrated to inhibit the development of atherosclerotic 
lesions and thrombosis, and act as a protective factor for 
cardiovascular diseases (16,17). However, SR‑BI expressed in 
vascular ECs has been indicated to promote the deposition of 
LDL under the endothelium, aggravating atherosclerosis and 
representing a risk factor for cardiovascular diseases. The 
effects of macrophage SR‑BI on the pathogenesis of athero-
sclerosis and cardiovascular diseases are complex and depend 
on the metabolic and inflammatory status at different stages 
of atherosclerosis. Therefore, the role of SR‑BI in the cardio-
vascular system remains ambiguous, and all the previously 
reported cardioprotective and atherosclerotic effects of SR‑BI 
must be considered when designing therapeutic agents to treat 
atherosclerosis and cardiovascular diseases.
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