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Bacterial variability in the mammalian gut captured
by a single-cell synthetic oscillator
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Synthetic gene oscillators have the potential to control timed functions and periodic gene

expression in engineered cells. Such oscillators have been refined in bacteria in vitro, how-

ever, these systems have lacked the robustness and precision necessary for applications in

complex in vivo environments, such as the mammalian gut. Here, we demonstrate the

implementation of a synthetic oscillator capable of keeping robust time in the mouse gut over

periods of days. The oscillations provide a marker of bacterial growth at a single-cell level

enabling quantification of bacterial dynamics in response to inflammation and underlying

variations in the gut microbiota. Our work directly detects increased bacterial growth het-

erogeneity during disease and differences between spatial niches in the gut, demonstrating

the deployment of a precise engineered genetic oscillator in real-life settings.
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Oscillators are extensively utilized as clocks and timers in
computation and biology1, 2. Synthetic gene oscillators in
bacterial cells have been developed and refined over past

decades3–12, led by the development of the repressilator circuit—a
simple negative feedback loop constructed from three transcrip-
tional repressor proteins, which inhibit each other’s expression in
turn (Tn10 TetR, bacteriophage λ CI and Escherichia coli LacI)3.
Engineered bacteria hold great promise for deployment as diag-
nostics and therapeutics in the clinic13. Oscillatory gene control
could enable increasingly complex applications for engineered
bacteria, for example controlling time-linked functionality or
sophisticated recorders and counters.

Differential bacterial growth underlies colonization of the gut
by commensal species during childhood, pathogenic infection,
and the establishment of dysbiosis in the microbiota that has been
linked to an increasing array of diseases14. Recently, several
methods have been developed to estimate instantaneous, average
bacterial growth rates using metagenomic sequencing data15–18.
These methods have provided insights into spatial and temporal
changes in comparative growth rate19, 20. However, single-cell
methods offer different advantages, in particular providing
valuable information about growth variability across a popula-
tion21–29. Such information is crucial to our understanding of
bacterial growth in the gut, which includes a broad range of
niches with different growth favorability for any given bacterial
species, potentially limiting the interpretation of average growth
measures. Similarly, methods that can quantify absolute, rather
than relative, growth and that assess growth in aggregate21, 30,
rather than as instantaneous rates, are particularly important for
developing a comprehensive understanding of growth in a non-
invasive manner.

The original repressilator was recently redesigned to afford a
highly regular and robust oscillator with reduced error propaga-
tion and information losses, referred to herein as the repressilator
2.0 (Fig. 1a; Supplementary Fig. 1)5. During in vitro growth the
circuit keeps phase in single cells for hundreds of bacterial gen-
erations, with an oscillation period that is growth-rate indepen-
dent and linked to bacterial divisions5. The circuit’s low variance
between cells, and independence from external feedback and
entrainment cues make it an attractive timer for use in complex
environments.

Here, we use the repressilator 2.0 to infer bacterial growth
dynamics at a single-cell level. We develop and validate an ima-
ging analysis pipeline to determine repressilator phase. In this
way, we investigate bacterial population dynamics during colo-
nization of, and growth within, the mammalian gut. Our results
show increased growth variability under inflamed conditions,
demonstrating the importance of single-cell methods for reliable
bacterial growth analysis. We also reveal robust functionality and
controllability of the repressilator 2.0 across diverse host and
environmental contexts.

Results
RINGS method development and testing. Because bacterial
colonies expand radially in a uniform manner, with division only
occurring at the periphery31, synchronous repressilator 2.0
oscillations create stable macroscopic rings when fluorescent
reporters are driven under repressilator 2.0 control (Fig. 1b)5. The
phase of a bacterium that seeds a colony determines the phase,
and thus fluorescent reporter expression, of each subsequent
generation throughout the colony. As such, the positions (i.e.,
radii) of the fluorescent rings in a colony are indicative of the
phase of the bacterium that seeded the colony (Fig. 1c).

To utilize this behavior, we developed a workflow for bacterial
colony image capture and processing, which we call Repressilator-

based INference of Growth at Single-cell level (RINGS) (Fig. 1d).
The process begins with fluorescent macroscope imaging of
repressilator 2.0-expressing bacterial colonies. Image analysis
then identifies colonies and fits a generative model to the
fluorescent rings within each colony. The ring positions are used
to estimate the relative phase of the single bacterium that seeded
the colony at the time of plating (θ0). Because repressilator 2.0
progression is linked to bacterial growth5, the elapsed phase
between two timepoints can be used to infer bacterial growth.
Given the periodic nature of the oscillator, meaning that the
circuit’s output is the same in any given period (i.e., values are
modulo 2π), adjusting the sampling frequency to ensure that less
than a period elapses between timepoints allows unambiguous
determination of growth.

E.coli LPT239 bacteria expressing the repressilator 2.0
(Supplementary Table 1) were phase-synchronized by growth
in the presence of Isopropyl β-D-1-thiogalactopyranoside
(IPTG) or anhydrotetracycline (aTc), which interrupt repres-
sion by LacI and TetR, respectively (Fig. 1a). Analysis of YFP
fluorescence by colony imaging (Fig. 1e) and RINGS analysis
(Fig. 1f) demonstrated the ability for RINGS to distinguish
between these two distinct oscillator phases. Further optimiza-
tion through variation of the ‘sponge plasmid’ (Supplementary
Fig. 1), a key element in previous efforts to reduce oscillation
variability in the repressilator 2.0 circuit5, yielded more
consistent fluorescent rings within colonies and allowed
subsequent RINGS analyses using combined CFP and YFP
fluorescence data (Supplementary Fig. 2).

To further test the ability of RINGS to track bacterial growth
over time, we sampled aTc-synchronized E. coli LPT320 bacteria
(Supplementary Table 1), kept in constant log-phase culture by
back-dilution and plated at ~2-h intervals. Plates were imaged
and analyzed using RINGS to measure repressilator phase, and
for colony forming unit (CFU) counts to measure average
bacterial growth (Fig. 1g). Repressilator 2.0 phase progressed
coherently according to bacterial growth of the population
(Fig. 1h, i, Supplementary Fig. 3a, b), with regression of the
elapsed phase (RINGS) vs growth (CFU) data quantifying the
LPT320 repressilator 2.0 period length as 15.4 ± 0.2 SEM gen/
period (Fig. 1i). This is consistent with previous period measures
of similar circuits5. The period length allows assignment of a
distribution of probable growth on a single-cell level, forming a
cumulative probability distribution for the population (Fig. 1j).

RINGS is robust to strain and environmental variations. The
repressilator was transferred to E. coli (MG1655 - PAS715; and
the human probiotic strain, Nissle 1917 – PAS717) and Salmo-
nella enterica serovar Typhimurium (hereafter referred to as S.
Typhimurium) (LT2-PAS716) strains (Fig. 2a–c; Supplementary
Table 1), where RINGS again faithfully tracked cell divisions
(Fig. 2d–f). The period of the repressilator was determined in
each case either using the regression of RINGS vs growth curves
(Fig. 2d–f) or during growth in a microfluidic device capable of
trapping cells for fluorescent microscopic analysis over multiple
repressilator cycles (Supplementary Fig. 4a, b; Table 1)32. Both
methods quantified the same period for E. coli PAS715 bacteria
grown in rich medium (RINGS: 15.3 ± 0.8 SEM gen/period;
mother machine: 15.3 ± 0.2 SEM gen/period) (Fig. 2d; Table 1),
with a similar period also calculated for S. Typhimurium PAS716
and E. coli Nissle 1917 PAS717 bacteria using RINGS (PAS716:
16.4 ± 1.5 SEM gen/period; PAS717: 15.3 ± 1.5 SEM gen/period)
(Fig. 2e, f).

PAS715 period length remained unperturbed during growth on
extracted mouse cecum contents, used to simulate aspects of the
gut environment (Supplementary Fig. 4a; Table 1). Similarly,
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expected growth variations caused by alternating the presence or
absence of the bacteriostatic antibiotic novobiocin were accurately
tracked using RINGS analysis (Fig. 3). Together, these results
indicate that the mechanisms for repressilator 2.0 oscillation are
insensitive to the gene regulation, cell-size, and stress variations
under changing species backgrounds and environmental condi-
tions. This provides confidence both for the robustness of the
RINGS method, and the possibility of extending its use to other
applications and engineerable gut bacterial strains.

RINGS quantifies growth changes within the mouse gut. IPTG-
synchronized E. coli PAS715 bacteria were delivered by oral
gavage to mice that had been treated with a single dose of
streptomycin 24-h prior (Fig. 4a; replicate: Supplementary
Fig. 5a). Streptomycin-treated mice have been extensively utilized
as a model for E. coli and S. Typhimurium growth in the mouse
gut, which is not a native or permissive host for human-derived E.
coli strains33, 34. We have previously shown that delivery of E. coli
to mice that were treated with single doses of streptomycin
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affords colonization levels that are initially high but decrease
consistently over the days following35, 36. This likely reflects rapid
initial replication in the niche made available by streptomycin
treatment, followed by progressive recovery of colonization
resistance by the native gut and microbiota37. Thus, this model
allows us to investigate the ability for RINGS to detect a range of
growth rates within the gut. RINGS analysis was performed on E.
coli PAS715 bacteria isolated from fecal samples (Fig. 4a–d;

replicate: Supplementary Fig. 5a–e). Repressilator phase remained
remarkably coherent in populations for >20 h after gavage
(Fig. 4b; replicate: Supplementary Fig. 5b, c). Similar results were
found for S. Typhimurium LT2 (PAS716) (Supplementary
Fig. 5g–j).

The growth of each species was quantified using the previously
calculated repressilator 2.0 periods (Fig. 2d–f; Table 1), with
physiological constraints for bacterial growth used to assist in the

Fig. 1 RINGS analysis measures single-cell repressilator 2.0 phase. a The repressilator is a ring-oscillator comprising three repressors. b Colonies
expressing the repressilator 2.0 display fluorescent rings controlled by the circuit’s oscillations. c Repressilator phase progresses based on bacterial
divisions, with an ~15 generation period. The phase of the colony-initiating bacterium at the time of plating (θ0) controls the position of the fluorescent rings
forming within that colony. d The RINGS pipeline consists of plating of a bacterial population on agar plates, followed by imaging, computational
identification and export of individual, centered colonies and fitting of a generative model. The fit of ring position is then used to estimate θ0 at the time of
plating. e LPT239 bacteria, carrying the repressilator, are synchronized by exposure to aTc or IPTG as demonstrated by average projections of aligned
colony images compared to unsynchronized controls. Scale= 0.1 cm. e RINGS analysis demonstrates the ability of the repressilator to report on bacterial
phase. Graph shows polar histogram representing normalized counts of colonies (radius) within a given θ0 range (angle). For e, f IPTG n= 93; aTc n= 62;
unsync n= 49. g LPT320 bacteria were synchronized with aTc and grown in log-phase growth at 37 °C, plating samples for colony counts and RINGS
analysis every 2 h ± 15 min. h RINGS analysis measured phase (θ0) across the population. Graphs show histograms of normalized θ0 count for two
biological replicates. Arrows indicate shift in population since last timepoint i. Repressilator phase correlates with the estimated generations as determined
by CFU counts from agar plating. Graph shows mean with 95% CI (error bars smaller than datapoints) of elapsed phase after removal of aTc. j Cumulative
distribution functions of predicted generations elapsed across the population. Labels list average generations for each timepoint as calculated by CFU
counts in panel i. For h–j, the number of colonies analyzed are listed in j. Source data are provided as a Source Data file
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Fig. 2 RINGS can assess growth in different bacterial strains and species. a–c Fluorescence and white light images of two representative colonies of PAS715
(E. coli MG1655), PAS716 (S. Typhimurium LT2), and PAS717 (E. coli Nissle 1917). Scale bars= 0.1 cm. d–f When grown in log-phase liquid culture,
repressilator phase progression correlated with the estimated generations elapsed as determined by CFU counts for PAS715 (four biological replicates),
PAS716 (three biological replicates), and PAS717 (three biological replicates). Graphs also show linear regression from combined means of elapsed phase
after IPTG removal. Error bars= 95% CI. Numbers are as follows: PAS715: replicate #1/2/3/4: 0 h:16/76/23/89 2 h:8/14/42/40 4 h:25/15/10/12 6 h:9/
11/40/46. PAS716: replicate #1/2/3 – 0 h:145/33/22 2 h:76/43/19 4 h:94/106/18 6 h:32/19/18. PAS717: replicate #1/2/3. 0 h: 116/37/69 3 h: 48/60/
96 6 h: 78/41/76 9 h: 48/42 /67. #1–9 h and #2–6 h data had angular deviation >1.2 and were removed from downstream analysis. Source data are
provided as a Source Data file

Table 1 Repressilator period lengths calculated by growth in the mother machine

Strain Conditions Calculated period (gen/period ± SEM) n

PAS715 Rich medium 15.3 ± 0.2 202
PAS715 Cecum contents medium 15.6 ± 0.4 123
PAS718a Cecum contents medium (fresh) 15.5 ± 0.1 552
PAS718a Cecum contents medium, untreated mice (frozen) 15.6 ± 0.1 353
PAS718a Cecum contents medium, DSS-treated mice (frozen) 15.6 ± 0.2 186

aPAS718= PAS715 expressing a constitutive fluorescent marker for accurate cell segmentation
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confident assignment of elapsed growth from RINGS phase data
(Supplementary Fig. 6). As expected, RINGS analysis estimated
that growth was most rapid immediately following gavage and
slowed considerably in later timepoints (Fig. 4c, Supplementary
Fig. 5d, i), with similar average growth predicted for both species
(PAS715: 12.2–15.1 gen and PAS716: 13.0–15.1 gen at 20.5 h post
gavage). These dynamics were further confirmed by Peak-to-
Trough Ratio (PTR) analysis, which estimates the average
instantaneous growth rate of a population from metagenomic
sequencing data (6 h: 1.72 ± 0.08, n= 4; >16 h: 1.44 ± 0.08, n= 9;
Supplementary Table 2)15. Together these data demonstrate the
ability for RINGS to detect changing growth within the
mouse gut.

In vivo repressilator 2.0 control and stability. To allow in vivo
control of the repressilator 2.0 circuit and re-gain synchronicity of
the bacterial populations growing within the mouse gut, mice car-
rying asynchronous PAS715 bacteria were provided IPTG or aTc in
their drinking water (Fig. 5a). RINGS analysis on fecal samples in
pre- and post-synchronized mice clearly demonstrated the ability to
synchronize the repressilator within the mouse gut (Fig. 5b).

The repressilator circuit was stable over extended periods of
growth in the gut. To test plasmid retention, E. coli PAS715 bacteria
were provided to mice previously treated with a single dose of
streptomycin. Plating of fecal samples was then used to identify
plasmid loss events within the bacteria (Fig. 5c). Retention of both
the repressilator 2.0 plasmids remained high for >100 h in the
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mouse gut (80–88% retention at 102 h post gavage), indicating that
the repressilator circuit can remain active over these time frames
(Fig. 5d). Furthermore, functional PAS715 colonies could still be
isolated 16 days after first entering the gut (Fig. 5e), demonstrating
the potential for this synthetic circuit to maintain longer-term
oscillatory gene expression in a competitive environment.

Long-term in vivo growth determination using RINGS.
Repressilator 2.0 circuit stability and in situ synchronization
capacity allows for long-term growth determination. To measure
growth after initial establishment in the gut, during plasmid
retention testing PAS715 bacteria were synchronized in situ with
IPTG (Fig. 5c). Based on our findings that bacterial growth
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slowed over the initial 24-h period (Fig. 4a–d, Supplementary
Fig. 5a–e) RINGS analysis was performed beginning the day after
IPTG removal on fecal samples taken ~daily, with well under a
single period of growth expected between each timepoint (Fig. 5f).
Repressilator phase remained coherent (Fig. 5f) predicting 6–12
generations (IPTG 3, 90% CI) and 5–9 generations (IPTG 4, 90%
CI) of growth over the 60-h period beginning ~2 days after
gavage (Fig. 5g).

RINGS detects disease and niche-specific growth variations.
Different growth behavior was determined in the inflamed gut
and between regions of the gut. Repressilator-bearing PAS715
bacteria were introduced into dextran sulfate sodium (DSS)
-treated animals as a model for inflammation, which promotes
increased growth of Enterobacteriaciae38, 39 (Fig. 6a). Bacterial
populations retrieved from the feces of DSS-treated mice 15 h
after delivery showed greater phase heterogeneity than those from
streptomycin-treated control mice (Fig. 6b), as demonstrated by
comparison of the angular deviation, the circular statistical ana-
logue to standard deviation, of each population (strep control:
0.9 ± 0.0 SEM, n= 4; DSS-treated: 1.1 ± 0.1 SEM, n= 4) (Fig. 6c).
These results were consistent with previous experiments that
showed signs of decoherence of PAS715 populations <20 h in the
inflamed gut (Supplementary Fig. 7a, b). DSS (4%) did not affect
the repressilator during in vitro growth (Supplementary Fig. 7c)
and repressilator 2.0 period length was not affected by growth on
cecum contents extracted from either untreated or DSS-fed mice
(Table 1). Together these results suggest that the DSS-inflamed
gut provides a more heterogeneous growth environment than the
streptomycin-treated gut.

Interestingly, despite all DSS-treated mice showing equivalent
severity of inflammation, as measured by lipocalin 2 (LCN-2)
levels (Fig. 6d), PAS715 remained relatively synchronous in one
of the DSS-treated mice, with an angular deviation of the fecal
population similar to that seen in streptomycin-treated mice

(Fig. 4c, arrow). To further analyze bacterial growth within this
mouse, we dissected the lower gastrointestinal tract and
separately plated bacteria extracted from distinct regions of the
gut: ileum, cecum, proximal colon lumen, proximal colon mucus,
distal colon lumen, distal colon mucus, and feces (Fig. 6e).
Dissection analysis of a streptomycin control mouse showed
similar RINGS phase distributions for all regions measured
(Fig. 6e, top). By comparison, populations extracted from the
DSS-treated mouse showed similar RINGS phase distributions in
all regions except the ileum, which was distinctly phase shifted
(Fig. 6e, bottom). Thus, even when not reflected in feces, greater
PAS715 growth heterogeneity was evident in the DSS-treated
compared to streptomycin-treated gut. The difference in growth
elapsed between bacteria in the ileum and the remainder of the
DSS-treated gut is a likely cause for the increased growth
variability we detect in fecal samples from other DSS-
treated mice.

Discussion
Here we describe the activity of a synthetic gene oscillator, the
repressilator 2.0, in the complex environs of the mammalian gut.
We develop an image processing and analysis pipeline, RINGS, to
follow repressilator activity on a single-cell level and thereby also
understand growth dynamics at various stages of the colonization
process. We demonstrate robust repressilator 2.0 functionality,
control and circuit stability within the mouse gut over the course
of several days. Using this method we detect increased growth
variability under inflammatory conditions and between spatial
niches within the gut

The repressilator 2.0 is ideally suited to periodic expression
control within engineered bacteria for use in complex settings.
The circuit’s independence from external signals allows for circuit
function in a variety of environments, which is of particular
utility in the gut where relative abundance of strains can vary
widely on spatial and temporal scales, and between individuals.
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To this end, the ability to re-synchronize the repressilator 2.0
in situ within the gut, and its stability over extended periods of
growth without antibiotic selection are particularly exciting.

The RINGS method informs us of the integrated growth
experience of a bacterium and its forebears. The repressilator 2.0’s
periodicity allows for extend growth measurement in comparison
to other comparable techniques, recent examples of which include
a synthetic particle which allows mark-and-recapture analysis
over ~14 generations30, and fluorescent protein dilution which is
capable of estimating up to ~10 divisions of single-cell growth21.
Our analyses estimated E. coli MG1655 division times progres-
sively increasing from ~35min, when colonizing the recently
streptomycin-treated gut, to ~20 h when more removed from the
perturbation of the single dose of streptomycin and thus
reflecting more physiological growth conditions. By comparison,
a recent study used the accumulation of mutations in the E. coli
genome to estimate a division time in humans of 15 h40.

Together, our results suggest that the aggregate bacterial
experience is relatively consistent under most scenarios tested,
with spatial dissection suggesting that the majority of growth in
these mouse colonization models is occurring ‘upstream’ in the
small intestine and/or cecum. We see that in most cases fecal
sampling accurately reflected the overall growth profile of the
mouse colon, including bacteria in the lumen and mucus layers,
and within the cecum. The absence of colonies in fecal samples
reflecting the differential growth observed in the ileum of the
dissected DSS-treated mouse suggests that, in this case at least,
the bacteria from the ileum either were not represented in feces or
represent a small enough percentage of the population so as to
remain below detection in our final analyses from this mouse.

Overall, we determine that single-cell measurements are par-
ticularly important in disease conditions, such as inflammation,
when variability of growth between niches is accentuated. In these
cases methods that can only measure a population-wide average
would not adequately represent the population’s diversity. The
ability to increase the sampling frequency used would also allow
this method to measure the emergence of subpopulations of
differentially growing bacteria in finer detail.

In sum, analysis of the repressilator at single-cell level can
report on complex bacterial growth behaviors over time, and in
particular, during disease conditions within the mammalian gut.
In doing so, this work demonstrates the potential for one of the
circuits that first stimulated the field of synthetic biology to
revolutionize how we control gene expression within the gut.

Methods
Strains, plasmids, and bacterial culturing. Details of strains (Supplementary
Table 1) and plasmids (Supplementary Table 3) used in this study are provided.

The repressilator 2.0 plasmid variant with three fluorescent reporters
(pLPT234) was constructed by isothermal assembly41 by combining PCR products
from previously published degradation-tag free repressor genes—Tn10 transposon
derived tetR, bacteriophage λ derived cI and E. coli lactose operon derived lacI
(pLPT119)—and triple fluorescent reporters—PR-mKate2 (including the first 11
amino acids of mCherry for improved translation efficiency as previously
published5), PLtetO1–mVenus, PLlacO1–mSCFP3 (pLPT107)5. Previously published
sponge plasmid variants5 were used as available from Addgene plasmid repository
(see Data Availability Statement). Plasmids were isolated by miniprep (Qiagen) and
were routinely transferred to new strains as a mixture by electroporation.

To avoid interruption of the repressilator and ensure clear ring development
within colonies, lacI and motA genes were knocked out of E. coli strains used before
repressilator plasmids were transferred. For both genes, FRT-flanked gene
disruption constructs were transferred by P1vir transduction42 from the relevant
Keio collection strains43. Kanamycin resistance genes were then removed by
electroporation and subsequent curing at 43 °C of pCP2044. Similarly, streptomycin
resistance based on a rpsL lys42arg mutation was transferred by P1vir from a
previously generated E. coli MG1655 strain35. Resistance to streptomycin was
evolved in S. Typhimurium LT2 by serial passage in liquid culture with increasing
concentrations of streptomycin sulfate (Sigma) (50,100, 200, 300 μg/mL). For
PAS718, mKate2 (including the first 11 amino acids of mCherry for improved
translation efficiency as previously published5) driven under the PRNA1 constitutive

promoter was inserted into the genome using a Tn7 transposon45, and acted as a
constitutive fluorescent marker for cell segmentation in mother-machine
experiments.

Bacteria were routinely cultured in Luria broth (LB) supplemented with 300 μg/
mL streptomycin (Sigma), 100μg/mL carbenicillin or ampicillin (Sigma) and 50μg/
mL kanamycin (Sigma). For plating, bacteria were grown on selective LB agar
plates supplemented with 100μg/mL carbenicillin (Sigma) and 50μg/mL kanamycin
(Sigma). The plasmid retention test compared growth on streptomycin (all PAS715
derivatives) to streptomycin+carbenicillin (retention of repressilator plasmid),
streptomycin+kanamycin (retention of sponge plasmid), and streptomycin
+carbenicillin+kanamycin (retention of both plasmids) at drug concentrations
as above.

To synchronize the phase of the repressilator across the population, bacteria
were grown overnight in the presence of 1 mM Isopropyl β-D-1-
thiogalactopyranoside (IPTG) (Sigma) or 100 nm anhydrotetracycline (aTc)
(Sigma). Bacteria were back-diluted in fresh inducer-supplemented media by at
least 1:20 to allow resumption of active growth in the presence of inducer, before
being washed and utilized for downstream experiments.

Colony imaging. Fluorescent and white light images of colonies were imaged using
a custom-software controlled Canon T3i digital single lens reflex (DSLR) camera
with a Canon EF-S 60 mm USM lens, combined with LEDs and filters for exci-
tation and a Starlight express emission filter wheel (CFP: 440–460 nm LED with
436/20 EX and 480/40 EM filters; YFP: 490–515 nm LED with 500/20 EX and 530/
20 EM filter; RFP: 588–592 LED with 572/35 EX and 645/75 EM filter; white:
3500–4500 K LED)46. Images were taken at an aperture of f/2.8 and ISO200.
Exposure times were typically between 0.05 and 2 s as experimentally determined
to maximize dynamic range.

Generative model development for RINGS phase profiling. We extract the
relative phase offset of each colony by fitting a generative model to the pattern of
oscillations. This approach has the benefit of making use of all the information
captured in the multi-channel images. We explored a family of generative models,
based on the simple form:

I ¼ Asin f rð Þð Þ þ B ð1Þ
where A and B are the amplitude and offset of a sinusoidal oscillator, and the
function, f(r), represents the radial phase profile of the colony. The form of f(r) is
derived below using a simple model for the growth of the colonies.

The phase profile, f(r), is related to the profile of generation number, g(r), as
follows:

f rð Þ ¼ 2π
T

g rð Þ þ θ0 ð2Þ

where T is the period of the oscillator in generations (≈ 15.5) and θ0 is the
instantaneous phase of the oscillator at the time of plating. Thus, we derive the
profile of generation number with respect to radius. We assume that growth is
initially exponential, and then becomes restricted to an annulus with thickness D
(≈30 μm at the edge of the colony40).

Assuming uniform packing of bacteria in the colony (for both phases of
growth), the generation number profile during exponential growth can be derived
simply:

g rð Þ ¼
log π

Ab
r2

� �
log 2ð Þ

ð3Þ

where Ab is the area of a single bacterium
Here we model the growth of the colony with each successive generation. With

each generation the radius of the colony increases as follows:

Δr
Δg

¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

D
r
� D

r

� �2

�1

s0
@

1
A ð4Þ

Integrating this over the colony, we obtain the following expression for the
generation number profile:

g rð Þ ¼ 1
4D 2r 1þ a rð Þð Þ þ 2Dlog 2r � Dð Þ þ 3Dlog Dþ r 1þ a rð Þð Þð Þ½

�Dlog �Dþ r 3þ a rð Þð Þð Þ� þ g0
ð5Þ

go is the generation number at the transition between the exponential and annular
growth.

Combining the two growth models yields a continuous growth curve
(Supplementary Fig. 8). We set the transition between the exponential and annular
growth at r=D, with D= 30 μm. Notice that beyond r ≈ 100 μm the phase profile
is approximately linear, and can be described by:

f rð Þ ¼ 2π
DT

� �
r þ θ0 ð6Þ

We checked this result by measuring the slope for the phase profile directly
from images of colonies. The distance between two peaks in any given colony is
~490 μm, yielding a phase profile with slope 0.0128 rad/μm.
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Using an approximate value of 15.5 generations per cycle, Eq. 6 predicts an
annulus size, D ≈ 32 μm, consistent with the ≈30 μm growth annulus reported in
previous studies47.

Thus, we model the phase profile of a bacterial colony using Eq. 1 with a linear
phase profile, described by Eq. 6.

Image preprocessing. Centered colonies were cropped from whole-plate images
using FIJI48. Color images from single fluorescent exposures in CFP and YFP
channels were imported, and the relevant spectral component image utilized for
downstream processing (CFP—blue channel, YFP—Green channel). Colonies were
identified by autothresholding (Yen method) of binarized CFP images. Separate
YFP and CFP images were cropped and exported, centered on the YFP center of
mass of each identified colony. Prior to final analyses, colony images from plates
containing >130 bacterial colonies were excluded based on overcrowding leading to
limited colony growth. Remaining colonies were visually inspected, and any
doublet or severely malformed colonies were removed from the datasets to avoid
spurious fitting. Colony removal was performed blinded to θ0 fit values. Where
presented, average projections were taken through YFP images from all colonies
identified in a given population.

RINGS generative model fitting. Preprocessed colony images were normalized for
global changes in intensity, before fitting the model described above. We observed
that in each colony, the expression of YFP and CFP decayed dramatically with
increasing radius. To compensate for this decay, the images were masked at radius
of rmax= 1.3 mm (rmax= 1.1 mm for S. Typhimurium colonies, which were com-
monly smaller) and the radial intensity profile was fit to a second order polynomial.
This smooth polynomial decay, chosen as an even order with negative coefficient to
ensure this process did not remove the oscillatory pattern, was then used to nor-
malize the raw image in a pixel-wise fashion (Supplementary Fig. 9). We also
explored normalization with a fourth order polynomial, but this was deemed less
appropriate. For multi-channel images, the polynomial functions shared para-
meters for the center of the colony, but each channel was fit to its own decay
profile.

To fit the oscillatory pattern of a single colony, we use Eq. 1 with a linear phase
profile. However, we allow for both the slope and offset of the phase profile to be fit
(Eq. 6), as well as the amplitude and offset of the intensity (Eq. 1). The slope for the
phase profile is initialized to an expected value that varies based on strain, and the
phase offset is initialized to zero. We tested optionally masking the central region of
the colony, to account for the early exponential growth phase, which we do not
attempt to model, however, found no benefit to fit based on this. Fitting is done in
Matlab using the Levenberg-Marquardt (LM) algorithm (Supplementary Fig. 9).

The fitting routine returns the center position of the colony, the amplitude and
offset of the oscillations, as well as the slope and offset of the phase profile. The
phase offset is the property of interest. However, fitting the radial expression profile
is challenging due to numerous local minima in the error surface. Thus, we filter
out colonies for which the slope of the phase profile, or the inferred center position
of the colony is outside of an accepted range. We also explored the use of robust
error functions, to minimize the effect of asymmetric bright patches of expression
in the colony, as well as weighted nonlinear regression to compensate for the
increasing number of pixels at increasing radius. However, neither of these
approaches greatly improved upon the LM algorithm, which we used by default.
We also explored fitting phase profiles with higher order polynomials; however, we
found this to be very unstable.

Fitting was improved by simultaneous regression in multi-channel images.
In this case, the phase offset of the two channels was fixed to a constant value.

We found that YFP oscillations lead CFP by a strain-specific value. Thus, we
regressed the slope and offset of the phase profile using both channels, with a
fixed phase difference between the two channels, as calculated for each strain. See
Eq. 7 and 8.

IYFP ¼ AYFPsin kr þ θ0 þ strain offsetð Þ þ BYFP ð7Þ

ICFP ¼ ACFP sin kr þ θ0ð Þ þ BCFP ð8Þ

RINGS method parameter testing. We tested the performance of this method by
applying it to in vitro timecourse data where colony counts could be used to
provide a known average generation shift between each timepoint. Parameter
sweeps were performed on key parameters expected to vary between strains, par-
ticularly the size of colony mask (‘rMax’), the distance between each ring and
therefore expected slope of the phase profile (‘expectedSlope’), the variation in
slope between colonies (‘slopeTol’), and the offset between CFP and YFP rings
(‘colorPhaseShift’). The method was found to be largely insensitive to specific
parameter values with strain-specific optimal values likely caused by differences in
oscillator and spatial colony growth characteristics. Optimal parameters for each
strain in the study were determined to be as follows: (LPT320: ‘rMax’:1.3,
‘expectedSlope’: 0.39, ‘slopeTol’: 0.3, ‘colorPhaseShift’: 1.5. PAS715: ‘rMax’:1.3,
‘expectedSlope’: 0.34, ‘slopeTol’: 0.4, ‘colorPhaseShift’: 0.9. PAS716: ‘rMax’: 1.1,
‘expectedSlope’: 0.43, ‘slopeTol’: 0.4, ‘colorPhaseShift’: 1.0. PAS717: ‘rMax’:1.3,
‘expectedSlope’: 0.41, ‘slopeTol’: 0.3, ‘colorPhaseShift’: 0.83.).

Statistical analyses. Statistical analyses were performed in MATLAB versions
R2017a-2018a (Mathworks) or Prism v6-7 (Graphpad). Circular statistical tests,
specifically circular mean and angular deviation, were performed using the CircStat
for Matlab toolbox v2012a49.

Briefly, to calculate circular mean, θ0 values are transformed to a resultant mean
vector (Eq. 9).

r ¼ sum exp iθ0ð Þð Þ ð9Þ
The circular mean, α, is then calculated from this vector (Eq. 10).

α ¼ angle rð Þ ð10Þ
Angular deviation, s, is a circular statistical analogue of linear standard

deviation. It is derived from the length of the resultant mean vector (Eqs. 11
and 12). Angular deviation values are bounded, lying between 0 and √2.
Conceptually, this occurs because values equally spread around the unit circle are
maximally spread.

R ¼ rk k ð11Þ

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� Rð Þ

p ð12Þ

Elapsed phase measurements. Downstream processing of phase measurements
was predominantly undertaken using custom scripts in Matlab versions
2016a–2018a. In order to estimate the total phase elapsed during an experiment, we
made the assumption that repressilator phases across the population fell within ±π
of the circular mean (i.e., we assumed that all colonies lie within ~15 generations
elapsed of each other). We deemed this appropriate where the population remained
relatively coherent around the circular mean—which we defined as having an
angular deviation <1.2. Empirically, datasets with angular distribution >1.2 were
routinely decoherent, were not accurately described by the circular mean (e.g., in
cases of a bifurcated population), or contained considerable fractions of the
population in regions neighboring the mean ± π divide, which reduced our con-
fidence of accurately classifying these cells as being slower or faster growing
(Supplementary Fig. 10). While in many cases valuable insight may still be gained
by further analysis on a case-by-case basis, particularly when taken in the context
of other datapoints or experimental replicates, we conservatively elected to restrict
our interpretations of such datasets to the raw θ0 data, which are unaffected by this.

For elapsed phase calculations, individual phase values (θ0) were normalized
to the circular mean of the initial synchronized repressilator 2.0 population for
that experiment, αsync. Elapsed phase was then calculated by addition/
subtraction of multiples of 2π based upon the circular mean of a timepoint.
When αn > αn-1 i.e., when growth had occurred but not, on average, passed the
2π/0 point, the adjustment factor remained unchanged. However, when αn < αn-
1, i.e., growth on average passed the 2π/0 divide within the elapsed timepoint, an
adjustment factor of 2π was made to each subsequent timepoint. When this
method was applied to in vivo datasets, where sampling variability combined
with slow growth rates could lead to spurious negative shifts, we further assumed
that average growth rates would not exceed 2.5 generation per hour when
interpreting if a population had grown through a full period. Individual θ0 values
were then adjusted by addition of the calculated multiples of 2π. For
adjustments, where �α < π, colonies with θ0= α− π to 0 were assumed to be one
phase revolution (i.e., 2π radians) behind of those of 0 to α+ π. Where α > π,
colonies with θ0= 0 to α− π were assumed to be one phase revolution ahead of
values α− π to 0. Subsequent calculations treated the adjusted θ0 values as linear
datasets.

To calculate growth on a single-cell level we treated each colony separately,
determining the distribution of probability for the generations of growth since the
reference timepoint (tsync) on a single-cell basis. Because adjusted θ0 values had
already been normalized to αsync= 0 and adjusted for multiple periods of growth
where necessary, the mean estimated growth, μ, for each individual colony in the
population, i, is described by:

μi ¼
θ0 adjustedð Þ i

2π
´ periodstrain ð13Þ

where periodstrain is the calculated mean periodicity of the relevant strain in
generations/period.

The distribution of probable growth can then be determined by a combination
of the phase distribution of the population at tsync and the uncertainty in our
periodicity measurements. Initial synchronized repressilator 2.0 populations (tsync)
were assumed to be normally distributed, which was appropriate based on visual
inspection of Q–Q plots. Thus, the growth probability of each colony, i, is described
by a normal distribution with error,σ:

σ i ¼ μi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
period error
periodstrain

� �2

þ σtsync
θ0 adjustedð Þi

 !2
vuut ð14Þ

An empirical probability density function and cumulative distribution function
was then calculated as the sum of all individual distributions.

Interpretations of growth data are informed by physiological limits. For
example, we can assume that growth will not exceed known growth rates for a
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given species, and the repressilator can only progress in one direction based on
growth. Of the possible outcomes, we report the most consistent growth trajectory
across timepoints. An example of how these constraints are applied to a dataset is
provided (Supplementary Fig. 6).

Histograms. For histograms, θ0 data were separated into π/6-width bins centered
on 0 and multiples of π/6. Counts were normalized by the total number of fit
colonies in each dataset. Datapoints were plotted at each bin center. For linear
histograms, 0 and 2π are plotted as the same value.

In vivo bacterial growth testing. The Harvard Medical School Animal Care and
Use Committee approved all animal study protocols and all experiments complied
with relevant ethical regulations.

Female C57Bl/6 (Jackson Laboratory) mice of 8–14 weeks, (including >2 weeks
acclimatization to the HMS mouse facility), were used in groups of 2–3 per
experiment. Mice were routinely randomized between treatment groups in advance
of experiments, where relevant. Mice were fed on a lactose-free chow (Envigo
Teklad Global 18% Protein Rodent Diet) for at least 1 week prior to provision of
repressilator bacteria to avoid any interruption of the repressilator by lactose.
Streptomycin-treated mice were administered 5 mg USP-grade streptomycin sulfate
(Gold Biotechnology) in 100 μL sterile PBS by oral gavage, or where specifically
stated 0.5 g/L in drinking water supplemented with 5% sucrose overnight. PAS715
E. coliMG1655 bacteria or PAS716 S. Typhimurium LT2 bacteria were prepared for
administration by pelleting from culture, washing and dilution in sterile PBS before
provision to mice as a 100μL oral gavage.

In situ synchronization was achieved by provision of USP-grade 10 mM IPTG
(Sigma) or 0.1 mg/mL aTc (Sigma) in drinking water supplemented with 5%
sucrose overnight.

Fresh fecal samples were collected by temporarily removing mice to small
containers until at least 2–3 fecal pellets were produced. Fecal pellets were
homogenized in PBS at 50 or 100 mg/mL in sterile PBS by vortexing for ~5 min in
1.5 mL Eppendorf tubes. To remove large debris, homogenized feces was then
centrifuged either by briefly pulsing (~1 sec) on a benchtop minifuge (where CFU
counts were not critical), or by centrifugation at 4 × g for 20 min (where CFU
counts were critical). The supernatant was then serially diluted and cultured on
selective agar plates.

For inflammation experiments, mice were fed Dextran Sulfate Sodium (Colitis
Grade, M.W.= 36,000–50,000, MP Biomedicals, LLC) in drinking water
supplemented with 5% sucrose for 3 days prior to bacterial administration. DSS
water was exchanged every second day, and mice remained exposed throughout the
course of the experiment.

LCN-2 biomarker levels50 were quantified as previously36 using a Mouse
lipocalin-2/NGAL DuoSet ELISA kit (R&D Systems). Fecal pellets were vortexed at
100mg/mL in PBS+0.1% Tween20 for 20min, then pelleted at 12,000 × g for 10
min at 4 °C. ELISA results were obtained on a BioTek Synergy H1 plate reader. Four
hundred fifty nanometer absorbance corrected values were interpolated from a
sigmoidal four parameter logistic standard curve using Prism 7 for Mac OSX
software (GraphPad).

Peak-to-trough ratio analysis. Peak-to-trough ratios were computed from
metagenomic sequencing of mouse fecal samples as previously described15.
Genomic DNA was extracted from flash-frozen fecal samples using a Qiagen
DNEasy Blood & Tissue Kit. Genomic DNA from each sample was prepared for
sequencing using a Kapa HyperPlus Kit and sequenced using an Illumina NextSeq
at the Bauer Core Facility at Harvard University. Sequencing reads were trimmed
for quality using Trimmomatic 0.3651 and each sample was aligned to the genome
of interest using BWA mem 0.7.852. Sequencing coverage was obtained using
bedtools 2.27.153. To calculate peak-to-trough ratio, mean coverage was computed
for 10 kb bins across the genome and a segmented linear model was fit to the
coverage using the R package segmented54.

Growth in the mother machine. We performed time-lapse single-cell mea-
surements to monitor and compare the dynamics of repressilator circuits in rich
defined medium (EZ Rich Defined Medium; Teknova) and in cecum contents.
Cecum contents were derived from fresh or frozen mouse cecum, diluted in PBS.
2–4 FVB (Charles River) or C57/Bl6 (Jackson) mice were sacrificed, their cecum
dissected, and the cecum contents were extracted by scraping and washing off
the tissue with PBS. When frozen, cecum contents were placed at −80 °C. The
contents were then thawed, if necessary, and diluted in PBS, spun briefly in a
benchtop centrifuge (13,000 × g) to remove large particulate matter and the
supernatant removed and saved. Cecum matter was then washed a second time,
centrifuged, and the supernatant pooled with the first wash. Pooled supernatant
was centrifuged a second time, then passed sequentially through a 20 μm syringe
filter (Millex-AP glass fiber 25 mm syringe filter) and then a 5 μm syringe filter
(Pall Acrodisc 32 mm syringe filter with 5 μm Supor® membrane). The filtered
fluid was then used as an input for the mother machine.

The filtered fluid from the cecum contents was loaded in 10 mL syringes and
pumped through mother-machine devices32 using a Higher Pressure
Programmable Syringe Pump (NE1000). To flow the cecum through the device, we

used a mother-machine design where the dimensions of the flow channel has been
optimized for flowing dense cultures and maintaining low pressure to allow low
fluid flow-rates (Bakshi, S., Leoncini, E., Baker, C., Cañas-Duarte, S.J., Okumus, B.
and Paulsson, J., personal communication). Device fabrication used a wafer
prepared using standard UV photolithography, with quartz-chrome photomasks
(Toppan Inc) in a clean-room environment. Devices consisted of three
independent layers: a Su8 ‘base’ coat, a featureless uniform layer of completely
cured Su8; cell channels (25 μm long, 1.5 μm wide, and 1.3 μm height) placed in the
orthogonal direction to the flow channels; and medium flow channels, of 150 μm
width and 45 μm height.

The devices were constructed from the wafer using soft lithographic techniques
in clean-room (Harvard Medical School Microfabrication Core). Dimethyl
siloxane monomer (Sylgard 184) was mixed with curing agent (10:1 ratio),
defoamed, poured onto the silicon wafer, degassed (1 h) and cured at 65°C (1 h).
Individual chips were cut and the inlets and outlets punched with a biopsy
puncher. On the day of experiments, bonding to KOH-cleaned cover slips was
done using oxygen plasma treatment (30 sec at 50W and O2 pressure at 170
mTorr). Chips were incubated at 95 °C, >30 min to reinforce bonding before being
cooled to room-temperature.

Cell channels were loaded with E. coli containing the repressilator circuit. In some
experiments E. coli PAS718, constitutively expressing mKate2, was used, with the
mKate2 acting as a marker to segment single cells and to extract intensities and cell-
growth estimates more effectively. We used a slow flow-settings (5 μL/min) to ensure
we could observe the dynamics of the cells for prolonged periods (>10 h) with the
small volume of cecum contents (~3–5mL). This ensured that we observed at least
two peaks for repressilator signals in individual channels (YFP or CFP) for a majority
of the cells, which is necessary to calculate the period of oscillation. To minimize
phototoxicity the frequency of imaging was kept at 6min/frame. This gives about
4–5 snapshots per generation time, which is enough to get a good estimate of growth
rate and also a smooth intensity time-series. For E. coli PAS715 experiments imaging
occurred at 10min/frame.

Images were acquired using a Nikon Ti inverted microscope equipped with a
temperature-controlled incubator (OKO lab), a sCMOS camera (ANDOR), a 40X
Plan Apo air objective (NA 0.95, Nikon), an automated xy-stage (Nikon) and light
engine LED excitation source (Lumencor SpectraX). All experiments were
performed at 37 °C. Microscope control was done with Nikon Elements software.
We acquired time-lapse data from 40 fields of view, which allows us to track
approximately 2000 cells simultaneously. The acquired data were analyzed using a
hybrid analysis platform written in the Paulsson lab. In brief, images were
segmented using a custom-designed FIJI plugin and then the extracted data were
further processed to track cells in a custom-designed MATLAB script. Time-series
of cell-size data calculated from the segmented images was used to compute
generation times. The time-series of YFP channel intensity was used to calculate
the period of repressilator in the cecum content.

Figure generation. Figures were generated through Adobe Illustrator CC2018 and
CC2019, Adobe InDesign CC2018 and CC2019, Prism v6-7 (Graphpad), and
MATLAB versions R2017a-2018a (Mathworks). Many figures utilize color palettes
based on research by Cynthia Brewer55.

Data availability
Sequence reads for peak-to-trough ratio analyses are available at NCBI SRA (accession:
PRJNA542389 [https://www.ncbi.nlm.nih.gov/sra/PRJNA542389]).

All plasmids used in the study are available from Addgene, with identification
numbers as follows: pLPT234 (# 127855); pLPT41 (#85524); pLPT145 (#85527);
pLPT149 (#85529).

All other data or resources are available in the Source Data file or from the
corresponding author upon reasonable request.

Code availability
Core code used for RINGS analysis is available at Github (https://github.com/hms-idac/
repressilator-colony-rings).
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