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Abstract: Aminolevulinic acid (ALA) is the first metabolite in the heme biosynthesis 

pathway in humans. In addition to the end product heme, this pathway also produces other 

porphyrin metabolites. Protoporphyrin (PpIX) is one heme precursor porphyrin with good 

fluorescence and photosensitizing activity. Because tumors and other proliferating cells tend 

to exhibit a higher level of PpIX than normal cells after ALA incubation, ALA has been used 

as a prodrug to enable PpIX fluorescence detection and photodynamic therapy (PDT) of 

lesion tissues. Extensive studies have been carried out in the past twenty years to explore 

why some tumors exhibit elevated ALA-mediated PpIX and how to enhance PpIX levels to 

achieve better tumor detection and treatment. Here we would like to summarize previous 

research in order to stimulate future studies on these important topics. In this review, we focus 

on summarizing tumor-associated alterations in heme biosynthesis enzymes, mitochondrial 

functions and porphyrin transporters that contribute to ALA-PpIX increase in tumors. 

Mechanism-based therapeutic strategies for enhancing ALA-based modalities including iron 

chelators, differentiation agents and PpIX transporter inhibitors are also discussed. 
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1. Introduction 

Considered as pigments of life, porphyrins attract tremendous human curiosity about their chemistry, 

biosynthesis, role in homeostasis and pathogenesis, and potential as therapeutic agents. As a class of 

tetrapyrroles with highly conjugated heterocyclic structure, porphyrins typically have intense absorption 

of light in the visible range, giving the characteristic red color in animals (due to heme) and green color 

in plants (due to chlorophyll). It was nearly 150 years ago that hematoporphyrin (HP), a crude porphyrin 

extract from blood, was first shown to have fluorescence property and about 100 years ago that  

the fluorescence of HP was found useful for detecting tumors [1]. The photosensitizing property of 

porphyrins, the ability to convert absorbed light energy into the production of cytotoxic reactive species 

in the presence of oxygen, was first recognized in the 1900s using HP and extensively studied since  

the 1970s using partially purified HP preparations [2]. These included hematoporphyrin derivatives 

(HPD) and Photofrin, which ultimately led to the world-wide approval of Photofrin-mediated 

photodynamic therapy (PDT) [1]. 

Because all porphyrins are biosynthesized from aminolevulinic acid (ALA), an early precursor in  

the heme biosynthetic pathway that is found in nearly all mammalian cells, ALA can be used to boost 

the production of endogenous porphyrins for many diagnostic and therapeutic uses. Following  

the pioneer work by Malik [3], Kennedy and Pottier [4] and Moan and Peng [5] who showed enhanced  

ALA-mediated protoporphyrin IX (PpIX) accumulation in tumor cells and effective cell destruction after 

light illumination, ALA was rapidly established as a promising PDT agent. With proven effectiveness 

in eliminating unwanted cells, good selectivity and excellent cosmetic effect, ALA-PDT received  

world-wide approval in the late 1990s and has become a mainstream treatment in dermatology [6].  

Its applications in managing other types of cancers and non-cancer diseases are being actively explored 

as well [7,8]. Not only is it a remarkable PDT agent, ALA is also a useful imaging probe. With a broad 

red fluorescence emission extending close to the near-infrared region, ALA-mediated PpIX fluorescence 

is being used to guide the resection of brain and bladder tumors with encouraging clinical outcomes [9,10]. 

The key to the successful use of ALA as a PDT and imaging agent lies in the preferential accumulation 

of PpIX in target cells following ALA administration. Extensive research has been performed to determine 

the molecular mechanism involved in enhanced ALA-PpIX in tumor cells. In this special issue on 

Advances in PDT, we would like to summarize research on this topic over the past two decades. We begin 

with an overview of the biosynthesis and transport of PpIX, and then summarize current understanding 

on the mechanism involved in preferential ALA-mediated PpIX synthesis and accumulation in tumors. 

Next, we discuss mechanism-based therapeutic strategies for enhancing ALA-based tumor detection and 

PDT. Finally, we end with perspectives on areas for future studies. For readers who are interested in  

the clinical applications of ALA and its derivatives, there are excellent recent reviews [7,11–13] 

including one on ALA-PpIX fluorescence-guided glioblastoma resection in this issue [13]. We focus 

this review on the molecular mechanism underlying elevated ALA-PpIX in tumors and mechanism-based 

therapeutic approaches for enhancing ALA-based modalities with the goal of encouraging further 

research in these important areas. 
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2. Biosynthesis and Transport of PpIX 

PpIX is a precursor to heme, the final product of the heme biosynthesis pathway (Figure 1). This pathway 

includes both mitochondrial and cytosolic processes catalyzed by a total of eight enzymes [14]. Seven 

enzymes are involved in PpIX synthesis and the last one converts PpIX to heme. The first enzymatic 

step in the heme biosynthesis pathway is the generation of ALA from glycine and succinyl coenzyme A 

by ALA synthase (ALAS) in the mitochondrion. ALA then migrates to the cytosol where two molecules 

of ALA are condensed to form porphobilinogen (PBG), the first monopyrrole in the pathway, in  

a reaction catalyzed by ALA dehydratase (ALAD), also known as porphobilinogen synthase (PBGS). 

Four molecules of PBG are connected to form hydroxymethylbilane (HMB), the first tetrapyrrole in  

the pathway, by porphobilinogen deaminase (PBGD), also known as hydroxymethylbilane synthase 

(HMBS). Linear tetrapyrrole HMB is closed to form cyclic uroporphyrinogen III by uroporphyrinogen III 

synthase (UROS). Decarboxylation of uroporphyrinogen III by uroporphyrinogen III decarboxylase 

(UROD) leads to coproporphyrinogen III. Coproporphyrinogen III is then transported back into mitochondria 

to undergo oxidative decarboxylation by coproporphyrinogen III oxidase (CPOX) to generate 

protoporphyrinogen III, which is further oxidized by protoporphyrinogen III oxidase (PPOX) to produce 

PpIX with aromatic chemical structure. PpIX is subsequently chelated with ferrous iron to form heme in 

mitochondria catalyzed by ferrochelatase (FECH) [14]. Interestingly, heme has essentially no fluorescence 

and photosensitizing activity, whereas PpIX possesses fluorescence and photosensitizing ability. 

 

Figure 1. Heme biosynthesis pathway (in red) connects with glucose (in green) and 

glutamine (in blue) metabolic pathways. Porphyrin synthesis converges with energy 

metabolism through TCA (tricarboxylic acid) cycle. Enhanced glycolysis and glutaminolysis 

in tumor cells may activate heme biosynthetic pathway to ensure energy production and 

avoid the accumulation of TCA metabolites. 
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Because free porphyrin metabolites such as PpIX and heme are prone to cause oxidative stress and 

cell damage, cells maintain a low level of free porphyrins through mechanisms including well-coordinated 

heme biosynthesis and degradation, rapid utilization of free heme for hemoprotein synthesis, and 

extracellular transport of excess free porphyrins [15]. Heme biosynthesis is negatively regulated by  

the intracellular level of heme, which inhibits heme biosynthesis by imposing negative feedback 

inhibition on the rate-limiting enzyme ALAS and stimulates heme degradation by promoting the expression 

of heme degradation enzyme heme oxygenase [14]. Free heme is often rapidly committed to the formation 

of many heme-containing proteins such as hemoglobin and cytochrome P450 enzymes. Excess PpIX, 

heme and other porphyrins are efficiently transported out of cells through various heme transporters [15]. 

Although being lipophilic in general, PpIX and other porphyrins are negatively-charged molecules that 

require membrane transporters to facilitate movement across cell membranes. Among all cell membrane 

transporters that have been identified for the transport of heme and other porphyrins, the ATP-binding 

cassette sub-family G (ABCG) 2 protein, also known as breast cancer resistance protein (BCRP), has 

the most well-defined role in PpIX extracellular transport [16]. 

3. Mechanisms Involved in Enhanced PpIX Production and Accumulation 

Elevated PpIX fluorescence is commonly observed in a variety of tumor cells and tissues following 

ALA administration compared with normal counterparts [7], which provides the basis for using ALA as 

a prodrug for fluorescence detection and photodynamic targeting of tumors. Thus, why tumor cells and 

tissues exhibit enhanced PpIX production and accumulation becomes a fundamental question associated 

with the application of ALA-based modalities in oncology. Although this remains an open question, 

extensive studies have suggested that increased PpIX fluorescence in tumor cells is likely a result of 

multiple tumor-associated cellular alterations including alterations in heme biosynthetic enzymes, 

mitochondrial functions and porphyrin transporters. 

3.1. Alterations in Heme Biosynthetic Enzymes 

Because PpIX is a metabolite produced in the heme biosynthetic pathway, it is reasonable to assume 

that the enhanced level of PpIX in tumor cells after ALA incubation is due to changes in the expression 

or activity of heme biosynthesis enzymes in tumor cells. Comparing the expression or activity of heme 

biosynthesis enzymes between tumor and normal cells or tissues does reveal significant differences in 

some cases. However, conflicting results, often dependent on tumor type, are commonly seen in the literature. 

ALAS gene expression was compared between micro-dissected tumor tissues from colorectal cancer 

patients and corresponding normal tissues by RT-PCR [17]. ALAS expression in tumor tissues was 

significantly lower than in normal tissues. However, both ALAS gene expression and protein level  

were found increased in HCC4017 non-small-cell lung cancer (NSCLC) cells compared with normal 

cells, and increased ALAS protein level was shown in a panel of human lung cancer xenograft tumor  

samples [18]. It should be pointed out that changes in ALAS expression and activity are not expected to 

affect ALA-mediated PpIX production because exogenous ALA bypasses this enzymatic step. 

PBGD has been suggested to play an important role in elevated ALA-PpIX production in tumor  

cells based on the findings that increased PBGD expression or activity is associated with cell 

transformation [19,20], and the upregulation of PBGD enzymatic activity has been found in some cancer 
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cells [21–23] and after ALA stimulation [24,25]. There are case studies suggesting the involvement of 

high PBGD gene expression or enzyme activity in the oncogenesis of cervical [26], prostate [27] and 

breast [28] cancers, and meningioma but not glioma [29]. Significantly higher than normal PBGD 

activity has been found in human bladder [22] and colon [23] cancer cells as well as in tissue samples 

from Barrett’s esophagus and esophageal cancer patients [21,30], although there is no significant 

difference in PBGD expression between human colorectal cancer and normal tissues [17]. Because increased 

PBGD activity and decreased FECH activity were detected in some esophageal tumor cells/tissues, the 

ratio of PBGD to FECH activity was proposed as an index to predict enhanced PpIX accumulation and 

cell sensitivity to ALA-PDT [21]. However, subsequent studies failed to demonstrate the predictive 

value of this index [22,23,30]. In addition, overexpression of PBGD does not result in increased PpIX 

production, suggesting a complex interplay between PBGD and other heme biosynthesis enzymes [25,31]. 

There is evidence showing the involvement of increased UROD gene expression or enzyme activity 

in tumor initiation and progression. UROD was highly expressed at an early stage, but not at a late stage, 

in Friend virus-induced erythroleukemia in mice [32]. Enhanced UROD activity together with increased 

porphyrin biosynthesis were detected in human breast tumor tissues compared with normal tissues [28]. 

UROD expression was significantly elevated in tumor biopsies from head and neck cancer patients [33]. 

In addition, patients with higher UROD expression were more likely to have shorter disease-free 

survival, suggesting the involvement of UROD in cancer progression. However, in human clear-cell 

renal carcinomas, there was no correlation between the UROD activity and the concentration of total 

porphyrins or the degree of malignancy [34]. 

As an enzyme responsible for converting PpIX to heme, FECH gene expression or enzyme activity 

has often been found reduced in a variety of tumor cells/tissues including liver [35], bladder [22], 

colorectal [17,23], esophageal, gastric and rectal cancers [17] compared with normal counterparts.  

Cell lines with reduced FECH level or activity tend to have a higher ALA-PpIX level while cells with 

increased FECH level or activity are more likely to exhibit a lower ALA-PpIX fluorescence [17,36]. 

Silencing FECH gene expression significantly increased ALA-PpIX fluorescence in human colon [17], 

urothelial [37], glioma [38] and breast [39] cancer cells and sensitized cells to ALA-PDT whereas 

overexpression of FECH reduced cell sensitivity to ALA-PDT by decreasing PpIX production [36]. 

Although reduced FECH expression/activity is often associated with enhanced ALA-PpIX in tumors, 

there are reports showing good ALA-PpIX production in tumors without reduced FECH activity [30,40,41], 

suggesting the involvement of other contributing factors. 

3.2. Alterations in Mitochondrial Functions 

The observation that PpIX is often accumulated in tumor cell mitochondria leads to a speculation that 

enhanced ALA-PpIX is related to mitochondrial alterations in tumor cells. Comparing mitochondrial 

content (as indicated by the fluorescence intensity of MitoTracker dye) and the activity of cytochrome c 

oxidase (a mitochondrial enzyme involved in oxidative phosphorylation) with ALA-PpIX level in 

different tumor cell lines indicates a correlation between ALA-PpIX level and mitochondrial content, 

but not with cytochrome c oxidase [41]. However, later studies involving more cell lines demonstrate 

that such a simple correlation between ALA-PpIX and mitochondrial content or the activity of certain 

mitochondrial enzymes often cannot be established [23,42,43]. 
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Recent studies suggest that alterations in energy metabolism, particularly enhanced glycolysis, are 

involved in enhanced ALA-PpIX in tumor cells (Figure 1). Similar to PpIX/heme biosynthesis, glucose 

metabolism also has both cytosolic and mitochondrial processes. Succinyl-CoA, a metabolite produced 

in the glucose tricarboxylic acid (TCA) cycle in mitochondria, is one of two starting substrates for 

PpIX/heme synthesis. The crosstalk between glucose metabolism and porphyrin biosynthesis has been 

demonstrated by a recent finding that inactivation of TCA cycle activated heme biosynthesis in order to 

avoid the accumulation of TCA cycle metabolites and enable mitochondrial NADH production [44]. 

Because cancer cells often switch from the TCA cycle to aerobic glycolysis and glutamine for energy 

production [45], such metabolic reprogramming may lead to the accumulation of TCA cycle metabolites, 

which activates heme biosynthesis pathway to remove TCA metabolites. This may result in enhanced 

PpIX accumulation due to the saturation of FECH. Although more studies are needed to test this 

hypothesis, the connection between cancer cell metabolic reprogramming and ALA-PpIX accumulation 

is supported by another recent study where human glioma cells with mutated TCA cycle enzyme isocitrate 

dehydrogenase 1 (IDH1) exhibited enhanced ALA-PpIX as compared to cells with wide type IDH1 [46]. 

3.3. Alterations in Porphyrin Transporters 

ALA-mediated PpIX synthesis depends on active ALA uptake and effective transport of  

different porphyrin metabolites between the cytosol and mitochondria by porphyrin transporters [15]. 

Porphyrin importers ensure porphyrin substrates are transported to the right intracellular site for porphyrin 

synthesis, while porphyrin exporters pump excess heme/porphyrins out of organelles or cells to maintain 

homeostasis. Theoretically, enhanced ALA-PpIX in tumor cells can be caused by factors including 

elevated ALA uptake, enhanced porphyrin importer activity and decreased PpIX exporter activity. 

Although enhanced ALA uptake has been shown in tumor cells with elevated PpIX [36], more studies 

demonstrate that the difference in ALA uptake between higher and lower PpIX producing cell lines is 

not significant [23,41,47] and the rate of ALA uptake is far greater than PpIX synthesis [48], indicating 

that ALA uptake does not appear to be a determining factor for enhanced ALA-PpIX in tumor cells. 

One porphyrin transporter involved in PpIX synthesis is the ATP-binding cassette sub-family B 

member 6 (ABCB6) [49]. Originally identified as a transporter on the outer mitochondrial membrane, 

ABCB6 binds to various porphyrins including coproporphyrinogen III, PpIX and heme. Because it has 

the highest affinity to coproporphyrinogen III, ABCB6 is thought to be primarily involved in transporting 

coproporphyrinogen III into mitochondria for PpIX/heme synthesis [49]. Human glioma tumors show 

higher ABCB6 expression than normal brain tissues [50]. The notion that increased ABCB6 function 

plays an important role in enhanced ALA-PpIX levels in tumor cells is supported by the findings that 

human glioma tissues with higher ALA-PpIX fluorescence exhibit higher ABCB6 expression than 

glioma tissues with lower PpIX fluorescence, and ABCB6 overexpression significantly increases  

ALA-PpIX fluorescence in glioma cell lines [50]. However, ABCB6 has also been shown to localize to 

the cell membrane [51] and endoplasmic reticulum [52], and transport coproporphyrinogen III out of 

cells [53], suggesting that enhanced ABCB6 function on cell membrane could potentially reduce 

PpIX/heme level by decreasing the intracellular concentration of coproporphyrinogen III. The net effect 

of ABCB6 on ALA-PpIX level is likely dependent on the relative ABCB6 activity in the mitochondrial 

versus cell membrane. 
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As a drug efflux transporter responsible for cancer cell resistance to many anticancer agents,  

the ABCG2 transporter probably plays the most important role in the extracellular transport of PpIX. 

Knockdown of ABCG2 causes PpIX accumulation, particularly in mitochondria, and results in 

mitochondrial damage, indicating that PpIX is an endogenous substrate of ABCG2 [54,55]. The ABCG2 

transporter is localized to both mitochondrial and cell membrane, which enables the extracellular 

transport of PpIX synthesized in mitochondria [56]. Increased ABCG2 activity has been shown to 

decrease intracellular PpIX level after ALA stimulation [16] and cell lines with high ABCG2 expressions 

or activities often exhibit reduced ALA-PpIX fluorescence [57]. In a recent study, we found that triple 

negative breast cancer cell lines have significantly reduced ALA-PpIX levels as compared with estrogen 

receptor (ER) positive and human epidermal growth factor receptor 2 (HER2) positive breast cancer cell 

lines because of elevated ABCG2 activity [58]. 

4. Therapeutic Strategies for Enhancing ALA-Based Tumor Detection and Therapy 

Although ALA-based modalities have been used in the clinic for detecting and targeting tumor 

tissues, its applications are limited by inadequate and heterogeneous PpIX production in tumor  

cells [59,60]. Thus, various therapeutic approaches have been proposed and evaluated to overcome these 

limitations. All enhancement approaches can be categorized into three therapeutic strategies, which are: 

enhancing PpIX synthesis, reducing PpIX conversion, and inhibiting PpIX efflux (Figure 2). Enhancing 

PpIX synthesis can be achieved by increasing the activity of enzymes involved in PpIX synthesis and 

the transport of porphyrin intermediates necessary for PpIX synthesis. Reducing PpIX conversion aims 

at inhibiting the bioconversion from PpIX to heme by removing the substrate ferrous ion required for 

the reaction and/or inhibiting the enzyme FECH that catalyzes the reaction. Inhibiting PpIX efflux is to 

prevent PpIX extracellular transport with inhibitors of PpIX transporters, the ABCG2 transporter  

in particular. 

 

Figure 2. Current therapeutic strategies for enhancing ALA-based tumor detection and 

therapy. These strategies include enhancing PpIX synthesis, reducing PpIX conversion and 

inhibiting PpIX efflux. 

It is desirable for a therapeutic agent to enhance ALA-PpIX level through multiple mechanisms.  

For example, differentiation agent vitamin D is able to enhance PpIX synthesis by up-regulating  

CPOX and reduce PpIX conversion by down-regulating FECH [61]. It is important to point out that  

the therapeutic potential of some enhancement approaches has been validated by genetic approaches.  

For instance, transfection of mutated ALAS2 gene variants with increased enzymatic activity than the 
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wild-type enzyme [62], as well as the CPOX-overexpressing vector [63], significantly increase PpIX 

production. Silencing FECH [17,38,39] and ABCG2 [55] gene expression has been shown to increase 

PpIX accumulation. Here we summarize the therapeutic agents that have been evaluated for enhancing 

ALA-based tumor detection and therapy with promising results. 

4.1. Iron Chelators 

Because ferrous iron is a substrate necessary for converting PpIX to heme by FECH, removal of 

ferrous iron by iron chelators prevents this conversion, resulting in PpIX accumulation. The non-specific 

metal ion chelator ethylenediamine tetraacetic acid (EDTA) was first used to enhance ALA-PpIX 

accumulation in leukemia cells [64]. A more potent and selective iron chelator deferoxamine (DFO) [65] 

was later found to increase ALA-PpIX accumulation and sensitivity to ALA-PDT in a variety of tumor 

cells and tissues [66–71]. However, in a small scale clinical study, DFO showed no enhancement of 

ALA-PpIX and PDT in patients with superficial basal cell carcinomas or Bowen’s disease, and was only 

able to increase ALA-PpIX in normal skin at a low, but not high, ALA dose [72]. 

CP94 (1,2-diethyl-3-hydroxypyridin-4-one hydrochloride) is another iron chelator that is superior to 

DFO in enhancing ALA-PpIX accumulation likely due to its lower molecular weight and higher 

lipophilicity, resulting in better tissue penetration [73]. CP94 is able to enhance ALA-PpIX accumulation 

in rat bladder urothelium [74] and colonic mucosa [75] in vivo. It increases PpIX levels in human  

skin [73,76], bladder [77] and glioma [76,78] cancer cells treated with ALA or its derivatives. The safety 

and effectiveness of CP94 in enhancing PDT with methyl-aminolevulinate (MAL) for basal cell 

carcinoma has also been demonstrated in a pilot clinical study [79], indicating the feasibility of adding 

iron chelators into clinical PDT protocols. 

4.2. Differentiation Agents 

Induction of keratinocyte differentiation by increasing calcium concentration in medium enhances 

ALA-PpIX production and cytotoxicity to ALA-PDT through increased ALA uptake, increased PpIX 

synthesis by elevating CPOX expression, and decreased PpIX efflux [80]. Following this early study, 

differentiation agents including methotrexate (MTX) and vitamin D have been extensively studied for 

enhancing ALA-PpIX production and ALA-PDT outcomes [81]. Vitamin D and MTX increase PpIX 

fluorescence and cytotoxicity to ALA-PDT in LNCaP prostate cancer cells by up-regulating CPOX and 

differentiation marker E-cadherin [63,82]. It appears that differentiation-induced CPOX up-regulation 

is a major contributing factor for enhancing ALA-PpIX production because CPOX over-expression alone 

is enough to increase PpIX fluorescence [63]. 

Both the active form of vitamin D (calcitriol) [61] and dietary vitamin D (cholecalciferol) [83]  

can enhance ALA-PpIX production and PDT-induced cell death in A431 tumor cells and tissues.  

Calcitriol has also been shown to enhance ALA-PpIX and PDT in the MDA-MB-231 breast tumor  

model [84] and is effective for detecting mouse skin tumors based on enhanced ALA-PpIX  

fluorescence [85]. Calcitriol treatment increases E-cadherin and Ki67 staining, up-regulates CPOX and 

down-regulates FECH, leading to ALA-PpIX accumulation [61]. Furthermore, it increases TNFα level, 

which may enhance extrinsic apoptosis induced by ALA-PDT [61]. The mechanism involved in 

calcitriol-induced CPOX up-regulation has been found to be related to the activation of transcription 
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factor CCAAT enhancer binding proteins (CEBPs), which leads to the activation of its downstream 

CPOX gene transcription [86]. 

4.3. ABCG2 Transporter Inhibitors 

The identification of PpIX as an endogenous substrate of ABCG2 transporter leads to the use  

of ABCG2 transport inhibitors to enhance ALA-PpIX fluorescence and PDT effects [16]. Increased  

ALA-PpIX accumulation in various tumor cell lines by inhibiting PpIX efflux has been demonstrated 

with ABCG2 inhibitors fumitremorgin C [16,87] and its less toxic and more selective analog  

Ko143 [57,58,88]. Because the activity of ABCG2 transporter depends on albumin, the effect of ABCG2 

inhibitor on PpIX increase is particularly pronounced when cells are cultured in serum-containing 

medium and barely noticeable when serum-free medium is used. [87,89]. It is therapeutically important 

that some approved tyrosine kinase inhibitors including imatinib mesylate (Gleevec) [90] and  

gefitinib [91] are potent ABCG2 transporter inhibitors and effective in sensitizing tumor cells to  

ALA-PDT by increasing PpIX level. Moreover, the fact that ABCG2 inhibitor Ko143 is able to reduce 

PpIX fluorescence heterogeneity in tumor cells suggests that ABCG2 is involved in the intra-tumor 

heterogeneity of ALA-PpIX [58]. Finally, the effect of ABCG2 inhibitors on ALA-PpIX increase was 

observed only in cells with ABCG2 expression or activity, but not in cells lacking ABCG2 expression 

or activity, indicating the selectivity of this enhancement approach [57,58,90]. 

5. Conclusions and Future Perspectives 

The past two decades have witnessed extensive research aiming at unraveling the mystery of 

enhanced ALA-PpIX in tumors and seeking therapeutic approaches to boost PpIX levels in tumors with 

insufficient PpIX accumulation. As a result of this intensive study, considerable knowledge has been 

obtained about various tumor-related pathological alterations that contribute to an increased level of 

PpIX in tumors following ALA stimulation. This knowledge has provided the foundation for the clinical 

application of ALA for detecting and targeting tumors, particularly in the skin, brain and bladder. It has 

also stimulated the exploration of mechanism-based therapeutic approaches to enhance ALA-based 

modalities, which has led to many encouraging preclinical and clinical results. 

However, the molecular mechanism underlying enhanced ALA-PpIX in tumor cells remains elusive 

and those promising results are yet to be translated to clinical practice. To fulfill the potential of  

ALA-based modalities, more mechanistic basic research, well-designed clinical trials, and collaborative 

studies between bench scientists and clinicians are needed. In basic research, many cellular and 

functional alterations that contribute to an enhanced ALA-PpIX level in tumors have been identified. 

But we lack a comprehensive understanding of the underlying connection between these different 

pathological alterations and the relationship between these alterations and cell phenotypic changes 

(gaining survival advantage, metastatic potential, avoiding metabolic catastrophe etc.). More importantly, 

we do not know the cause of these pathological alterations in tumor cells. Is enhanced ALA-PpIX 

directly caused by oncogene activation in tumor cells? If so, what oncogenes are more likely to enhance 

tumor PpIX level and how? Obviously, answers to these fundamental questions will not only help us 

understand the biological meaning of increased ALA-PpIX level in tumors, but also have important 

implications in selecting appropriate patients for ALA-based modalities. 
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In clinical research, it is certainly encouraging to see promising results from pilot clinical studies 

where ALA-PpIX is used for diagnosing tumors other than glioblastoma, and iron chelators are able to 

improve PDT outcome. However, these clinical studies are limited by very small sample size and 

sometimes patients with mixed diseases. Well-designed large-scale clinical trials that will eventually 

convince the medical community and regulatory agencies to accept these new ALA-based therapeutic 

modalities are needed. Finally, in the field of oncology where personalized medicine is taking the lead, 

the importance, as well as the benefit, of collaborative research between bench scientists and clinicians 

cannot be overemphasized. ALA is certainly not good for all types of cancer nor for all patients with  

a certain type of cancer. Identifying the appropriate disease and patient subsets who will benefit the most 

from ALA-based modalities is probably the most important task facing researchers in this field in  

the next decade. Through more collaborative research between basic and clinical scientists, it is hoped 

that we will have more mechanistic understanding of ALA-based modalities and more patients will 

benefit from these modalities. 
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