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In recent years, glial cells have been acknowledged as key players in the

pathogenesis of Alzheimer’s disease (AD), a neurodegenerative condition in

which an accumulation of intracellular neurofibrillary tangles and extracellular

fibrillar amyloid beta is notably observed in the central nervous system.

Genome-wide association studies have shown, both in microglia and

astrocytes, an increase in gene variants associated with a higher risk of

developing late-onset AD. Microglia, the resident innate immune cells of the

brain, and astrocytes, glial cells crucial for vascular integrity and neuronal

support, both agglomerate near amyloid beta plaques and dystrophic neurites

where they participate in the elimination of these harmful parenchymal

elements. However, their role in AD pathogenesis has been challenging to

resolve due to the highly heterogeneous nature of these cell populations,

i.e., their molecular, morphological, and ultrastructural diversity, together

with their ever-changing responsiveness and functions throughout the

pathological course of AD. With the recent expansions in the field of glial

heterogeneity through innovative advances in state-of-the-art microscopy

and -omics techniques, novel concepts and questions arose, notably

pertaining to how the diverse microglial and astrocytic states interact with

each other and with the AD hallmarks, and how their concerted efforts/actions

impact the progression of the disease. In this review, we discuss the recent

advances and findings on the topic of glial heterogeneity, particularly focusing

on the relationships of these cells with AD hallmarks (e.g., amyloid beta
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plaques, neurofibrillary tangles, synaptic loss, and dystrophic neurites) in

murine models of AD pathology and post-mortem brain samples of patients

with AD.

KEYWORDS

Alzheimer’s disease, heterogeneity, microglia, astrocyte, murine model, human brain
samples

Introduction

Alzheimer’s disease (AD), the most common form of
dementia, is a neurodegenerative disease notably associated
with severe synaptic loss and brain atrophy, clinically resulting
in cognitive decline (Terry et al., 1991; Spires-Jones and
Hyman, 2014; Pini et al., 2016; Halliday, 2017; Marino
et al., 2019). The progressive impairment of learning and
memory, among other cognitive functions, that characterizes
AD is neuropathologically associated with intracellular
neurofibrillary tangles composed of hyperphosphorylated tau
protein and extracellular plaque deposition of amyloid beta
(Aß) (DeTure and Dickson, 2019). Several key brain regions
(e.g., hippocampus, dentate gyrus, entorhinal cortex, prefrontal
cortex) involved in these functions are more vulnerable or
prone to the various AD hallmarks aforementioned (Halliday,
2017; Mrdjen et al., 2019; Leng et al., 2021). However, while
the presence of these abnormal features is a strong indicator
of AD, the preserved cognition of some individuals with these
AD hallmarks suggests that different mechanisms, apart from
the pathological markers of AD, might be at play (Jack et al.,
2016; Zolochevska and Taglialatela, 2016). Indeed, previous
hypotheses regarding the pathogenesis of AD primarily
comprise the amyloid cascade, which places the neurotoxic
accumulation of the Aß protein at the center of the disease
process (Hardy and Higgins, 1992; Ricciarelli and Fedele, 2017).
Recent amendments to this hypothesis include mitochondrial
dysfunction (Chakravorty et al., 2019), cellular senescence
(Saez-Atienzar and Masliah, 2020; Walton et al., 2020; Guerrero
et al., 2021) and vascular dysfunction (Govindpani et al., 2019).
All these emerging hypotheses have highlighted the impact of
glial cells (e.g., astrocytes, microglia) on AD pathology (Liu
et al., 2018; Kaur et al., 2019; Hashemiaghdam and Mroczek,
2020).

Microglia first appear in the yolk sac where they egress
to the central nervous system (CNS) around embryonic day
9.5 in mice (Ginhoux et al., 2010) and the 4–5th week of
gestation in humans (Andjelkovic et al., 1998; Monier et al.,
2006; Verney et al., 2010). From synaptic pruning and plasticity
to surveillance of the parenchyma and removal of cellular
debris, microglia exert crucial functions necessary for the
proper development and maintenance of the CNS homeostasis
throughout life (Davalos et al., 2005; Nimmerjahn et al., 2005;
Paolicelli et al., 2011; Schafer et al., 2012). While understanding
the role of microglia in the pathogenesis of AD has gained more

traction in recent years with the advances in single-cell(sc)-omic
techniques, it is still unclear if and/or how these cells can be
modulated to help prevent and/or treat this neurodegenerative
disease (Šimončičová et al., 2022). To study the mechanisms
underlying this neurodegenerative disease, murine models
of AD pathology, genetically altered to induce human AD
hallmarks, are most commonly used (Jankowsky and Zheng,
2017). A summary of all the murine models of AD pathology
mentioned in this Review is provided in Table 1. Studies from
Sosna et al., and Spangenberg et al., have shown that long-term
treatment starting early during the disease (at 1.5–2 months of
age) with an inhibitor of colony-stimulating factor 1 receptor
(CSF1R), notably crucial for microglial survival, was able to
reduce the number of Aß plaques in the 5xFAD model [Swedish,
Florida and London mutation in the amyloid precursor protein
(APP) with M146L and L286V mutations in the humanized
presenilin 1 (PSEN1) (Oakley et al., 2006)] (Sosna et al., 2018;
Spangenberg et al., 2019). Oppositely, introducing a CSF1R
inhibitor later on at 10 months of age did not detectably
alter Aß load in the same 5xFAD model (Spangenberg et al.,
2016) or in 12-month-old APP-PS1 mice [Swedish mutation
in APP and humanized PSEN1 (Jankowsky et al., 2004; Radde
et al., 2006)] (Unger et al., 2018), emphasizing the differential
roles exerted by microglia across AD pathology progression
(Casali et al., 2020). In addition, the functional spatio-temporal
heterogeneity of microglia, observed even in non-pathological
conditions and throughout the lifespan (Hammond et al.,
2019; Zheng et al., 2021), confers an additional challenge
alongside the diversity of their population comprised of different
states [e.g., dark microglia, disease-associated microglia (DAM),
neurodegenerative phenotype (MGnD)] observed in various
mouse models of AD pathology and human post-mortem
samples (Bisht et al., 2016b; Keren-Shaul et al., 2017; Krasemann
et al., 2017).

In the last 5 years, the heterogeneous nature of astrocytes
was also brought to the forefront of the dementia field with
several studies underlining a myriad of astrocytic states in
both health and disease (e.g., disease-associated astrocytes)
(Liddelow et al., 2017; Habib et al., 2020; Escartin et al.,
2021). Astrocytes were shown to play a key part in neuronal
support; from sustaining metabolic needs by providing
lactate to neurons according to the astrocyte-neuron lactate
shuttle hypothesis, to recycling exocytotoxic glutamate into
glutamine to be taken up by pre-synaptic axon terminals
(Tsacopoulos and Magistretti, 1996; Pellerin et al., 2007;
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TABLE 1 Mouse models of AD pathology used to investigate microglial and astrocytic heterogeneity.

Model Mutations Presence of Aß and/or neurofibrillary tangles (NFT) References

Aß NFT

5xFAD APP [KM670/671NL Swedish,
I716V Florida, V717I London]
PSEN1 [M146L, L286V]

Yes N/A Oakley et al., 2006

APP-PS1 APP [KM670/671NL Swedish]
PSEN1 [dE9]

Yes No Jankowsky et al., 2004

TgCRND8 APP [KM670/671NL Swedish,
V717F Indiana]

Yes No Chishti et al., 2001

3xTg APP [KM670/671NL Swedish]
PSEN1 [M146V]
MAPT [P301L]

Yes Yes Oddo et al., 2003

APPNL−F−G APP [KM670/671NL Swedish,
I716F Iberian, E693G Artic]

Yes No Saito et al., 2014

P301S MAPT [P301S] No Yes Allen et al., 2002;
Bellucci et al., 2004;

Yoshiyama et al., 2007

rTg4510 MAPT [P301L] No Yes Ramsden et al., 2005;
Santacruz et al., 2005

Thy-Tau22 MAPT [G272V, P301S] No Yes Schindowski et al.,
2006

JPNL3 MAPT [P301L] No Yes Lin et al., 2003

TgF344 (rat) APP [KM670/671NL Swedish]
PSEN1 [dE9]

Yes Yes Cohen et al., 2013

Tg-SweArc APP [KM670/671NL Swedish,
E693G Arctic]

Yes No Lord et al., 2006

APP, amyloid precursor protein; MAPT, microtubule associated protein tau; PSEN1, presenilin 1.

Verkhratsky and Nedergaard, 2018). In both patients with
AD and mouse models of AD pathology, astrocytes were
shown to interact with fibrillar Aß (Nagele et al., 2004)
and dystrophic neurites found nearby Aß plaques (Gomez-
Arboledas et al., 2018). For instance, ablation of astrocytes and
proliferative astrocytes in organotypic 5xFAD brain culture
slices and 9-month-old APP23/GFAP-TK mice [APP23 is a
mouse model overexpressing a human APP with a Swedish
mutation (Sturchler-Pierrat et al., 1997) crossed with glial
fibrillary acidic protein (GFAP) thymidine kinase (TK) mice],
respectively, both showed increased levels of Aß, indicating a
crucial role for astrocytes in the resolution of AD pathology
(Katsouri et al., 2020; Davis et al., 2021). Similar to microglia,
astrocytes display a spatio-temporal heterogeneity during
aging and in various pathological conditions (Lana et al.,
2020). For instance, depending on their proximity to Aß
plaques, astrocytes present varying morphologies (atrophy,
hypertrophy) and molecular signatures in post-mortem brains
of patients with AD and mouse models of AD pathology
(Schitine et al., 2015). However, further investigations
are required to fully understand the functional impact of
their heterogeneous nature on the onset and progression
of AD pathology.

Understanding the complex relationships of heterogeneous
glial cells with their micro-environment will be crucial to
unravel not only the mechanisms underlying AD, but also help
to determine their responses to various potential therapeutic
targets. Therefore, in this review, we will highlight the different

microglial and astrocytic states observed in both mouse models
of AD pathology and human post-mortem samples, discussing
specifically how this heterogeneity affects their interaction with
each other and the hallmarks of AD.

Microglial heterogeneity in
Alzheimer’s disease

Microglia aggregate near Aß plaques where they partially
initiate and maintain a highly dynamic phagocytic and
(neuro)inflammatory response (Manchikalapudi et al., 2019;
Shukla et al., 2019; von Saucken et al., 2020; Grubman et al.,
2021). While recent studies have helped elucidate the roles of
microglia in the pathogenesis of AD, their functions throughout
the course of the disease are still a topic boasting a variety of
opinions. As much as microglia are able to take up Aß (Hickman
et al., 2008; Sebastian Monasor et al., 2020), indicating their
ability to initially inhibit plaque growth, they are ultimately
not as effective at removing existing deposits later on in
the disease process (Sebastian Monasor et al., 2020; Zhang
G. et al., 2021). In addition, extensive literature highlights
the impaired or altered functions that these cells exhibit
throughout the progression of the disease (Prokop et al., 2013;
Gyoneva et al., 2016; Kaur et al., 2019; Sebastian Monasor
et al., 2020). How these changes in function may relate to
morphological, ultrastructural, and transcriptomic states will be
further discussed below.
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Morphological and ultrastructural
diversity

Microglia survey the parenchyma through their ramified
and highly motile processes. This morphological state,
termed ramified or surveying microglia, can rapidly shift in
response to micro-environmental changes (Davalos et al., 2005;
Nimmerjahn et al., 2005). Ameboid microglia represent one
of these morphological shifts and are observed notably after
acute brain injury and in conditions where phagocytosis of
debris or pathogens takes place (Giulian, 1987; Savage et al.,
2019). This ameboid state has a large and round cell body
which at first possess thin, almost invisible, processes that
later on retract, which is thought to aid in microglia’s ability
to migrate across the brain (Lu et al., 2011; Parakalan et al.,
2012; Leyh et al., 2021). In AD pathology, the interaction
between microglia and Aß can drive this morphological state.
Curiously, morphological alterations linked to microglia’s close
association with Aß plaques in the neocortex of 5-month-
old male and female TgCRND8wt/tg; CXC3CR1GFP/wt mice
[mouse model with Swedish and Indiana mutations in APP
(Chishti et al., 2001)] include a decrease in ramification,
surface area, cell volume, number of processes and junctions
(Plescher et al., 2018), an atrophy unlike the increased cell
soma size traditionally associated with ameboid microglia
(Leyh et al., 2021). This ameboid morphology has also been
suggested to reflect microglial proliferation observed nearby Aß
plaques in the post-mortem hippocampus of patients with AD
(Marlatt et al., 2014).

Other morphological states include hypertrophic microglia–
large cell bodies with short and thick processes–which have
been identified in various pathological mouse models (e.g.,
traumatic brain injury, AD pathology), along with human AD
cases (Walker and Lue, 2015; Zanier et al., 2015; Romero-
Molina et al., 2018; Ohm et al., 2020). Indeed, this state
is conserved in human post-mortem brain samples, being
described in the hippocampus of aged individuals with AD
(mean age of 77 and Braak stage IV-VI) (Bachstetter et al.,
2015). Another state termed dystrophic microglia (also referred
to as senescent in the literature) was uncovered in aging and
notably near tau pathology (neurofibrillary degeneration) in
AD human brains (Streit et al., 2004, 2009, 2020). These
cells were additionally found in the middle temporal gyrus of
healthy individuals (Swanson et al., 2020) and in the dorsal
hippocampus of aged (7.5 years old) male tree shrews that
developed hyperphosphorylated tau (Rodriguez-Callejas et al.,
2020). Characteristic features of these cells include spherical
swellings in their tortuous processes, notable accumulation of
lipofuscin deposits (Streit et al., 2004, 2009, 2020; Lopes et al.,
2008), and immunohistoreactivity to L-ferritin, a marker of
cellular senescence (Lopes et al., 2008; Swanson et al., 2020).
However, recent studies suggest that this microglial morphology
could be linked to the pH of the brain rather than AD pathology
as it was shown that lowering the pH of the brain was associated

with an increased abundance of dystrophic microglia (Paasila
et al., 2019). While hypoxia is associated with low pH, this
study investigated the effect of changing pH without altering the
oxygen content (Paasila et al., 2019).

Ultrastructural heterogeneity, including microglia’s diverse
relationships with Aß and dystrophic neurites, can be observed
in AD pathology using electron microscopy (EM) (Stalder
et al., 1999; El Hajj et al., 2019). EM is a powerful imaging
tool allowing to demystify the presence and functional state of
various organelles within cells and their interactions with the
micro-environment, but also the topographical heterogeneity
of microglia. For instance, using scanning EM, Dyne et al.,
investigated the ultrastructural morphology (cell body shape,
processes length, surface topology, aspect ratio) of human C20
cells [immortalized human microglial cell line from resected
adult human brain samples] that were treated for 24 h with Aß.
These cells showed a diverse topography based on their surface
(designated as smooth, blebbed, ruffled or pitted depending on
the number and size of their cavities) and displayed enlarged
pores compared to an anti-inflammatory condition [interleukin
(IL)-4 treatment for 24 h], a change hypothesized to be
associated with phagocytosis (Dyne et al., 2021).

EM imaging was also employed to investigate ultrastructural
microglial alterations in 14-month-old APP-PS1 male mice
where microglia were shown to possess increased markers of
cellular stress [e.g., endoplasmic reticulum (ER) dilation], a
phenomenon which was exacerbated in microglia associated
with dystrophic neurites and Aß (El Hajj et al., 2019). Microglial
ultrastructural heterogeneity in AD pathology is also highlighted
by the presence of dark microglia, a state associated with
numerous markers of cellular stress and advanced/tertiary
lysosomal organelles (Bisht et al., 2016b; St-Pierre et al., 2019,
2020). While this state is rarely present in adulthood during
normal physiological conditions, it is notably more abundant
in pathological conditions, including in 14-month-old APP-PS1
male mice (Bisht et al., 2016b). There are notable differences
between dark microglia and their non-dark (or more typical)
counterparts, which includes markers of oxidative stress (e.g.,
a condensed, electron-dense cyto- and nucleoplasm, altered
mitochondria, dilated ER) and a remodeled nuclear chromatin
pattern (Bisht et al., 2016a,b; St-Pierre et al., 2019, 2020).
Dark microglia possess highly ramified, dark processes which
frequently interact with axon terminals and dendritic spines
(Bisht et al., 2016a); suggesting that they likely play a role in the
synaptic dysfunction and loss observed in AD.

Microglial signature heterogeneity

Genome-wide association studies uncovered numerous
genes associated with a higher risk of developing late-
onset AD [reviewed in Bertram and Tanzi (2009)]. One of
these genes, triggering receptor expressed on myeloid cells
2 (trem2), was shown to be crucial for the appearance of
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various microglial states, including the DAM reported in
male and female 5xFAD mice at 3, 6, and 8 months of age
(Keren-Shaul et al., 2017). The DAM transcriptomic state is
associated with a TREM2-dependent decrease of homeostatic
genes (e.g., p2ry12, tmem119) and increase of disease signature
genes (e.g., clec7a, spp1, itgax) (Keren-Shaul et al., 2017).
The necessity of TREM2 for the emergence of DAM was
also confirmed by independent studies in which 7-month-
old male and female 5xFAD mice were crossed with either
homozygous or heterozygous TREM2-/- mice and injected
intracerebrally with tau. The latter resulted in a reduced
expression of DAM genes in the 5xFAD × TREM2+/- mice
compared to 5xFAD × TREM2+/- mice, which was further
exacerbated by the whole-brain knock-out of TREM2, when
examined in both the cortex and hippocampus of these mice
(Delizannis et al., 2021).

DAM were suggested to restrict themselves/reside
primarily nearby Aß plaques–making it an important area
of interest for therapeutical targeting (Keren-Shaul et al.,
2017). Since the initial discovery by Keren-Shaul et al.,
this particular microglial signature has been uncovered in
several other mouse models of AD pathology, including
in 9-month-old homozygous APP-KI male and female
mice [intercrossing of the heterogenous APPNL−F−G-
KI mice, a mouse model with a Swedish, Iberian and
Artic mutation in APP (Saito et al., 2014)] (Swartzlander
et al., 2018). A summary of the overlap between DAM
and other microglial states mentioned in this review
is provided in Figure 1. In addition, DAM genes were
observed notably in 6-month-old male TgCRND8 mice
using RNA sequencing on laser capture microdissected
non- and plaque-associated microglia; the DAM signature
was largely restricted to nearby Aß plaques, highlighting
the necessity of Aß plaques to induce this unique state
(Rothman et al., 2018). Of note, while primary mouse microglial
cells treated 12 h with fibrillar Aß recapitulated the DAM
signature, cells treated for 12 h with oligomeric Aß did
not, stressing the importance of an amyloid conformation
for this particular microglial response (McFarland et al.,
2021). Tau, in conjuncture with Aß, was also shown to
drive the expression of the DAM signature in 7-month-
old 5xFAD × P301S mice injected stereotactically with tau
[P301S is mouse model expressing microtubule associated
protein tau (MAPT) with a human PS301 mutation
(Allen et al., 2002; Bellucci et al., 2004; Yoshiyama et al.,
2007)] (Lodder et al., 2021) and 13-month-old APP-PS1
female mice both with and without the P301L mutation
that induces the production of hyperphosphorylated tau
(Natunen et al., 2020). An increased expression of DAM
genes (e.g., clec7a, cd68, trem2) was also shown in tau
pathology mouse models; e.g., in the hippocampus of 9–12-
month-old P301S male and female mice (Romero-Molina
et al., 2018) and in the cerebral cortex of 7-month-old

FIGURE 1

Overlap between the various microglial and astrocytic
signatures described in human and mice, and the disease
associated microglia and disease-associated astrocytes. HAM,
human AD microglia; MGnD, neurodegenerative disease
phenotype; ARM, activated-response microglia; MARP,
microglial Aß response proteins; AD1, Alzheimer’s disease 1;
LDAM, lipid droplet-accumulating microglia; TBD, to be
determined. Figure was created using Biorender.

rTg4510 mice [model expressing P301L mutation in
MAPT (Ramsden et al., 2005; Santacruz et al., 2005)]
(Sobue et al., 2021).

Further investigation identified various substates of DAM
emphasizing the vast heterogeneity observed even within
individual microglial states. These include, for instance, a pro-
or anti-inflammatory substate in 6–8 month-old female 5xFAD
mice (Rangaraju et al., 2018), and a senescent substate (as
shown by telomere shortening, increased beta-galactosidase
activity and changes in the expression of genes such as serpine1,
cdkn1/2a and casp8 associated with senescence) in 4, 6, 10 and
12/13 month-old APP-PS1 male and female mice (Hu et al.,
2021). In addition to this intra-state diversity reported for
the DAM signature, both the abundance and gene enrichment
scores were found to be affected by the utilized mouse strain
(Yang et al., 2021), further stressing the myriad of factors capable
of affecting microglial heterogeneity.

Moreover, the DAM signature transcriptomically overlaps
with the activated-response microglia (ARM), another
microglial state identified in the cortex and hippocampus
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of 3, 6, 12 and 21-month-old APPNL−G−F and C57BL/6 male
and female mice, the latter which increases with age and
pathology (Sala Frigerio et al., 2019). This signature seems to be
strongly driven, however, by Aß as shown by the drastic increase
of the hippocampal ARM population in 10/11-month-old vs
4-month-old APP-PS1 mice, and was also mildly increased in a
tau pathology mouse model (Thy-Tau22 mice) [mouse model
with G272V and P301S mutations in MAPT (Schindowski
et al., 2006)] at 4 vs 10/11 months of age (Sierksma et al.,
2020). Fibrillar Aß was further associated with an age-related
progressive alteration of microglial signatures, reflected through
changes in microglial Aß response proteins (MARPs), which
partially overlap with the DAM signature and show impaired
phagocytosis in two models of amyloid deposition: in 1, 3,
6 as well as 12 month-old APP-PS1 and APPNL−G−F mice,
both male and female (Sebastian Monasor et al., 2020). Other
microglial states reported in AD pathology include the MGnD,
which displays a down-regulation of homeostatic genes (e.g.,
p2ry12, tmem119, fcrls) and an up-regulation of genes such as
apoe, clec7a, and trem2, linked to the phagocytosis of apoptotic
neurons and dystrophic neurites in 24-month-old male and
female APP-PS1 mice (Krasemann et al., 2017). It was also
reported that the MGnD state presents an increased secretion
of extracellular vesicles containing tau in 6-month-old male
and female APPNL−G−F mice injected with adeno-associated
virus (AAV)-P301L-tau, highlighting this state’s potential to
propagate tau (Clayton et al., 2021).

While partial or overlapping DAM signatures were
uncovered in numerous mouse models of AD pathology, the
particular DAM signature did not correlate with the lipid
droplet-accumulating microglia (LDAM), a state associated
with increased production of reactive oxygen species (ROS) and
impaired phagocytosis, in the hippocampus of 20-month-old
C57BL/6 and GRN-/- male mice, a model of frontotemporal
dementia (Marschallinger et al., 2020). Recent studies have,
however, revealed a conservation of the DAM signature
in brains of patients with AD in comparison to healthy
individuals. Indeed, using single-nucleus (sn) RNA-seq, Gerrits
et al., identified two microglial profiles: AD1–composed of
three subclusters enriched for some DAM genes (e.g., LPL,
ITGAX, SPP1) (higher abundance found in patients with AD)
and AD2–three regrouped microglial subclusters enriched
notably in homeostatic genes (higher abundance in healthy
control patients) (Gerrits et al., 2021). A reduced expression
of P2RY12, a marker traditionally linked to homeostatic
microglia and downregulated in mouse disease-associated
microglial signatures [DAM (Keren-Shaul et al., 2017), MGnD
(Krasemann et al., 2017)], and dark microglia (Bisht et al.,
2016b) was observed in frontal and temporal cortices of human
post-mortem AD brains compared to control individuals
(Maeda et al., 2021). While some studies found an overlap
between the mouse DAM and human microglial signatures in
the post-mortem prefrontal cortex of patients with AD (Mathys

et al., 2019), others have instead shown that this distinct
population was not conserved. Indeed, human AD microglia
(HAM) in the frontal and temporal cortex do not possess the
same profile described in mouse models of AD pathology,
but are present in another neurodegenerative condition (post-
mortem brains samples of patients with multiple sclerosis)
(Srinivasan et al., 2020). A lack of DAM in human was also
reported by Sobue et al., in the precuneus of individuals with AD
(Sobue et al., 2021). A summary of microglial states identified
transcriptomically in AD pathology is provided in Table 2.

While the most commonly used models of AD pathology at
this point continue to be non-primates [reviewed in Jankowsky
and Zheng (2017)], there are notable gaps between these
microglia and the ones studied in human post-mortem samples.
The challenge in translating results across species could in part
result from the difficulty in removing intact microglial cells from
post-mortem brain samples and the artifacts associated with
long post-mortem intervals (Srinivasan et al., 2020), as well as
a lack of murine models fully replicating the intricate features
of the disease (Boche and Gordon, 2021). Of note, non-human
primate models of AD, such as the common marmoset, have
shown incredible similarities to human Aß pathology (Latimer
et al., 2019; Li et al., 2019). Nonetheless, non-primate models of
AD pathology have provided invaluable insights into microglial
heterogeneity that highlight the complexity of microglia as
a glial and immune cell type. An area of increasing interest
is the design of specific radiotracers to study inflammation
within the CNS through positron emission tomography (PET)
[reviewed by Narayanaswami et al. (2018)]. This non-invasive,
in vivo technique has been used previously to investigate
microglial activity in conjunction with the (neuro)inflammation
marker, translocator protein 18-kDa (TSPO) expressed on
the outer membrane of mitochondria (Ghadery et al., 2019;
Zhang L. et al., 2021). It is important to note that TSPO is
not specific to microglia, being also expressed by other CNS
cells (e.g., astrocytes) (Zhang L. et al., 2021). In addition,
TPSO’s expression was shown to vary between rodents and
human, where under pro-inflammatory conditions (treatment
with lipopolysaccharide), TSPO gene expression increased in
primary microglial cells from postnatal day 0–5 C57BL/6 mice
contrary to adult microglia isolated from the temporal lobe of
patients with epilepsy (Owen et al., 2017). Although there are
many shortcomings to microglial PET analysis, further advances
could lead to the development of specific radiotracers to study
in vivo microglial heterogeneity in humans.

Astrocyte heterogeneity in
Alzheimer’s disease

“Astrocyte reactivity” commonly refers to the plasticity
or remodeling these cells undergo when responding to
micro-environmental changes during pathological conditions
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TABLE 2 Summary of microglial and astrocytic states observed in mouse models of AD pathology and human post-mortem brains of patients with AD.

State Model Technique Age Sex Main
finding

Main genes References

Microglia

Activated-response
microglia (ARM)

APPNL−G−F mice

APPswe/PS1L166P and
Thy-TAU22 mice

Single cell RNA sequencing

Immunohistochemistry
Bulk RNA sequencing

3, 6, 12 and 21-months

4, 10, 11 months

Male and female

Male

Present during
normal aging
but increase
with AD

Expression of genes
associated with
inflammation (cst7,
clec7a, itgax),
and major
histocompatibility
complex class II (cd74,
h2-Ab1, h2-Aa, ctsb,
ctsd)

Sala Frigerio et al., 2019

Sierksma et al., 2020

AD1 Human post-mortem
(controls, AD)

Single-nucleus RNA
sequencing

NA NA Higher
abundance
found in
patients with
AD

Increased expression
of genes detected in
DAM microglia
including ITGAX,
LPL, GPNMB and
SPP1

Gerrits et al., 2021

AD2 Human post-mortem
(controls, AD)

Single-nucleus RNA
sequencing

NA NA Higher
abundance
found in
control patients

Increased expression
of homeostasis genes,
(CX3CR1 and
P2RY12)

Gerrits et al., 2021

Disease-associated
microglia (DAM)

5xFAD mice

TREM2+/−5xFAD,
TREM2+/+5xFAD,
TREM2−/− 5xFAD mice

AppNL−G−F mice

Tg2576, TgCRND8 mice

CRND8 mice

A/T/N mouse model
(5xFADxPS19 mice
injected with/without tau
seeds)

APP-PS1xTau P301L,
APP-PS1 and Tau P301L
mice

APP751sl, ThyTau22 and
P301S mice

APPNL−G−F mice, rTg4510
and human post-mortem

APP-PS1 mice on
C57BL/6, CAST, PWK and
WSB strains

Single-cell RNA
sequencing,
immunofluorescence
qPCR,
immunofluorescence

FACS, RNA sequencing

RNA sequencing

RNA sequencing

Single-cell RNA
sequencing

Immunofluorescence, RNA
sequencing, qPCR

qPCR, flow cytometry

RNA sequencing

Single-cell RNA
sequencing

1, 3, 6 and 8 months

7 months

9 months

TgCRND8: 1.5, 3, 4.5,
6 and 10 months
Tg2576: 3, 6, 9, 12 and
15 months
3, 6, 12 and 20 months

7 months

13 months

9–18 months
APP751sl, 2–4 and
9–12 months
ThyTau22 and P301S
7–8 months (mice)
NA (human)

9 months

Male and female

Male and female

Male and female

Male TgCRND8 and
Female Tg2576

Male and female

NA

Female

Male and female

Male and female
NA

Female

Associated with
a TREM2-
dependent
decrease of
homeostatic
genes and
increase of
disease
signature genes

Downregulation of the
purinergic receptors
p2ry12/p2ry13, cx3cr1,
and tmem119.
Upregulation of AD
risk factors (apoe, ctsd,
lpl, tyrobp and trem2)

Keren-Shaul et al., 2017

Delizannis et al., 2021

Swartzlander et al., 2018

Rothman et al., 2018

McFarland et al., 2021

Lodder et al., 2021

Natunen et al., 2020

Romero-Molina et al., 2018

Sobue et al., 2021

Yang et al., 2021

(Continued)
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TABLE 2 Continued

State Model Technique Age Sex Main finding Main genes References
Human AD microglia
(HAM)

Human post-mortem
(controls, AD)

Single cell/nucleus RNA
sequencing

< 20 years old
64± 16 years

Male and female Different profile in
humans than in
mouse models
(DAM). Can be
found in other
neurodegenerative
conditions

Downregulation of
MEF2C and
upregulation of
ABCA7, GPR141,
PTK2B, SPI1 and ZYX

Srinivasan et al., 2020

Lipid
droplet-accumulating
microglia (LDAM)

C57BL/6 and GRN−/−

mice
RNA sequencing,
immunohistochemistry,
lipodomics, electron
microscopy

18–20 months Male Associated with an
increase in reactive
oxidative species
production and
impaired
phagocytosis

Expression of slc33a1,
snx17, vps35, cln3,
npc2 and grn

Marschallinger et al., 2020

Microglial amyloid
beta response proteins
(MARP)

APP-PS1 and APPNL−G−F

mice
Mass spectrometry,
immunofluorescence,

1, 3, 6 and 12 months Male and female Partially overlaps
with the DAM
signature (e.g.,
increase in CLEC7a,
APOE) and show
impaired
phagocytosis

N/A Sebastian Monasor et al.,
2020

Neurodegenerative
disease phenotype
(MGnD)

APP-PS1 mice
APPNL−G−F

Immunohistochemistry,
RNA sequencing, qPCR
Immunofluorescence,
qPCR, FACS

9 and 24 months
6 months

Male and female
Male and female

Associated with
Aß-plaques and
phagocytosis of
apoptotic neurons,
increased secretion
of extracellular
vesicles containing
tau

Upregulation of spp1,
itgax, axl, lilrb4, clec7a,
ccl2, csf1, and apoe

Krasemann et al., 2017;
Clayton et al., 2021

Senescent DAM APP-PS1 mice and human
post-mortem brains

Immunohistochemistry
and gene expression
analysis

4, 6, 10 and
12/13 months (mice)
NA (human)

Male and female
(mice)
NA (human)

A substate of the
DAM population,
indicated by
telomere
shortening,
increased
beta-galactosidase
activity and changes
in gene expression
associated with
senescence

Upregulation of
cdkn1a, glb1, and
serpine1

Hu et al., 2021

Astrocytes

Disease-associated
astrocyte (DAA)

5xFAD mice
Human post-mortem
brains (controls, AD)

Single-nucleus RNA
sequencing
Single-nucleus chromatin
accessibility and
transcriptomic
characterization

1.5–2, 4–5, 7–8, 10,
13–14 and 20 months
74–90 years old

Male and female
Male and female

DAA were
suggested to be Fos
like-2 dependent

Upregulation of
serpina3n, and ctsb,
apoe and clu

Habib et al., 2020;
Morabito et al., 2021;

Reactive astrocyte
state

Human post-mortem
brains (control, AD)

Cyclic multiplex
fluorescent
immunohistochemistry

76.7± 11.2 years Male and female Identified by
increased
expression of
astrocytic markers
GFAP and YKL-40.

N/A Muñoz-Castro et al., 2022

Aß, amyloid beta; AD, Alzheimer’s disease; APP, amyloid precursor protein; FACS, fluorescence-activated cell sorting; GFAP, glial fibrillary acidic protein; NA, not available; PS1, presenilin 1; qPCR, quantitative polymerase chain reaction.
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(Escartin et al., 2021). Considered to represent a spectrum of
varying states beginning in the developmental stages (Schitine
et al., 2015; Clarke et al., 2021), astrocytes are often categorized
based on their function and/or outcome on the brain (e.g.,
neuroprotective vs neurotoxic) (Liddelow et al., 2017; Miller,
2018; Matias et al., 2019; Westergard and Rothstein, 2020). The
heterogenous nature of these glial cells ranges from varying
morphology, ultrastructure to -omic signatures, to name a
few. Micro-environmental changes, in both murine models of
AD pathology and in human post-mortem brains of patients
with AD, were also shown to drive this heterogeneity. For
instance, astrocytes’ close interaction with AD hallmarks (e.g.,
dystrophic neurites, Aß plaques) can alter their morphology,
notably resulting in hypertrophic and atrophic phenotypes
(Zhou et al., 2019) as well as their gene and protein expression
[e.g., GFAP, serpina3n, aquaporin 4 (AQP4), intercellular
adhesion molecule 1 (ICAM-1)] (Akiyama et al., 1993; Orre
et al., 2014; Habib et al., 2020; Spanos and Liddelow, 2020;
Morabito et al., 2021).

Morphological and ultrastructural
heterogeneity of astrocytes

On a morphological aspect, astrocytes are distinguished
by their numerous branches that can further ramify, giving
them a star-like appearance in light microscopy [for a detailed
review on protoplasmic astrocytes morphology, see Zhou et al.
(2019)] (Şovrea and Boşca, 2013). Similar to microglial spatial
heterogeneity, astrocytes from different brain regions (e.g.,
cortical layers I-VI, hippocampus) possess diverse morphologies
associated with specific transcriptomic clusters (e.g., larger
and more arborized cells in the hippocampus CA3 vs smaller
ones in the cortical layers 2–4) (Batiuk et al., 2020). In AD
pathology, numerous studies denoted a change in astrocytic
morphology associated with atrophy, including in human post-
mortem brains of late-Braak stages (Verkhratsky et al., 2019),
and in mouse models of AD pathology (Olabarria et al., 2010;
Yeh et al., 2011; Kulijewicz-Nawrot et al., 2012; Diniz et al.,
2017). This atrophy was particularly evident in 3xTg male mice
[Swedish mutation in APP, P301S mutation in MAPT and M146
mutation in PSEN1 (Oddo et al., 2003)], among the medial
prefrontal cortex (mPFC) at 3, 9, 12 and 18 months of age
(Kulijewicz-Nawrot et al., 2012), the dentate gyrus at 6, 12 and
18 months of age (Olabarria et al., 2010) and the entorhinal
cortex at 1, 3, 6, 9 and 12 months of age (Yeh et al., 2011). In
addition, intracerebroventricular injections of oligomeric Aß in
the hippocampus CA1 stratum radiatum of 3-month-old Swiss
male mice were associated with an atrophy of the astrocytic
cytoskeleton resulting in a decreased number of processes and
reduced cell area (Diniz et al., 2017).

Other studies have shown an increased cytoskeleton
hypertrophy or increased complexity of astrocytes near Aß

plaques using GFAP immunolabeling in the hippocampus of 6,
12, and 18-month-old TgF344 male and female rats [Swedish
mutation in APP and humanized PSEN1 (Cohen et al., 2013)]
(Mampay et al., 2020), in the dentate gyrus and hippocampus
CA1 of 18-month-old 3xTg male mice (Olabarria et al., 2010)
and in the cerebral cortex of 3, 6 and 12-month-old APP-
PS1 mice (increase in volume and process length) (Li et al.,
2020). A sex-specific increase in the abundance of hypertrophic
astrocytes in 7–9 month-old APP-PS1 female compared to
male mice was observed in the outer molecular layer of the
dentate gyrus (Richetin et al., 2017). These differences highlight
the significant impact of the micro-environment, notably AD
hallmarks, alongside the effect of sex, age, and model, on
the morphological differences observed across studies. As
aforementioned, an atrophy and/or hypertrophy of astrocytes
has been shown in AD pathology, however, the variety of
regions, models, species, ages, and analytic techniques makes it
challenging to correlate morphological heterogeneity in human
AD cases. For instance, in the subiculum of human post-
mortem brain samples of early- and late-onset AD compared to
healthy individuals, 3D reconstruction of astrocytes using GFAP
immunolabeling showed no morphological differences (volume,
cell area) (Taipa et al., 2018).

As shown with microglial studies, EM was used by
numerous research teams to investigate the ultrastructure and
function of astrocytes in AD pathology. Indeed, Lin et al.,
demonstrated the presence of tau filaments within astrocytes
in the spinal cord white matter of a JPNL3 [expressing the
tau mutation P301L (Lewis et al., 2000)] mouse model of
tauopathy (Lin et al., 2003). Others found astrocytic engulfment
of dystrophic neurites near Aß plaques in the hippocampus
of 6 and 12-month-old APP-PS1 male mice and in the
medial temporal lobe of patients with AD, further clarifying
the phagocytic role of astrocytes that appears conserved
across species (Gomez-Arboledas et al., 2018). Astrocytic
processes were also shown to pierce inside the amyloid
core of a large mature plaque where they fragmented the
latter, underlining the intimate relationship between these two
elements (Wegiel et al., 2000). EM was also pivotal in shedding
light on certain astrocytic dysfunctions in AD, including
mitochondrial ultrastructural alterations (Baloyannis, 2019) and
the autophagic functions in vitro of APOE3 and APOE4
astrocytic cells from the cerebral cortices of postnatal day 1–3
mice (Simonovitch et al., 2016). Changes in the expression of
the water channel AQP4 between perivascular astrocytic end-
feet and plaque-associated astrocytes was also uncovered in
5xFAD and tg-ArcSwe [Swedish and Artic mutation in APP
(Lord et al., 2006)] mice using this imaging technique (Yang
et al., 2011, 2017; Smith et al., 2019). Despite EM’s extensive
applications, few studies have explored the ultrastructural
diversity and heterogeneity of astrocytes in AD pathology
using this approach. Therefore, the field would greatly benefit
from in-depth EM studies investigating astrocytes, similar to
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what was uncovered in microglia from mouse model of AD
pathology (i.e., dark microglia) (Bisht et al., 2016b) and in
post-mortem brain samples of individuals with AD (El Hajj
et al., 2019) and schizophrenia (i.e., dystrophic-like microglia)
(Uranova et al., 2018).

Heterogeneity of astrocytic molecular
signatures in Alzheimer’s disease

Many recent efforts to uncover astrocytic heterogeneity
have employed -omics techniques to characterize the varying
astrocytic states observed in AD pathology (see Table 2
for a summary of astrocytic molecular signatures in AD).
Like microglia, astrocytic regional differences can already be
appreciated at steady-state, prior to dishomeostasis driven
by micro-environmental changes (John Lin et al., 2017).
Indeed, scRNA-seq investigations have identified 5 astrocytic
subclusters heterogeneously dispersed in both the cortex and
the hippocampus of 2-month-old C57BL/6 mice (Batiuk et al.,
2020). For instance, cortical cluster 1, which associated with
a mature astrocytic signature [high expression of gfap and
angiotensinogen (agt)], was located in the subpial layer while
cluster 5, an intermediate between mature and immature
astrocytes (genes linked notably with mitosis and energy
metabolism), was found in cortical layers 2/3 and 5 (Batiuk et al.,
2020). With the objective of determining heterogeneity based
on transcriptional signatures, astrocytes were studied using
snRNA-seq in the hippocampus and cortex of 7-month-old
5xFAD male and female mice (Habib et al., 2020). In this study,
6 transcriptional states were distinguished by their uniquely
up- and down-regulated genes, including the disease-associated
cluster, which expressed genes associated with APP processing
and Aß production (e.g., serpina3n, ctsb) and clearance (e.g.,
apoe, clu), as well as inflammatory signaling (Habib et al., 2020).
In later studies, the disease-associated astrocytic signature was
suggested to be dependent on Fos like-2 (FOSL2) (Morabito
et al., 2021), a subunit of the activator protein 1 (AP-1)
transcription factor (Lee et al., 2021).

As for microglial studies examining the translation of
disease-associated states from mouse to human, conservation
of the astrocytic disease-associated gene signature across
species is still considered controversial in AD. A summary
of the overlap between disease-associated astrocytes and other
astrocytic states mentioned in this review is provided in
Figure 1. For instance, Smith et al., uncovered 6 astrocytic
subclusters, located in the entorhinal and somatosensory cortex
from aged non-diseased control individuals (Braak 0-II) and
patients with AD (Braak III-VI), using snRNA-seq. These
subclusters were enriched for genes associated with diverse
astrocytic roles and pathways from homeostatic functions (e.g.,
neurotransmitter uptake) to immune responses (Smith et al.,
2022). The disease-associated signature was not attributed to a

unique cluster, highlighting differences in astrocytic populations
between species (Smith et al., 2022). Other astrocytic signatures
found in the post-mortem human brain of patients with
AD vs age-matched controls include a reactive astrocytic
state, denoted notably by a high expression of the astrocytic
proteins GFAP and chitinase 3-like 1 (chi3l1 or YKL-40), which
was observed in the temporal association cortex using cyclic
multiplex fluorescent immunohistochemistry combined with
spectral clustering analysis (Muñoz-Castro et al., 2022). Human
astrocytic heterogeneity in the post-mortem human AD brain
was also described by Zhou et al. using snRNA-seq analysis
in prefrontal cortex samples which showed a down-regulation
of genes associated with the metabolic coordination between
neurons and astrocytes [e.g., superoxide dismutase 2 (sod2),
hypoxia inducible lipid droplet associated (hilpda), fatty
acid binding protein 5 (fabp5)] (Zhou et al., 2020). While
the aforementioned studies have helped to enlighten the
heterogeneity of astrocytes in humans and mouse models of
AD pathology, further investigation is required to fully unravel
the puzzle behind the functions of the various astrocytic
states observed in AD.

Discussion

The evidence for the involvement of both diverse microglial
and astrocytic states in the etiopathology of AD has been
outlined above. In situ, microglia and astrocytes, as well as
other cell types found throughout the CNS, exist in a pool
of cellular signals, constantly exchanging information notably
regarding the micro-environmental status (Fakhoury, 2018; Jha
et al., 2019). Every step the field takes toward understanding
these cellular and molecular interactions is another step closer
to fully understanding the pathogenesis of AD. Within the broad
categories of “microglia” and “astrocytes” lays even further
complexity with recent studies demonstrating distinct states of
both microglia (Bisht et al., 2016b; Keren-Shaul et al., 2017;
Krasemann et al., 2017; Rangaraju et al., 2018; Hashemiaghdam
and Mroczek, 2020; Nguyen et al., 2020; Xu et al., 2021; Yang
et al., 2021) and astrocytes (Cunningham et al., 2019; Batiuk
et al., 2020; Sofroniew, 2020). Some of the key questions
that remain: How do these heterogeneous glial cells interact
with each other? How do their interactions participate in the
pathogenesis of AD?

The prominent role that both glial cells play in the
pathogenesis of neurodegenerative diseases [through
mechanisms such as blood-brain-barrier decay, extracellular
matrix alterations, and production of ROS, for example
(Serrano-Pozo et al., 2013; Acosta et al., 2017; Cragnolini
et al., 2019; Gleichman and Carmichael, 2020; Liddelow et al.,
2020)] also emphasizes the importance of studying inter-
glial communication. This bidirectional communication was
demonstrated to occur through released cytokines, metabolites,
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and neurotransmitters, among other mediators [reviewed in Jha
et al. (2019)].

Because of the demonstrated roles of astrocytes and
microglia in CNS inflammatory processes (Fakhoury, 2018),
a comprehensive analysis of inflammatory signaling between
glial cells reveals possible mechanisms for AD pathogenesis.
Through the analysis of microglial inflammatory signaling
molecules on astrocytes via a number of transgenic murine
models, it has been demonstrated that the beneficial and/or
harmful effects of astrocytes can be regulated by microglia
and their subsequent cytokine secretions [tumor necrotic
factor-alpha, complement component c1q and IL-1 alpha, for
instance; (Liddelow et al., 2017; Shinozaki et al., 2017; Jha
et al., 2019; Kim and Son, 2021)]. However, this relationship
is not unidirectional, rather, the various microglial states
and functions are heavily influenced by astrocytic signaling—
particularly through plasminogen activator inhibitor-1 (Jeon
et al., 2012), orosomucoid-2 (Jo et al., 2017), lipocalin-1 (Jha
et al., 2015, 2019), pentraxin related protein-3 (Jeon et al.,
2010), AQP4 (Smith et al., 2019) and trophic factors (Rocha
et al., 2012; Norden et al., 2014) to name a few. For example,
depletion of astrocytic lipid-binding protein, APOE, was shown
to decrease tau-associated neurodegeneration and decrease
microglial phagocytosis (Wang et al., 2021), and research is
frequently emphasizing the role of APOE-TREM2 pathways as
a means of microglial-astrocyte communication, particularly in
modulating microglial homeostasis (Yeh et al., 2016; Krasemann
et al., 2017; Taylor et al., 2020; Zhou et al., 2020; Mahan et al.,
2022; Smith et al., 2022). Further, it has been demonstrated
in 7-month-old APP/TTA (tetracycline transactivator) male
mice that microglia-astrocyte communication through the
complement system, specifically the complement C3, was
involved in Aß pathology (Lian et al., 2016). Inhibition of this
pathway, specifically via a signal transduction and activator of
transcription-3 (STAT3) inhibitor, can mitigate tau pathology
and inflammatory markers in the brain (excluding cerebellum)
of PS19 tau transgenic mice (Litvinchuk et al., 2018). Another
promising avenue of research pertain to toll-like receptors
(TLRs) that many studies have implicated in the pathogenesis
of AD (Liu et al., 2012; Li L. et al., 2021). Specifically, there
is evidence that extracellular Aß and alpha-synuclein activate
and upregulate TLR-2 and TLR-4, subsequently increasing a
production of inflammatory mediators which interact with
surrounding microglia and neuronal cells (Hughes et al., 2020;
Li L. et al., 2021). Overall, TLRs, APOE, and C3 are molecules
at the intersection of microglia-astrocyte communication which
have demonstrated prominent roles in AD and are worth
further investigation.

There is a substantial difficulty in deciphering the
independent mechanisms of astrocytes and microglia in
the pathogenesis of AD—making the investigation of their
interactions and combined effects further complex. As
described above, one promising methodology that is currently

being utilized to investigate cellular heterogeneity and even to
measure potential drug candidates for AD is multidimensional
sc/sn-RNA-seq (Hammond et al., 2019; Batiuk et al., 2020;
Olah et al., 2020; Xu et al., 2021; Smith et al., 2022). While a
myriad of astrocytic and microglial states have been uncovered
in recent years, various considerations must be taken into
account when interpreting the transcriptomic heterogeneity
of glial cells. Indeed, it is still unknown if the many microglial
and astrocytic states observed are the results of AD pathology
itself or technical artifacts. For instance, visualization of
scRNA-seq and its interpretation can be distorted when using
t-distributed stochastic neighbor embedding (t-SNE), which
does not provide information on cellular heterogeneity based
on neighboring cells, but rather on gene set. This difference
can result in the visual misrepresentation of dense clusters
when interpreting the data (Narayan et al., 2021). In addition,
a myriad of technical and biological difficulties in scRNA-seq
have been recently reported, from batch effect to incorrectly
reported data and differing statistical approaches (Tung
et al., 2017; Hicks et al., 2018; Squair et al., 2021), as well as
artifacts caused by cell preparation (Nguyen et al., 2018). These
variations highlight the challenges encountered when using the
scRNA-seq technique to accurately study glial heterogeneity as
well as the need to complement sequencing experiments with
in situ techniques. In addition, with the expending popularity
of this technique, various protocols were established (e.g.,
Smart-seq, Smart-seq2, MARS-seq) with differing results
obtained in terms of gene detections and sensitivity, making
it difficult to compare results across transcriptomic studies
from different research groups (Ziegenhain et al., 2017). In
isolated microglia, it has been shown that enzymatic digestion
of the brain to generate single-cell samples affected their gene
expression, underlining the sensitivity of this cell type to
environmental changes and the need for careful processing
(Marsh et al., 2022).

Moreover, further limitations pertaining to the varying
states generated from sc- and snRNA-seq have to be taken into
account. While snRNA-seq has gained popularity over single-
cell due to its possible usage on frozen samples (Lake et al.,
2016; Hu et al., 2017; Bakken et al., 2018; Thrupp et al., 2020),
it remains controversial if this technique is suitable for glial cell
investigation. Some studies have shown similar transcriptomic
results in 2-month-old C57BL/6 male mice and in the superior
frontal gyrus of human post-mortem brains when comparing
fresh vs frozen samples as well as sc- vs sn- techniques (Gerrits
et al., 2020). However, others have shown that snRNA-seq
did not properly detect microglia in the temporal cortices of
human brains (Thrupp et al., 2020), which would provide a
possible explanation for the lack of translation regarding the
mouse glial states (e.g., DAM) in human samples. Another
reason behind the lack of gene conservation measured across
species could arise from the cells themselves as differences
between the transcriptomes of human and mouse astrocytes,
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for instance (e.g., responses to oxidative stress and hypoxia,
metabolic differences), were reported (Li J. et al., 2021).

The abundant research described throughout this review,
focusing on heterogeneity within the field of glia, does not
paint a simple picture of isolated roles, singular functions,
and straightforward interactions. Instead, with every new
discovery attributing a discrete function to certain cytokines,
lipoproteins, enzymes, or receptors, or with the imaging of
a new functional state for each glial cell, the whole picture
becomes further complex. The exact role of each cellular
states is still in discovery, with their location, time-point,
genes, and macro- and micro-environment all appearing as
critical variables in determining cellular expression. As further
research is conducted, the specialization of our analyses (e.g.,
pertaining to receptor expression, mitochondrial ultrastructure,
cytoplasmic density, cytokine release, for example) of these
cells will become increasingly important to fully understand
the function and involvement in disease-states. Further, as
techniques in the fields of imaging and -omics continue to
develop, it is likely that the number of distinct categories
will grow further as well. As described above, even within a
particular glial state, such as DAM (Keren-Shaul et al., 2017;
Rangaraju et al., 2018; Hu et al., 2021), there is immense
diversity observed. Therefore, integrating different experimental
approaches into mutual understanding is essential to the future
of this field. With all this in mind, glial heterogeneity opens
the idea that, while they may be categorized in simple terms,
microglia and astrocytes account for a large number of distinct
cell types and functional states and that these cellular states
may act in accordance with each other but also, perhaps, in
opposition. These various possibilities are important to keep
in mind as these cellular states are investigated in health and
in neurological disorders such as AD. As both the fields of
microglia and astrocytes continue their respective progress,
communication between these fields and concurrent research of
glial communication is critical to providing discoveries in the
search for therapeutic novelty in AD. Lastly, there is always a
need for further examination in humans as those findings will
inform preclinical experiments and help overcome translational
barriers in AD research.
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St-Pierre, M.-K., Šimončičová, E., Bögi, E., and Tremblay, M. È (2020). Shedding
Light on the Dark Side of the Microglia. ASN Neuro. 12:1759091420925335. doi:
10.1177/1759091420925335

Streit, W. J., Braak, H., Xue, Q.-S., and Bechmann, I. (2009). Dystrophic
(senescent) rather than activated microglial cells are associated with tau pathology
and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol.
118, 475–485. doi: 10.1007/s00401-009-0556-6

Streit, W. J., Khoshbouei, H., and Bechmann, I. (2020). Dystrophic microglia in
late-onset Alzheimer’s disease. Glia 68, 845–854. doi: 10.1002/glia.23782

Streit, W. J., Sammons, N. W., Kuhns, A. J., and Sparks, D. L. (2004). Dystrophic
microglia in the aging human brain. Glia 45, 208–212. doi: 10.1002/glia.
10319

Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K.-H., Mistl, C.,
Rothacher, S., et al. (1997). Two amyloid precursor protein transgenic mouse
models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. U.S.A 94,
13287–13292.

Swanson, M. E. V., Murray, H. C., Ryan, B., Faull, R. L. M., Dragunow, M.,
and Curtis, M. A. (2020). Quantitative immunohistochemical analysis of myeloid
cell marker expression in human cortex captures microglia heterogeneity with
anatomical context. Sci. Rep. 10:11693. doi: 10.1038/s41598-020-68086-z

Swartzlander, D. B., Propson, N. E., Roy, E. R., Saito, T., Saido, T., Wang, B.,
et al. (2018). Concurrent cell type-specific isolation and profiling of mouse brains

Frontiers in Cellular Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fncel.2022.932572
https://doi.org/10.1016/j.neurobiolaging.2017.05.025
https://doi.org/10.1016/j.nbd.2012.04.014
https://doi.org/10.1002/glia.23804
https://doi.org/10.1002/glia.23804
https://doi.org/10.3389/fncel.2018.00421
https://doi.org/10.1186/s12974-018-1265-7
https://doi.org/10.1038/s41583-020-0325-z
https://doi.org/10.1038/s41583-020-0325-z
https://doi.org/10.1038/nn.3697
https://doi.org/10.1016/j.celrep.2019.03.099
https://doi.org/10.1126/science.1113694
https://doi.org/10.1007/978-1-4939-9658-2_2
https://doi.org/10.1007/978-1-4939-9658-2_2
https://doi.org/10.1016/j.neuron.2012.03.026
https://doi.org/10.1016/j.neuron.2012.03.026
https://doi.org/10.2353/ajpath.2006.060002
https://doi.org/10.3389/fncel.2015.00076
https://doi.org/10.7554/eLife.54083
https://doi.org/10.1097/NEN.0b013e3182933788
https://doi.org/10.1016/j.celrep.2017.04.047
https://doi.org/10.1016/j.celrep.2017.04.047
https://doi.org/10.1002/glia.23575
https://doi.org/10.15252/emmm.201910606
https://doi.org/10.15252/emmm.201910606
https://doi.org/10.1016/j.tips.2021.11.006
https://doi.org/10.1016/j.tips.2021.11.006
https://doi.org/10.3233/JAD-151101
https://doi.org/10.1186/s40478-019-0728-0
https://doi.org/10.1186/s40478-019-0728-0
https://doi.org/10.1007/s00401-021-02372-6
https://doi.org/10.1007/s00401-021-02372-6
https://doi.org/10.1186/s40478-020-01099-x
https://doi.org/10.1016/j.it.2020.07.004
https://doi.org/10.1016/j.it.2020.07.004
https://doi.org/10.1186/s13024-018-0244-x
https://doi.org/10.1186/2049-9256-1-18
https://doi.org/10.1038/s41467-019-11674-z
https://doi.org/10.1093/brain/aww016
https://doi.org/10.3390/cells9112415
https://doi.org/10.3390/cells9112415
https://doi.org/10.1016/j.neuron.2014.05.004
https://doi.org/10.1016/j.neuron.2014.05.004
https://doi.org/10.1038/s41467-021-25960-2
https://doi.org/10.1016/j.celrep.2020.107843
https://doi.org/10.1016/j.celrep.2020.107843
https://doi.org/10.1016/S0002-9440(10)65423-5
https://doi.org/10.1016/S0002-9440(10)65423-5
https://doi.org/10.1007/978-1-4939-9658-2_8
https://doi.org/10.1177/1759091420925335
https://doi.org/10.1177/1759091420925335
https://doi.org/10.1007/s00401-009-0556-6
https://doi.org/10.1002/glia.23782
https://doi.org/10.1002/glia.10319
https://doi.org/10.1002/glia.10319
https://doi.org/10.1038/s41598-020-68086-z
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-932572 August 12, 2022 Time: 7:16 # 17

St-Pierre et al. 10.3389/fncel.2022.932572

in inflammation and Alzheimer’s disease. JCI Insight 3:121109. doi: 10.1172/jci.
insight.121109

Taipa, R., Ferreira, V., Brochado, P., Robinson, A., Reis, I., Marques,
F., et al. (2018). Inflammatory pathology markers (activated microglia and
reactive astrocytes) in early and late onset Alzheimer disease: a post
mortem study. Neuropathol. Appl. Neurobiol. 44, 298–313. doi: 10.1111/nan.1
2445

Taylor, X., Cisternas, P., You, Y., You, Y., Xiang, S., Marambio, Y., et al. (2020).
A1 reactive astrocytes and a loss of TREM2 are associated with an early stage of
pathology in a mouse model of cerebral amyloid angiopathy. J. Neuroinflamm.
17:223. doi: 10.1186/s12974-020-01900-7

Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R.,
et al. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse
loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580.
doi: 10.1002/ana.410300410

Thrupp, N., Sala Frigerio, C., Wolfs, L., Skene, N. G., Fattorelli, N., Poovathingal,
S., et al. (2020). Single-Nucleus RNA-Seq Is Not Suitable for Detection of
Microglial Activation Genes in Humans. Cell Rep. 32:108189. doi: 10.1016/j.celrep.
2020.108189

Tsacopoulos, M., and Magistretti, P. J. (1996). Metabolic coupling between glia
and neurons. J. Neurosci. 16, 877–885.

Tung, P.-Y., Blischak, J. D., Hsiao, C. J., Knowles, D. A., Burnett,
J. E., Pritchard, J. K., et al. (2017). Batch effects and the effective design
of single-cell gene expression studies. Sci. Rep. 7:39921. doi: 10.1038/srep3
9921

Unger, M. S., Schernthaner, P., Marschallinger, J., Mrowetz, H., and Aigner,
L. (2018). Microglia prevent peripheral immune cell invasion and promote
an anti-inflammatory environment in the brain of APP-PS1 transgenic mice.
J. Neuroinflamm. 15:274. doi: 10.1186/s12974-018-1304-4

Uranova, N. A., Vikhreva, O. V., Rakhmanova, V. I., and Orlovskaya, D. D.
(2018). Ultrastructural pathology of oligodendrocytes adjacent to microglia in
prefrontal white matter in schizophrenia. NPJ Schizophr. 4:26. doi: 10.1038/
s41537-018-0068-2

Verkhratsky, A., and Nedergaard, M. (2018). Physiology of Astroglia. Physiol.
Rev. 98, 239–389. doi: 10.1152/physrev.00042.2016

Verkhratsky, A., Rodrigues, J. J., Pivoriunas, A., Zorec, R., and Semyanov, A.
(2019). Astroglial atrophy in Alzheimer’s disease. Pflugers Arch. 471, 1247–1261.
doi: 10.1007/s00424-019-02310-2

Verney, C., Monier, A., Fallet-Bianco, C., and Gressens, P. (2010). Early
microglial colonization of the human forebrain and possible involvement in
periventricular white-matter injury of preterm infants. J. Anat. 217, 436–448.
doi: 10.1111/j.1469-7580.2010.01245.x

von Saucken, V. E., Jay, T. R., and Landreth, G. E. (2020). The effect of amyloid
on microglia-neuron interactions before plaque onset occurs independently of
TREM2 in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 145:105072.
doi: 10.1016/j.nbd.2020.105072

Walker, D. G., and Lue, L.-F. (2015). Immune phenotypes of microglia in
human neurodegenerative disease: challenges to detecting microglial polarization
in human brains. Alzheimers Res. Ther. 7:56. doi: 10.1186/s13195-015-0
139-9

Walton, C. C., Begelman, D., Nguyen, W., and Andersen, J. K. (2020).
Senescence as an Amyloid Cascade: the Amyloid Senescence Hypothesis. Front.
Cell Neurosci. 14:129. doi: 10.3389/fncel.2020.00129

Wang, C., Xiong, M., Gratuze, M., Bao, X., Shi, Y., Andhey, P. S., et al. (2021).
Selective removal of astrocytic APOE4 strongly protects against tau-mediated
neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron 109,
1657-1674.e7. doi: 10.1016/j.neuron.2021.03.024

Wegiel, J., Wang, K. C., Tarnawski, M., and Lach, B. (2000). Microglia cells are
the driving force in fibrillar plaque formation, whereas astrocytes are a leading

factor in plague degradation. Acta Neuropathol. 100, 356–364. doi: 10.1007/
s004010000199

Westergard, T., and Rothstein, J. D. (2020). Astrocyte Diversity: current Insights
and Future Directions. Neurochem. Res. 45, 1298–1305. doi: 10.1007/s11064-020-
02959-7

Xu, J., Zhang, P., Huang, Y., Zhou, Y., Hou, Y., Bekris, L. M., et al. (2021).
Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular
networks between disease-associated microglia and astrocytes with implications
for drug repurposing in Alzheimer’s disease. Genom. Res. 31, 1900–1912. doi:
10.1101/gr.272484.120

Yang, H. S., Onos, K. D., Choi, K., Keezer, K. J., Skelly, D. A., Carter, G. W.,
et al. (2021). Natural genetic variation determines microglia heterogeneity in wild-
derived mouse models of Alzheimer’s disease. Cell Rep. 34:108739. doi: 10.1016/j.
celrep.2021.108739

Yang, J., Lunde, L. K., Nuntagij, P., Oguchi, T., Camassa, L. M. A., Nilsson,
L. N. G., et al. (2011). Loss of astrocyte polarization in the tg-ArcSwe mouse model
of Alzheimer’s disease. J. Alzheimers Dis. 27, 711–722. doi: 10.3233/JAD-2011-
110725

Yang, J., Zhang, R., Shi, C., Mao, C., Yang, Z., Suo, Z., et al. (2017). AQP4
Association with Amyloid Deposition and Astrocyte Pathology in the Tg-ArcSwe
Mouse Model of Alzheimer’s Disease. J. Alzheimers Dis. 57, 157–169. doi: 10.3233/
JAD-160957

Yeh, C.-Y., Vadhwana, B., Verkhratsky, A., and Rodríguez, J. J. (2011). Early
Astrocytic Atrophy in the Entorhinal Cortex of a Triple Transgenic Animal Model
of Alzheimer’s Disease. ASN Neuro. 3:AN20110025. doi: 10.1042/AN20110025

Yeh, F. L., Wang, Y., Tom, I., Gonzalez, L. C., and Sheng, M. (2016).
TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby
Facilitates Uptake of Amyloid-Beta by Microglia. Neuron 91, 328–340. doi: 10.
1016/j.neuron.2016.06.015

Yoshiyama, Y., Higuchi, M., Zhang, B., Huang, S.-M., Iwata, N., Saido, T. C.,
et al. (2007). Synapse loss and microglial activation precede tangles in a P301S
tauopathy mouse model. Neuron 53, 337–351. doi: 10.1016/j.neuron.2007.01.010

Zanier, E. R., Fumagalli, S., Perego, C., Pischiutta, F., and De Simoni, M.-G.
(2015). Shape descriptors of the “never resting” microglia in three different acute
brain injury models in mice. Intensive Care Med. Exp. 3:39. doi: 10.1186/s40635-
015-0039-0

Zhang, G., Wang, Z., Hu, H., Zhao, M., and Sun, L. (2021). Microglia in
Alzheimer’s Disease: a Target for Therapeutic Intervention. Front. Cell Neurosci.
15:749587. doi: 10.3389/fncel.2021.749587

Zhang, L., Hu, K., Shao, T., Hou, L., Zhang, S., Ye, W., et al. (2021).
Recent developments on PET radiotracers for TSPO and their applications in
neuroimaging. Acta Pharm. Sin. B 11, 373–393. doi: 10.1016/j.apsb.2020.08.006

Zheng, J., Ru, W., Adolacion, J. R., Spurgat, M. S., Liu, X., Yuan, S., et al.
(2021). Single-cell RNA-seq analysis reveals compartment-specific heterogeneity
and plasticity of microglia. iScience 24:102186. doi: 10.1016/j.isci.2021.102186

Zhou, B., Zuo, Y.-X., and Jiang, R.-T. (2019). Astrocyte morphology: diversity,
plasticity, and role in neurological diseases. CNS Neurosci. Ther. 25, 665–673.
doi: 10.1111/cns.13123

Zhou, Y., Song, W. M., Andhey, P. S., Swain, A., Levy, T., Miller, K. R.,
et al. (2020). Human and mouse single-nucleus transcriptomics reveal TREM2-
dependent and TREM2-independent cellular responses in Alzheimer’s disease.
Nat. Med. 26, 131–142. doi: 10.1038/s41591-019-0695-9

Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Guillaumet-Adkins, A., Smets,
M., et al. (2017). Comparative Analysis of Single-Cell RNA Sequencing Methods.
Mol. Cell 65, 631-643.e4. doi: 10.1016/j.molcel.2017.01.023

Zolochevska, O., and Taglialatela, G. (2016). Non-Demented Individuals with
Alzheimer’s Disease Neuropathology: resistance to Cognitive Decline May Reveal
New Treatment Strategies. Curr. Pharm. Des. 22, 4063–4068. doi: 10.2174/
1381612822666160518142110

Frontiers in Cellular Neuroscience 17 frontiersin.org

https://doi.org/10.3389/fncel.2022.932572
https://doi.org/10.1172/jci.insight.121109
https://doi.org/10.1172/jci.insight.121109
https://doi.org/10.1111/nan.12445
https://doi.org/10.1111/nan.12445
https://doi.org/10.1186/s12974-020-01900-7
https://doi.org/10.1002/ana.410300410
https://doi.org/10.1016/j.celrep.2020.108189
https://doi.org/10.1016/j.celrep.2020.108189
https://doi.org/10.1038/srep39921
https://doi.org/10.1038/srep39921
https://doi.org/10.1186/s12974-018-1304-4
https://doi.org/10.1038/s41537-018-0068-2
https://doi.org/10.1038/s41537-018-0068-2
https://doi.org/10.1152/physrev.00042.2016
https://doi.org/10.1007/s00424-019-02310-2
https://doi.org/10.1111/j.1469-7580.2010.01245.x
https://doi.org/10.1016/j.nbd.2020.105072
https://doi.org/10.1186/s13195-015-0139-9
https://doi.org/10.1186/s13195-015-0139-9
https://doi.org/10.3389/fncel.2020.00129
https://doi.org/10.1016/j.neuron.2021.03.024
https://doi.org/10.1007/s004010000199
https://doi.org/10.1007/s004010000199
https://doi.org/10.1007/s11064-020-02959-7
https://doi.org/10.1007/s11064-020-02959-7
https://doi.org/10.1101/gr.272484.120
https://doi.org/10.1101/gr.272484.120
https://doi.org/10.1016/j.celrep.2021.108739
https://doi.org/10.1016/j.celrep.2021.108739
https://doi.org/10.3233/JAD-2011-110725
https://doi.org/10.3233/JAD-2011-110725
https://doi.org/10.3233/JAD-160957
https://doi.org/10.3233/JAD-160957
https://doi.org/10.1042/AN20110025
https://doi.org/10.1016/j.neuron.2016.06.015
https://doi.org/10.1016/j.neuron.2016.06.015
https://doi.org/10.1016/j.neuron.2007.01.010
https://doi.org/10.1186/s40635-015-0039-0
https://doi.org/10.1186/s40635-015-0039-0
https://doi.org/10.3389/fncel.2021.749587
https://doi.org/10.1016/j.apsb.2020.08.006
https://doi.org/10.1016/j.isci.2021.102186
https://doi.org/10.1111/cns.13123
https://doi.org/10.1038/s41591-019-0695-9
https://doi.org/10.1016/j.molcel.2017.01.023
https://doi.org/10.2174/1381612822666160518142110
https://doi.org/10.2174/1381612822666160518142110
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/

	All roads lead to heterogeneity: The complex involvement of astrocytes and microglia in the pathogenesis of Alzheimer's disease
	Introduction
	Microglial heterogeneity in Alzheimer's disease
	Morphological and ultrastructural diversity
	Microglial signature heterogeneity

	Astrocyte heterogeneity in Alzheimer's disease
	Morphological and ultrastructural heterogeneity of astrocytes
	Heterogeneity of astrocytic molecular signatures in Alzheimer's disease

	Discussion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


