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Abstract. Non‑small cell lung cancer (NSCLC) is a leading 
cause of mortality worldwide. However, the pathogenesis of 
NSCLC remains to be fully elucidated. Therefore, the present 
study aimed to explore the differential expression of mRNAs 
and microRNAs (miRNAs/miRs) in NSCLC and to determine 
how these RNA molecules interact with one another to affect 
disease progression. Differentially expressed genes (DEGs) 
and differentially expressed miRNAs (DEMs) were identified 
from the GSE18842, GSE32863 and GSE29250 datasets down-
loaded from the Gene Expression Omnibus (GEO database). 
Functional and pathway enrichment analysis were performed 
based on Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) databases. STRING, Cytoscape 
and MCODE were applied to construct a protein‑protein 
interaction (PPI) network and to screen hub genes. The inter-
actions between miRNAs and mRNAs were predicted using 
miRWalk 3.0 and a miRNA‑mRNA regulatory network was 
constructed. The prognostic value of the identified hub genes 
was then evaluated via Kaplan‑Meier survival analyses using 
datasets from The Cancer Genome Atlas. A total of 782 DEGs 
and 46 DEMs were identified from the 3 GEO datasets. The 
enriched pathways and functions of the DEGs and target 
genes of the DEMs included osteoclast differentiation, cell 
adhesion, response to a drug, plasma membrane, extracellular 
exosome and protein binding. A subnetwork composed of 11 
genes was extracted from the PPI network and the genes in 
this subnetwork were mainly involved in the cell cycle, cell 
division and DNA replication. A miRNA‑gene regulatory 
network was constructed with 247 miRNA‑gene pairs based 
on 6 DEMs and 210 DEGs. Kaplan‑Meier survival analysis 

indicated that the expression of ubiquitin E2 ligase C, cell divi-
sion cycle protein 20, DNA topoisomerase IIα, aurora kinase 
A and B, cyclin B2, maternal embryonic leucine zipper kinase, 
slit guidance ligand 3, phosphoglucomutase 5, endomucin, 
cysteine dioxygenase type 1, dihydropyrimidinase‑like 2, 
miR‑130b, miR‑1181 and miR‑127 was significantly associated 
with overall survival of patients with lung adenocarcinoma. 
In the present study, a miRNA‑mRNA regulatory network in 
NSCLC was established, which may provide future avenues 
for scientific exploration and therapeutic targeting of NSCLC.

Introduction

Lung cancer is one of the most common types of cancer and 
is the leading cause of cancer‑associated mortality world-
wide, accounting for >25% of all deaths due to cancer (1). 
Approximately 85% of lung cancers are non‑small cell lung 
cancer (NSCLC) (2). In turn, NSCLCs are comprised of lung 
adenocarcinoma (LUAD, 40‑50% of lung cancers), lung squa-
mous cell carcinoma (LUSC, 20‑30% of lung cancers) and 
large cell carcinoma (9% of lung cancers) (2). Despite advances 
in diagnostics, surgery and medication in recent decades, the 
average 5‑year survival rate of patients with NSCLC remains 
as low as 15% (1). This poor prognosis is a consequence of 
high rates of tumor metastasis and recurrence, and numerous 
signaling pathways having been identified to be involved in 
these processes (1). Thus, an enhanced understanding of the 
molecular mechanisms controlling NSCLC progression is 
required to improve the low survival rate. The development 
of high‑throughput sequencing has allowed for comprehensive 
comparisons of gene expression profiles, thereby identifying 
differentially expressed genes (DEGs) between tumor and 
normal tissues. Changes in expression levels usually indicate 
pathological states, as proteins encoded by DEGs may be 
involved in tumorigenesis and tumor progression (3). 

microRNAs (miRNAs/miRs) are short non‑coding RNA 
molecules that mediate the post‑transcriptional regulation 
of mRNAs via binding to complementary sequences in the 
3'‑untranslated region (UTR) of mRNAs and suppressing their 
translation or mediating their degradation (4). An individual 
miRNA may regulate hundreds of different mRNA molecules, 
highlighting the existence of miRNA‑mRNA regulatory 
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networks. Depending on how it is expressed, a specific miRNA 
may therefore act to suppress or promote oncogenesis via specific 
effects on relevant target mRNAs (5). Indeed, miRNA profiling 
efforts have been used to identify specific miRNA signatures 
associated with particular tumor subtypes, thereby allowing for 
cancer diagnosis, treatment planning and prediction of patient 
prognosis  (6). Bioinformatics analysis of gene expression 
microarray data provides a useful tool for revealing numerous 
previously unrecognized mRNAs and miRNAs that may be 
implicated in the pathogenesis of cancer or other diseases (7).

In the present study, 3 gene expression datasets were 
analyzed using an integrated bioinformatics approach in order 
to identify DEGs and differentially expressed miRNAs (DEMs) 
between NSCLC tumors and healthy control tissues. Functional 
enrichment and protein‑protein interaction (PPI) network anal-
yses were performed to better establish the functions of these 
mRNAs and miRNA, and these approaches were combined 
with an analysis of mRNA‑miRNA interactions to screen 
hub genes and miRNAs in this regulatory network. Through 
this approach, the present study aimed to further elucidate the 
molecular mechanisms of NSCLC to identify potentially novel 
therapeutic strategies for its treatment.

Materials and methods 

Microarray data information. The datasets used in the present 
study were obtained from the Gene Expression Omnibus (GEO) 
database (https://www. ncbi.nlm.nih.gov/geo/) (8). The orig-
inal gene expression profiles from the datasets GSE18842 (9), 
GSE32863 (10) and GSE29250 (11) were used and the clinical 
information of the patients was obtained from the original 
research articles. The GSE18842 dataset included 91 samples 
(46 tumors and 45 controls) and all samples were paired except 
2 tumors and 1 control. The platform used for the GSE18842 
dataset was GPL570 (HG‑U133_Plus_2) Affymetrix Human 
Genome U133 Plus 2.0 Array. The GSE32863 dataset included 
116 samples (58 tumors and 58 controls) and all samples were 
paired. The platform used for the GSE32863 dataset was the 
GPL6884 Illumina Human WG‑6 v.3.0 expression beadchip. 
The GSE29250 dataset included 12 samples (6 tumors and 
6 controls) and all samples were paired. The platform used for 
the GSE29250 dataset was the GPL8179 Illumina Human v.2 
MicroRNA expression beadchip.

Identification of DEGs. To compare gene expression profiles, 
the GEO2R tool (http://www.ncbi.nlm.nih.gov/geo/geo2r/; 
accessed March 2019)  (12), which is based on the limma 
package in R, was used to individually identify DEMs and 
DEGs in each dataset. To control for type I error as a result of 
multiple comparisons within each dataset, the false discovery 
rate (FDR) determination feature automatically included in 
the GEO2R tool was employed. Significant DEGs were those 
that remained significant after FDR correction when tested 
via multiple‑comparisons t‑tests, and fold change (FC)>2 and 
P<0.05 were set as the cut‑off criteria. Any probes that did not 
correspond to a specific gene symbol were then filtered from 
the resultant data.

Gene function analysis. For gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 

analyses of DEMs and DEGs, the database for annotation, 
visualization and integrated discovery (DAVID) database 
(v6.8; http://david.abcc.ncifcrf.gov/) was used, focusing specif-
ically on humans and using all genes as an enrichment 
background. Significant enrichment in these analyses was 
determined based on an adjusted P‑value of 0.05 as established 
via the Benjamini‑Hochberg method (13). These P‑values were 
determined on the basis of a cumulative hypergeometric distri-
bution, calculating q‑values based on the Benjamini‑Hochberg 
procedure as a means of controlling for multiple testing (13). 
For comparisons of hierarchical clustering of enriched terms, 
clusters were designated as groupings that had a similarity 
score >0.3, with the most significant term within a given 
cluster being selected to represent the cluster as a whole.

PPI network construction and analysis. The online Search 
Tool for the Retrieval of Interacting Genes and proteins 
(STRING) database (v.11.0; https://string‑db.org/) was used 
for PPI network construction. PPI pairs with a combined score 
≥0.7 were used to generate the network. Cytoscape (v.3.4.0; 
https://cytoscape.org/) was used to visualize the regulatory 
interactions between these genes and CentiScaPe (v.2.2; Center 
for Biomedical Computing, University of Verona, Italy) (14) 
was used to analyze network distributions based on topological 
properties. The Molecular Complex Detection application 
(MCODE; v.1.6) was used to identify and extract subnetworks 
from the global PPI network based on the k‑core algorithm (15). 
The genes with a degree ≥30 in this regulatory network were 
identified as hub genes, as described previously (16).

Prediction of the mRNA‑miRNA interactions. An online tool 
called miRWalk 3.0 (http://mirwalk.umm.uni‑heidelberg.de/), 
which integrates predictive outputs of TargetScan (17) and 
miRDB (18), was used to predict DEG and DEM interactions. 
A score ≥0.95 was considered as the critical criterion for the 
miRWalk predictive analysis. Only the target mRNAs predicted 
by all 3 tools (miRWalk, TargetScan and miRDB) were used 
for further analysis. By overlaying identified DEGs and these 
predicted mRNA targets, a miRNA‑mRNA regulatory network 
was constructed and then visualized using Cytoscape.

Analysis of datasets from the cancer genome atlas (TCGA). 
TCGA is an online database that may be used to research and 
explore publicly available datasets (https://cancergenome.nih.
gov/; accessed March 2019) (19), including RNA sequencing 
(RNA‑seq) data from TCGA samples of 31 different types of 
cancer. In the present study, the tumor types were limited to 
LUAD and LUSC. RNA‑seq data and clinical data from 478 
LUAD and 482 LUSC samples from TCGA datasets were 
used. Based on the approach previously outlined by Li and 
Dewey (20), a PERL program was used to multiply the ‘scaled 
estimate’ by 106, yielding transcripts per million (TPM) 
values for all gene expression, as TPM values were thought 
to be a more reliable means of comparing gene expression 
than fragments per kilobase of TPM‑mapped reads or reads 
per kilobase of TPM‑mapped reads values (21). In the present 
study, to improve the reliability of the analysis, the expression 
of hub genes was validated in TCGA datasets using Gene 
Expression Profiling Interactive Analysis (GEPIA; v1.0; http://
gepia.cancer‑pku.cn/). For each of the hub genes, patients were 
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stratified into 2 groups based on expression levels of each gene 
and differences in patient survival were analyzed, generating 
hazard ratio (HR) and 95% CI values, as well as log‑rank 
P‑values for each comparison. 

Results

Identification of DEGs and DEMs. In the GSE18842 and 
GSE32863 datasets, 3,167 and 1,270 DEGs were identified, 
respectively, of which 1,395 and 514 were upregulated, and 
1,772 and 756 were downregulated (Fig. 1A and B). A total of 
782 DEGs were shared between these 2 datasets (232 upregu-
lated and 550 downregulated). The GSE32863 dataset yielded 
a list of 46 DEMs, of which 26 were upregulated and 20 were 
downregulated (Fig. 1C). 

Functional enrichment analysis of overlapped DEGs and 
target genes of DEMs. To assess the biological roles of these 
DEGs and target genes of DEMs, KEGG and GO enrich-
ment analyses were performed. The top 10 enriched terms 
for each analysis were compiled in Fig. 2. KEGG pathway 
enrichment analysis indicated that the DEGs and target genes 
of DEMs were mainly enriched in osteoclast differentiation, 

complement and coagulation cascades, Staphylococcus aureus 
infection and pertussis (Fig. 2A). GO analysis in the category 
biological process suggested these DEGs and target genes of 
DEMs were primarily enriched in ‘cell adhesion,’ ‘response to 
drugs’ and ‘extracellular matrix organization’ (Fig. 2B). GO 
analysis in the category cellular component suggested that 
the DEGs and target genes of DEMs were mainly enriched in 
‘plasma membrane,’ ‘extracellular exosome’ and ‘extracellular 
localization’ (Fig. 2C). In the category molecular function, 
the DEGs and target genes of DEMs were mostly enriched in 
‘protein binding,’ ‘identical protein binding’ and ‘calcium ion 
binding’ (Fig. 2D). 

PPI network construction and analysis of modules. The 782 
overlapping DEGs which were shared between the 2 datasets 
(GSE18842 and GSE32863) indicated a distinct set of interac-
tions and networks. PPI pairs with a combined score ≥0.7 were 
used to generate the network. A PPI network was constructed 
using 445 of the 782 DEGs and the resultant network had 445 
nodes and 1,490 edges (Fig. 3A). There were 137 upregulated 
and 308 downregulated genes among the 445 DEGs. A total 
of 11 nodes had a degree of >30 and were designated as hub 
genes, including interleukin 6, Jun proto‑oncogene (JUN), 

Figure 1. Volcano plots and clustering heat maps of the differentially expressed genes between the non small cell lung cancer and normal tissues. (A1) Volcano 
plots of differentially expressed mRNA from the GSE18842 dataset. (A2) Volcano plots of differentially expressed mRNA from the GSE32863 dataset. (A3) 
Volcano plots of differentially expressed miRNA from the GSE32863 dataset. Each graph represents the expression of the gene, plotted by log2 (fold change) 
on the horizontal axis and  log10(q value) on the vertical axis. Red represents upregulation, green represents downregulation and blue represents no significant 
difference. (B1) Clustering heat maps based on GSE18842 dataset. (B2) Clustering heat maps based on the expression of mRNAs in GSE32863 dataset. (B3) 
Clustering heat maps based on the expression of miRNAs in GSE32863 dataset. Orange represents upregulation and blue represents downregulation. miR, 
microRNA; hsa, Homo sapiens; UP, upregulation; DW, downregulation; NoDiff, no difference; NA, not available (Some miRNAs in the databases have probes 
but no data).
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ubiquitin E2 ligase (UBE2C), cell division cycle protein 
(CDC)20, DNA topoisomerase IIα (TOP2A), aurora kinase 
A (AURKA), AURKB, cyclin B2 (CCNB2), kinesin family 
member 20A, FBJ osteosarcoma oncogene and maternal 
embryonic leucine zipper kinase (MELK). The topology 
parameters of these hub genes in the PPI network are 
presented in Table I. Furthermore, a subnetwork containing 
25 nodes and 284 edges was extracted from the global PPI 
network (Fig. 3B). The results of the KEGG and GO analyses 
for the genes in the subnetwork are presented in Table II. The 
most significantly enriched terms in this network were ‘cell 
cycle, division’ and ‘DNA replication’ associated with cancer, 
confirming the relevance of the present analysis to NSCLC 
progression and prognosis.

Survival analysis of hub genes. Survival analysis was performed 
for the 11 hub genes based on TCGA data. Increased expression 
of 7 of the hub genes (UBE2C, CDC20, TOP2A, AURKA, 
AURKB, CCNB2 and MELK) was significantly associated with 
poorer overall survival (OS) in patients with LUAD (Fig. 4).

miRNA‑gene network. Using the miRWalk application, 
putative DEM targets as established by the TargetScan and 
miRDB databases were identified. A total of 210 putative 

target mRNAs overlapped with the DEG dataset, yielding 
247 miRNA‑gene pairs based on 6 DEMs and the 210 DEGs 
that were putative targets. These were used to construct an 
overlapping regulatory network (Fig. 5). A total of 4 upregu-
lated DEMs were predicted to downregulate 185 DEGs, 
whereas decreased expression of 2 DEMs was predicted 
to be associated with increased expression of 25 DEGs. 
TCGA‑based survival analysis suggested that none of the 
hub genes were associated with OS in patients with NSCLC. 
However, specifically among patients with LUAD, those with 
elevated expression of slit guidance ligand 3 (SLIT3), phos-
phoglucomutase 5 (PGM5), endomucin (EMCN), cysteine 
dioxygenase type 1  (CDO1), dihydropyrimidinase‑like 
2  (DPYSL2), miR‑130b and miR‑1181 had a significantly 
higher OS compared with patients who had low expression 
of these genes. By contrast, elevated miR‑130b and miR‑127 
expression was associated with poorer OS in patients with 
LUAD (Fig. 6). Furthermore, the differences of the DEGs and 
DEMs in miRNA‑gene networks of NSCLCs with or without 
KRAS mutation were examined. The results suggested that 
the expression levels of TOP2A (P=0.0357; Fig. 7A), AURKA 
(P=0.0409; Fig. 7B) and MELK (P=0.0190; Fig. 7C) were 
significantly lower in KRAS mutation groups compared to 
KRAS wild‑type groups (Fig. 7).

Figure 2. Functional enrichment analysis of overlapped DEGs and target genes of DEMs. (A) Biological process analysis in the GO database. (B) Cellular component 
analysis in the GO database. (C) Molecular function analysis in the GO database. (D) Pathway enrichment analysis in the KEGG database. The horizontal axis rep-
resents the ratio of genes and the vertical axis represents different terms in functional enrichment analysis. hsa, Homo sapiens; DEGs, differentially expressed genes; 
DEMs, differentially expressed microRNAs; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, extracellular matrix; neg, negative.
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Discussion

Cancer is a genetic disease wherein cumulative mutations 
drive the multi‑step progression towards oncogenesis, even-
tually culminating in unrestrained cancer growth. NSCLC 

remains one of the most common and deadliest forms of 
cancer, making the elucidation of the molecular mechanisms 
governing this disease paramount (22). In the present study, 
DEMs and DEGs associated with NSCLC were identified via 
a bioinformatics analysis, yielding 782 DEGs and 46 DEMs 

Figure 3. PPI network and subnetwork. (A) Global PPI network and (B) the core subnetwork extracted from the global network. Red represents upregulation 
and green represents downregulation. The bigger the node, the higher the degree. PPI, protein‑protein interaction.

Table I. Topology parameters of the genes with a degree ≥30 in the protein‑protein interaction network.

Gene	 Closeness	 Betweenness	 Degree	 Stress	 MCODE_Score	 Regulation

IL6	 9.74x10‑4	 29543.72	 44	 157806	 4.545455	 Down
JUN	 9.19x10‑4	 20492.43	 42	 105026	 5.066667	 Down
UBE2C	 8.01x10‑4	 10608.03	 39	 65066	 20	 Up
CDC20	 7.15x10‑4	 2025.242	 36	 13016	 20	 Up
TOP2A	 7.67x10‑4	 8145.198	 36	 53776	 20	 Up
AURKA	 6.94x10‑4	 1793.101	 34	 12868	 20	 Up
AURKB	 7.17x10‑4	 2846.847	 34	 23916	 20	 Up
CCNB2	 7.04x10‑4	 1426.159	 32	 12102	 20	 Up
KIF20A	 7.20x10‑4	 5841.105	 31	 43260	 20	 Up
FOS	 8.72x10‑4	 7497.451	 30	 41706	 5.785714	 Down
MELK	 6.97x10‑4	 549.8218	 30	 6356	 20	 Up

IL6, interleukin 6; JUN, Jun proto‑oncogene; UBE2C, ubiquitin E2 ligase; CDC20, cell division cycle 20; TOP2A, DNA topoisomerase Iiα; 
AURKA, aurora kinase A; CCNB2, cyclin B2; KIF20A, kinesin family member 20A; FOS, FBJ osteosarcoma oncogene; MELK, maternal 
embryonic leucine zipper kinase.
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based on overlapping hits in the GSE18842, GSE32863 and 
GSE29250 datasets. These hits included 232 upregulated and 
550 downregulated genes, as well as 26 upregulated and 20 
downregulated miRNAs. Through functional enrichment 
analyses, it was determined that these DEGs were primarily 
associated with processes including ‘osteoclast differentia-
tion’, ‘complement and coagulation cascades’, ‘cell adhesion, 
drug responses’, ‘plasma membrane’, ‘extracellular exosome’ 
and ‘protein binding’. In addition, a DEG PPI network was 
generated and a significant subnetwork module was identi-
fied that contained genes associated with the cell cycle, 
DNA replication and oocyte meiosis, with the GO terms 
enrichment for ‘mitotic nuclear division’, ‘cell division’, 
‘G2/M transition of mitotic cell cycle’, ‘spindle’, ‘midbody’, 

‘nucleoplasm’, ‘ATP binding’, ‘protein binding’ and ‘microtu-
bule binding’. Cell cycle dysregulation is known to be a key 
factor linked to tumor development and progression (23,24). 
Recent studies indicated that microtubule binding is linked 
to tumor metastasis and drug resistance (25,26). Complement 
activation and coagulation cascade activation are similarly 
able to promote tumor development as a consequence of 
their ability to mediate the recruitment of myeloid cells that 
support tumor growth  (27). To summarize, the identified 
DEGs may regulate the proliferation, invasion, migration and 
drug‑resistance of cancer cells through these pathways, thus 
affecting the occurrence and development of NSCLC. The 
investigation of these DEGs may pave a way towards novel 
targeted therapies for NSCLC.

Figure 4. Kaplan‑Meier survival analysis of the hub genes in the protein‑protein interaction network. The Kaplan‑Meier survival analysis based on the 
expression of (A) UBE2C, (B) CDC20, (C) TOP2A, (D) AURKA, (E) CCNB2, (F) MELK and (G) AURKB. The horizontal axis represents overall survival 
(months) and the vertical axis represents the percentage of survival. The dotted line indicates the upper and lower boundaries of the 95% confidence interval. 
UBE2C, ubiquitin E2 ligase; CDC20, cell division cycle 20; TOP2A, DNA topoisomerase IIα; AURKA, aurora kinase A; CCNB2, cyclin B2; MELK, maternal 
embryonic leucine zipper kinase; HR, hazard ratio; TPM, expression.
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Based on the PPI network, 11 hub genes with high degrees 
of interaction  (degree ≥30) were extracted. A prognostic 
analysis of these 11 hub genes was performed using the online 
tool GEPIA. The results revealed that patients with LUAD 
who had upregulation of UBE2C, CDC20, TOP2A, AURKA, 
AURKB, CCNB2 and MELK had a worse prognosis. 

The expression of UBE2C has been previously indicated to 
be upregulated in lung cancer (28), and the results of the present 
study suggested that it was associated with poor survival. 
Similar observations have previously been made in ovarian 
cancer (29), breast cancer (30) and gastric cancer (31). UBE2C 
is involved in the progression of the cell cycle and transcription, 
and upregulation of UBE2C may induce an enhanced growth 
and colony formation of tumors  (32), as well as decreased 
autophagy in cancer cells (33). Furthermore, UBE2C reduces 
the sensitivity of cells to common chemotherapy drugs for lung 
cancer, including cisplatin (34) and docetaxel (35). UBE2C 
may be used as a therapeutic target for NSCLC. 

Another oncogene in several types of tumor and a hub gene 
identified in the present study was CDC20 (36). CDC20 is an 
important regulator of the cell cycle and altered expression or 
functional impairment may induce mitotic arrest to prevent 
activation of adenomatous polyposis coli and hence, increase 

premature anaphase manifesting as aneuploidy in daughter 
cells (37). CDC20 was observed to be upregulated at mRNA 
and protein levels in NSCLC, and was significantly correlated 
with tumor size, pleural invasion and histological classifica-
tion (38). Of note, knockdown of CDC20 caused inhibition of 
growth, migration ability and formation of colonies in lung 
cancer cells, as well as cell cycle arrest in G2/M phase and 
induction of apoptosis (39), making this oncogene a potential 
target molecule to address NSCLC therapy. Upregulation of 
CDC20 has been associated with shorter OS in patients with 
LUAD, but not in patients with LUSC (40), which is consistent 
with the results of the present study. 

TOP2A encodes for a DNA topoisomerase involved in 
torsional dynamics during replication and transcription (41), 
which is also associated with cell proliferation (42). TOP2A has 
been indicated to be upregulated in numerous types of tumor, 
including breast, nasopharyngeal and renal cell carcinomas, 
and is associated with poor prognosis; therefore, TOP2A has 
important roles in cancer (43‑45). The ability of NSCLC cells 
to proliferate and invade tissues is associated with elevated 
TOP2A expression. Several anti‑cancer agents have been 
developed to target this gene (46), and the development of drug 
resistance has been associated with mutation of TOP2A (47). 

Figure 5. miRNA‑mRNA regulatory network. The triangles represent miRNAs and the circles represent mRNAs. Red indicates upregulation and green 
indicates downregulation. miRNA, microRNA; miR, microRNA; hsa, Homo sapiens
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AURKA and AURKB are highly conserved serine/threo-
nine kinases, the former of which is associated with regulating 
centrosome duplication and spindle formation (48), and the 
latter of which is important for regulating chromatin modi-
fications and suppressing cytokinesis (49). NSCLC prognosis 
is known to be associated with elevated expression of these 
2 genes (50,51). In the present study, TCGA dataset analysis 
suggested that the prognosis of patients with LUAD was 
associated with AURKA and AURKB, which require further 
clinical trial validation. 

CCNB2 is a cyclin gene that activates cyclin‑dependent 
kinase 1 to drive the G2/M cell cycle transition, and inhibition 
of CCNB2 leads to cell cycle arrest (52). It has been previously 
confirmed that CCNB2 is upregulated in tissue and serum 
samples from patients with NSCLC (53,54). Elevated CCNB2 
mRNA levels are known to be closely associated with tumor 
differentiation grade and histological type, and upregulation 
of CCNB2 at the protein level has been significantly associ-
ated with the degree of differentiation, tumor size, lymph 

node metastasis, distant metastasis and clinical stage (54,55). 
Previous studies of NSCLC have suggested that there was no 
statistically significant correlation between the levels of CCNB2 
protein and mRNA in NSCLC (55). The results of the present 
study indicated that upregulation of CCNB2 mRNA was a poor 
prognostic biomarker in patients with LUAD, while a previous 
study suggested that the protein levels of CCNB2 may serve as 
an independent prognostic marker in NSCLC (54). Therefore, 
the role of CCNB2 in NSCLC should be further elucidated.

MELK is a serine/threonine kinase that has been indicated 
to be highly expressed in several human cancer types (prostate, 
breast, brain, colorectal and gastric cancer) and glioblastoma 
multiforme stem cells (56). Elevated expression of MELK is 
associated with the degree of tumor malignancy and with poor 
survival in cervical cancer (57), breast cancer (58) and gastric 
cancer (59). Furthermore, the present study suggested that upreg-
ulation of MELK is associated with the progression of NSCLC. 

miRNAs regulate a wide array of target mRNAs via 
3'‑UTR binding and subsequent translational repression. As a 

Figure 7. Violin plots indicating the differences in microRNA‑gene networks with or without KRAS mutation. The expression levels of (A) TOP2A, (B) AURKA 
and (C) MELK were significantly lower in KRAS mutation groups compared to KRAS WT groups (P<0.05). TOP2A, DNA topoisomerase IIα; AURKA, 
aurora kinase A; MELK, maternal embryonic leucine zipper kinase; WT, wild‑type.

Figure 6. Kaplan‑Meier survival analysis of the hub genes in the miRNA‑mRNA regulatory network. The Kaplan‑Meier survival analysis based on the expres-
sion of (A) SLIT3, (B) PGM5, (C) EMCN, (D) CDO1, (E) DPYSL2, (F) MIR130B, (G) MIR1181 and (H) MIR127. The horizontal axis represents overall 
survival (months) and the vertical axis represents the percentage of survival. The dotted line indicates the upper and lower boundaries of the 95% confidence 
interval. miRNA/miR, microRNA; SLIT3, slit guidance ligand 3; PGM5, phosphoglucomutase 5; EMCN, endomucin; CDO1, cysteine dioxygenase type 1; 
DPYSL2, dihydropyrimidinase‑like 2; TPM, transcripts per million; HR, hazard ratio.
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result, complex miRNA‑mRNA networks may govern a wide 
range of biological pathways, making miRNAs critical for the 
progression of numerous types of cancer (60). In the present 
study, a total of 46 DEMs were identified, and miRWalk‑medi-
ated predictive analyses were performed to identify those 
DEMs that were predicted to interact with DEGs, yielding 6 
hub miRNAs and associated mRNAs, including miR‑127‑5p, 
miR134‑5p, miR‑130b‑3p, miR‑1181, miR‑145‑3p, miR‑153‑3p, 
CDO1, SLIT3 and PGM5. Survival analyses revealed that 
dysregulation of miR‑127‑5p, miR‑130b‑3p, miR‑1181, CDO1, 
SLIT3, PGM5, EMCN and DPYSL2 were significantly associ-
ated with the prognosis of patients with LUAD.

miR‑127 has previously been indicated to function as either 
a promoter or suppressor of cancer development depending 
on the specific context (61,62). Based on the NSCLC network 
established in the present study, miR‑127 was among the most 
prominent regulatory miRNAs, suggesting it serves complex 
regulatory functions in the context of NSCLC. In a previous 
study, miR‑127 expression was indicated to be elevated in 
LUAD and associated with poor prognosis (63), consistent with 
the results of the present study. High levels of miR‑127 induce 
epithelial‑to‑mesenchymal transition, rendering tumor cells 
with stem cell‑like properties, and propagate tumor resistance 
to epidermal growth factor receptor inhibitor (63). The aggres-
siveness of the cancer was associated with a circuit involving 
miR‑127, NF‑κB and tumor necrosis factor α‑induced protein 
3, which are markers of inflammation (63).

miR‑130b has also been documented in several other types 
of tumor, with upregulation observed in prostate cancer (64), 
while downregulation was identified in thyroid carcinomas (65). 
In the present study, miR‑130b‑3p expression was determined 
to be significantly increased in NSCLC and associated with 
poor survival, although this was specifically restricted to 
patients with LUAD in the TCGA dataset, warranting further 
investigation. 

miR‑134 has been indicated to be differentially regulated 
in lung cancer and other types of cancer (including gastric 
cancer, breast cancer and oral cancer), with certain studies 
reporting increased expression in lung cancer (66,67), while 
other studies observed that it was downregulated  (68,69). 
miR‑134 may function to either promote or suppress tumor 
progression  (69,70), highlighting complex mechanisms 
warranting further investigation.

miR‑1181 has been observed to be downregulated in 
nasopharyngeal carcinoma, ovarian cancer and pancreatic 
cancer (71‑73). In addition, miR‑1181 inhibited invasion and 
proliferation via STAT3 in pancreatic cancer cells and inhib-
ited metastasis by modulating the WNT/β‑catenin pathway in 
nasopharyngeal carcinoma (71,73). Thus, the role of miR‑1181 
in NSCLC requires to be further investigated in the future.

In summary, the present study identified 782 DEGs and 
46 DEMs between NSCLC tumor and normal tissues, and 
a miRNA‑mRNA regulatory network was established. 
Certain hub genes were screened out from the PPI network 
and miRNA‑mRNA regulatory network, including UBE2C, 
CDC20, TOP2A, AURKA, AURKB, CCNB2, MELK, SLIT3, 
PGM5, EMCN, CDO1, DPYSL2, miR‑130b, miR‑1181 and 
miR‑127. These analyses suggested a comprehensive overview 
of the mechanistic basis of NSCLC, potentially highlighting 
future avenues for treatment. However, analysis of TCGA 

datasets indicated that the expression of certain hub genes was 
only associated with the prognosis in patients with LUAD, 
which requires further validation. The present results remain 
to be verified by further clinical investigation in the future.
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