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Abstract: Hearing aids are essential for people with hearing loss, and noise estimation and classification
are some of the most important technologies used in devices. This paper presents an environmental
noise classification algorithm for hearing aids that uses convolutional neural networks (CNNs) and
image signals transformed from sound signals. The algorithm was developed using the data of ten
types of noise acquired from living environments where such noises occur. Spectrogram images
transformed from sound data are used as the input of the CNNs after processing of the images
by a sharpening mask and median filter. The classification results of the proposed algorithm were
compared with those of other noise classification methods. A maximum correct classification accuracy
of 99.25% was achieved by the proposed algorithm for a spectrogram time length of 1 s, with the
correct classification accuracy decreasing with increasing spectrogram time length up to 8 s. For a
spectrogram time length of 8 s and using the sharpening mask and median filter, the classification
accuracy was 98.73%, which is comparable with the 98.79% achieved by the conventional method
for a time length of 1 s. The proposed hearing aid noise classification algorithm thus offers less
computational complexity without compromising on performance.
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1. Introduction

Hearing difficulty is a symptom of hearing loss caused by anomalies in the human sound
signal transmission process. The difficulty in hearing a particular sound is due to an increase in the
corresponding hearing threshold and narrowing of the dynamic range [1,2]. The use of a hearing aid
is one of the methods for solving hearing difficulty and compensating for hearing loss [3]. Hearing
aids use various technologies such as noise reduction, sound compensation, directional microphones,
and feedback cancelation, and are tuned to the hearing characteristics of the users and the environments
of use [4].

Daily life is full of noises, and hearing aid technologies are continuously being developed to reduce
these noises, such as those in restaurants, car horns, buzzing from electrical equipment, and random
voices in the surroundings. However, because the operating environment of a hearing aid varies with
time, place, and other factors, 100% performance satisfaction is not achieved [5,6]. One of the biggest
complaints of hearing aid users is the inability to completely reduce ambient noise, and the tendency of
the noise to be amplified with the human voice [7]. Speech intelligibility is affected when surrounding
noise is incorrectly interpreted as human voice, or if the voice is misinterpreted and removed with
noise. This is due to performance problems and inaccurate sound classification of the noise reduction
algorithm [8].
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The traditional noise classification algorithm in hearing aids proceeds with the extraction of
characteristic features from the data, finding the class with the highest probability based on those
features, and classifying them based on the identified class [9]. The noise classification algorithm
mainly focuses in the performance of the hearing aid, which has to operate with a low computational
complexity and low power [10].

However, with the recent development of hearing aid chips with early smart phone-level CPU
performance, such as Ezioro 71XX, the use of environmental noise classification algorithms that use
deep learning is now feasible. It is generally not easy to extract sound signal characteristics that can be
used as input data for deep learning, compared with image signals. This is because the time-domain
data of sounds are difficult to know with respect to their signal information or their characteristics in
the frequency domain. Therefore, various feature extraction algorithms are used to switch the data
into the frequency domain and to distinguish the frequency characteristics of the different sounds.
Nevertheless, real sound signals are a mixture of different sounds, and it remains difficult to distinguish
between the characteristics of the contained noises and voices.

In this study, a noise signal spectrogram was used to transform sound signals in the time
frequency-domain into image signals for hearing aid noise classification, as an alternative to the use
of extracted frequency-domain features. The long noise estimation period was employed, and deep
learning was used to improve the low classification accuracy. The image data transformed from
the sound signals were particularly used in the present study for the classification of environmental
noises with the aid of convolutional neural networks (CNNs), which are some of the best methods for
image classification.

2. Previous Research

2.1. Conventional Noise Classification Algorithms

One of the most basic classification algorithms in use is the Bayesian classifier [11]. It classifies
with the help of histograms of the class-specific probabilities. The K-nearest neighbors classification
algorithm is a simple process that determines the class of a new input [12]. It is suitable for simple
classification problems with relatively few training features, because, as the number of training feature
increases, both the computational complexity and time increase. Support Vector Machine [13,14] and
Neural Networks [15] are discriminative classification algorithm. These algorithms can be effective
when there is enough sufficiently varied data to train the classifier, and can work even in those
situations where the underlying probability distributions for the features are unknown. Hidden
Markov models [10,16,17] are a widely used statistical method for speech recognition. One major
advantage of HMMs over the previously described classifiers is that they account for the temporal
statistics of the occurrence of different states in the features. Clustering refers to a group of unsupervised
processes that group features based on their measured similarity. Clustering is related to classification
in that both divide unknown inputs into classes.

2.2. Convolutional Neural Networks

A CNN is a deep learning technology based on supervised learning, and is widely used for image
processing while maintaining the spatial information of the image [18,19]. As shown in Figure 1,
convolutional and pooling layers were added between the input and output layers of the present
CNN, for excellent performance in processing data composed of multi-dimensional arrays such as
color images. The convolution work is for extracting the high-level features such as edges, from input
data. Similar to the convolutional layer, the pooling work is responsible for reducing the spatial size of
the convolved feature [20]. This is to decrease the computational power required to process the data
through dimensionality reduction.
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The feature map of the input data is produced by moving a convolution filter in the convolutional
layer, and the values obtained from the final feature maps are then extracted to reduce the computational
complexity and improve the accuracy of the pooling layer [21].

Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 3 of 17 

 

 
Figure 1. The structure of Convolution Neural Networks. 

In this paper, the CNN has two hidden layers, namely the 5 × 5 convolution layer and max 
pooling layer, which uses a 2 × 2 window. The activation function is a ReLu function, which is the 
most commonly used function, and the loss function is a cross-entropy function. The overall data 
was divided into training and test sets at a ratio of 75:25, respectively, the batch sizes of the training 
was set to 16. The number of epochs was 12 and learning rate was set 0.001. 

3. The Proposed Algorithm 

In this paper, the spectrogram images of noise signals were used as input data for the CNNs, 
without feature extraction or conversion to the frequency domain. A spectrogram is a visual 
representation of the frequency spectrum of the signals with respect to time. The amplitude of the 
sound frequency was indicated by color in the spectrogram. Because the spectrogram consisted of 
different image colors, it had the advantage of enabling verification of the time and energy 
information in the frequency domain over a certain period. Therefore, the characteristics of the 
spectrogram images varied with the amplitude of the frequency and the time information. 

Figure 2 shows a flow chart of the proposed environment noise classification algorithm. 
Generally, the input sound signal data were transformed into spectrogram images represented as 
RGB colors for noise classification using the CNNs. Two types of filters were combined and used to 
distinguish the noise characteristics, because the spectral image of the sound signals contained 
irregular amplitude changes over time unlike normal image signals. Each filter was introduced and 
applied to compare the results of the proposed algorithm in the process. 

The first image filter uses a sharpening mask (method #1: spectrogram + Sharpening Mask), 
which enables enhancement of the boundaries of the noise characteristics [22]. The filter clearly 
identifies the boundaries of the colors, so that the area of the high-energy noise signals can be more 
clearly displayed.  

The second image filter uses a median filter (method #2: spectrogram + Median Filter) [23]. In a 
conventional noise signal spectrogram, there are irregular low-energy pixels between the noise 
feature pixels that appear red. The use of the median filter compensates for these low-energy pixels 
when the data is used as input for the CNNs. Sets of input data with four different time lengths (Sets 
A, B, C, and D) were fed to the CNNs, and the corresponding noise classification accuracies were 
compared. 

Figure 1. The structure of Convolution Neural Networks.

In this paper, the CNN has two hidden layers, namely the 5 × 5 convolution layer and max
pooling layer, which uses a 2 × 2 window. The activation function is a ReLu function, which is the
most commonly used function, and the loss function is a cross-entropy function. The overall data was
divided into training and test sets at a ratio of 75:25, respectively, the batch sizes of the training was set
to 16. The number of epochs was 12 and learning rate was set 0.001.

3. The Proposed Algorithm

In this paper, the spectrogram images of noise signals were used as input data for the CNNs, without
feature extraction or conversion to the frequency domain. A spectrogram is a visual representation of
the frequency spectrum of the signals with respect to time. The amplitude of the sound frequency was
indicated by color in the spectrogram. Because the spectrogram consisted of different image colors,
it had the advantage of enabling verification of the time and energy information in the frequency
domain over a certain period. Therefore, the characteristics of the spectrogram images varied with the
amplitude of the frequency and the time information.

Figure 2 shows a flow chart of the proposed environment noise classification algorithm. Generally,
the input sound signal data were transformed into spectrogram images represented as RGB colors for
noise classification using the CNNs. Two types of filters were combined and used to distinguish the
noise characteristics, because the spectral image of the sound signals contained irregular amplitude
changes over time unlike normal image signals. Each filter was introduced and applied to compare the
results of the proposed algorithm in the process.

The first image filter uses a sharpening mask (method #1: spectrogram + Sharpening Mask),
which enables enhancement of the boundaries of the noise characteristics [22]. The filter clearly
identifies the boundaries of the colors, so that the area of the high-energy noise signals can be more
clearly displayed.

The second image filter uses a median filter (method #2: spectrogram + Median Filter) [23]. In a
conventional noise signal spectrogram, there are irregular low-energy pixels between the noise feature
pixels that appear red. The use of the median filter compensates for these low-energy pixels when the
data is used as input for the CNNs. Sets of input data with four different time lengths (Sets A, B, C,
and D) were fed to the CNNs, and the corresponding noise classification accuracies were compared.
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Figure 2. The process of the noise classification with convolutional neural networks by the proposed
algorithm.

4. Materials and Methods

The conditions of noise data and signal processing information will first be discussed in Section 4.1;
in Section 4.2, the specific noise classification experiment and input data transformation process will be
described. Overall, the determination of the input data and detailed pre-processing of image data in
CNNs are described for the noise classification algorithm.

4.1. Recording Environmental Noises

Ten kinds of noise were recorded from real environments in which hearing aids are used: white
noise (white, N0), café noise around Inha University, Korea (café, N1), interior noise in a moving car
(car_interior, N2), single fan noise in a laboratory (fan, N3), laundry noise in a laundry room (laundry,
N4), noise in the library of Inha University (library, N5), normal noise in a university laboratory (office,
N6), various noises in a restaurant (restaurant, N7), noise in subway car (subway, N8), and traffic noise
around an intersection (traffic, N9).

Each noise was recorded three times at different times on different weekdays, and noise data for
each noise type was generated for 30 min. To be closely related to the hearing aid’s environment,
recording places were selected such as Starbucks, the biggest restaurant in the Inha Student Union
building, etc. The noises were recorded on an iPhone 6S at 44.1 kHz, which is the highest possible
sampling frequency, and the artificial noise generated at the beginning and end of recording was not
included. The noise data was subsequently down-sampled to 16 kHz, which is the proper frequency
for signal processing for hearing aids.

4.2. Experiment Data

The Matlab R2019b program developed by MathWorks was used to divide the recorded noise
data into certain time intervals. The noise signals consisted of 16,000 samples per second, divided into
four sets with time lengths of 1.0, 2.0, 4.0, and 8.0 s, respectively. Each frame was overlapped by 25%
on either side to achieve a continuous noise signal and prevent to loss some data [24]. The spectrogram
images obtained from the sound signals consisted of 23,960 images with a time length of 1 s (Set A),
11,960 of length 2 s (Set B), 6,000 of length 4 s (Set C), and 3,000 of length 8 s (Set D) in each of the
10 noises.

The conversion functions in the signal processing tool in the Matlab Toolbox was used to transform
the noise signals into a spectrogram. The spectrogram image had a resolution of 904 × 713 pixels
and was used as the input of the CNNs. To increase the classification accuracy of the spectrogram
images of the noise signals, a 3 × 3 sharpening mask was used to enhance the boundaries of the colors,
while a 5 × 5 median filter was used to clearly represent the pattern of the colors and make a color
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smoothing for random noise pixels. Figure 3 shows the results of a transformation of sound signals into
a spectrogram image and the application of the sharpening mask and median filter. The spectrogram
images were also subsequently used as input data.
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Figure 3. The transformed spectrogram image (b) from the noise signal (a), and when applying the
sharpening mask (c) and the median filter (d).

Using Set A as an example, there were four types (spectrogram image, spectrogram image +

Sharpening Mask, spectrogram image + Median Filter and spectrogram image + Sharpening Mask +

Median Filter) of input data for each of the 10 considered environments, from which 23,960 spectrogram
images were obtained. The same number of images were obtained after the application of the
sharpening mask and median filter, respectively.

5. Experimental Results

In this section, results of the classification for hearing aids are introduced with various conditions,
showing the detailed performance as proposed algorithms. Results are presented as a Confusion
Matrix and a Receiver Operating Characteristic (ROC) curve. A Confusion Matrix is a table that is
often used to describe the performance of the classification on a set of test data [25]. A ROC curve is a
graph showing the performance of a classification model at all classification thresholds [26].

5.1. Performance Evaluations

This section presents experimental results of the proposed environmental noise classification for
hearing aids using a CNNs. The classification produced varying results because the noise signals were
randomly divided into training (0.75) and test (0.25) sets, and the spectrogram images corresponded to
different times. The total number of input data was 5990 when the length of time was 1 s, and the
number of test data in each noise was 599. Because the number of input data was dependent on length
of time, the number of test data is 2990 in 2 s, 1500 in 4 s, and 750 in 8 s.

In order to show significant classification results, every experiment of training set and test set
were randomly divided at a constant rate. As indicated in Table 1, the values in the tables are the
classification accuracy (%), which is the ratio of number of correct predictions to the total number of
input data, and the noise classification was performed 10 times. Bold numbers in the bottom two rows
of each table are an average and a standard deviation of classification accuracies for comparing with
other conditions. The conventional method is based on the deep convolutional neural networks and
became famous as the winner of the ImageNet Large Scale Visual Recognition Competition (ILSVRC)
in 2012 [21].
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Method #1 was used to classify the image data using the sharpening mask to emphasize
the boundary of colors, while method #2 used the median filter to remove ambient noise pixels.
The proposed algorithm involved the combined use of the sharpening mask and median filter for clear
representation and removal of the noise pixels in the spectrogram.

Table 1. Summary of the classification accuracy (%) applying different methods: (a) Conventional
Method; (b) Method #1, only the sharpening mask is applied; (c) Method #2, only the median filter is
applied; (d) proposed algorithm, both the sharpening mask the median filter are applied; the length of
time of Set A is 1 s, Set B is 2 s, Set C is 4 s and Set D is 8 s.

Test #
Set A Set B Set C Set D

Test #
Set A Set B Set C Set D

(1 s) (2 s) (4 s) (8 s) (1 s) (2 s) (4 s) (8 s)

1 98.98 98.6 97.93 95.2 1 98.95 99.13 98.87 97.6
2 98.92 98.66 97.8 95.07 2 98.9 99.03 99 98.27
3 98.8 98.43 97.4 95.73 3 98.88 99 98.8 97.87
4 98.87 98.66 98.27 95.2 4 98.9 99.2 98.73 98
5 98.78 98.6 98.27 94 5 98.95 98.83 98.73 98.13
6 98.61 98.7 98.13 96.4 6 98.95 98.46 97.8 95.87
7 98.73 98.86 98.27 94.8 7 98.9 98.86 98.73 98.13
8 98.58 98.83 98.47 93.87 8 98.92 98.6 99.2 96.13
9 98.83 98.63 96.47 95.73 9 98.82 98.96 98.6 97.87

10 98.8 99.26 98.27 96.4 10 98.87 98.9 97.93 95.73

AVG 1 98.79 98.72 97.93 95.24 AVG 1 98.9 98.9 98.64 97.36

SD 2 0.12 0.23 0.6 0.87 SD 2 0.04 0.23 0.44 1.02

(a) Conventional Method(Spectrogram only) (b) Method #1(Spectrogram + Sharpening Mask)

Test #
Set A Set B Set C Set D

Test #
Set A Set B Set C Set D

(1 s) (2 s) (4 s) (8 s) (1 s) (2 s) (4 s) (8 s)

1 99.12 99.06 96.2 95.47 1 99.37 99.13 99.13 99.07
2 99.12 98.83 96 97.47 2 99.23 99.16 99.33 98.93
3 99.07 99 96.07 96.13 3 99.25 99.2 99.33 98.67
4 99.15 98.83 96.53 96.27 4 99.35 99.23 99.27 98.67
5 98.95 98.53 96.13 95.33 5 99.42 99.26 99.13 99.2
6 99.05 97.99 95.87 94.27 6 99.2 99.26 98.93 97.73
7 98.95 99.03 95.53 97.6 7 98.97 98.5 98.67 98.8
8 99.07 98.63 97.53 97.07 8 99.38 98.83 99.47 98.53
9 98.93 99.16 98 95.33 9 99.07 99.33 98.8 99.2

10 98.97 99 97.27 95.73 10 99.28 99.43 98.87 98.53

AVG 1 99.04 98.81 96.51 96.07 AVG 1 99.25 99.13 99.09 98.73

SD 2 0.08 0.35 0.81 1.06 SD 2 0.14 0.27 0.27 0.43

(c) Method #2(Spectrogram + Median Filter) (d) Proposed algorithm(Spectrogram + Sharpening
Mask + Median Filter)

1 AVG: Average of classification accuracies. 2 SD: Standard Deviation of classification accuracies.

Regarding the classification accuracy in the time division, Set A produced the highest percentage
classification in comparison with other Sets. With increasing time length of the spectrogram,
the percentage classification decreased when using the CNNs. This was because of the longer
time spent in changing the noise environment, and the increased probability of error in the classification
due to the reduced number of image data. The detailed confusion matrix of classification results is
further analyzed in Section 5.2, below. Each number is the average of 10 classifications.
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5.2. Data Analysis

Table 2 is a confusion matrix of classification results in the time length of Set A using the CNNs.
The vertical noise numbers in the table represent the true class (Target Class), while the horizontal
noise numbers represent the predicted class (Output Class). The numbers in the diagonal cells are the
numbers of correct classifications, while those in the off-diagonal cells are the numbers of incorrect
classifications. The percentage of correct classifications relative to the total number of observations are
also shown for each noise number. The results reveal high classification accuracies irrespective of the
use or type of filter. In addition, there are no significant differences between the spectrogram image
classifications for the four different methods, because there was enough input data to classify, and the
performance of the CNN was excellent.
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Table 2. Summary of the classification accuracy (%) applying different methods in Set A: (a) Conventional Method; (b) Method #1, only the sharpening mask is applied;
(c) Method #2, only the median filter is applied; (d) proposed algorithm, both the sharpening mask and the median filter are applied; the length of time of Set A is 1 s.

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

(%) (%)
N0 599 0 0 0 0 0 0 0 0 0 100 N0 599 0 0 0 0 0 0 0 0 0 100
N1 0 582.8 0 0.2 0.8 0.4 4 0.9 4.3 5.6 97.29 N1 0 584.1 0 0.2 1 1.1 3.9 1.2 2.8 4.7 97.51
N2 0 0 597.7 0 0 0 0 0 0.4 0.9 99.78 N2 0 0 597.6 0 0 0 0 0 1.1 0.3 99.76
N3 0 0 0 599 0 0 0 0 0 0 100 N3 0 0 0 598.8 0 0 0 0 0 0.2 99.96
N4 0 0.3 0.1 0.2 594.1 0.4 1.1 0.1 0.3 2.2 99.18 N4 0 0.9 0 0 593.6 0.4 1.1 0.8 1.1 1.1 99.09
N5 0.1 0.3 0 0 0.2 593.1 4 0.3 0 0.9 99.02 N5 0.1 0.3 0 0 0 593.4 4.1 0.7 0 0.3 99.07
N6 0 3.4 0 0.3 0 4.3 587.3 0.8 0 2.8 98.05 N6 0 2.3 0 0 0 3.4 591.1 0.9 0 1.2 98.68
N7 0 0.8 0 0 0 0 0.1 596.8 0.3 1 99.63 N7 0 0.8 0 0 0 0.2 0.2 595.7 0 2 99.46
N8 0 9.7 0.1 0 0.1 0.7 0 0 585.9 2.6 97.81 N8 0 8.3 0 0 0 1.1 0 0 585.8 3.9 97.77
N9 0.2 8 0.1 0.1 0.4 3.1 1.3 0.4 3.3 581.9 97.14 N9 0.2 5.9 0.7 0 0.3 2.8 1.2 0.4 2.6 584.9 97.64

Average Classification Accuracy 98.79 Average Classification Accuracy 98.9
(a) Conventional Method (Set A) (b) Method #1 (Set A)

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

(%) (%)

N0 599 0 0 0 0 0 0 0 0 0 100 N0 599 0 0 0 0 0 0 0 0 0 100
N1 0 581.9 0 0.3 0.4 0.9 5.9 1.1 3.4 5 97.14 N1 0 586.1 0 0.2 0.6 0.6 3.4 0.6 3.9 3.7 97.85
N2 0 0 598.6 0 0 0 0 0 0.1 0.3 99.93 N2 0 0 598.1 0 0 0 0 0 0.6 0.3 99.85
N3 0 0 0 598.9 0 0 0 0 0 0.1 99.98 N3 0 0.1 0 598.9 0 0 0 0 0 0 99.98
N4 0 0.9 0 0 595.3 0.8 0.8 0.2 0.8 0.2 99.39 N4 0 0.6 0 0 597 0 0 0.2 0.4 0.2 99.67
N5 0.1 0.4 0 0 0.1 594.6 3.2 0.4 0 0.1 99.26 N5 0 0.1 0 0 0 595.4 2.8 0 0 0.7 99.41
N6 0 1.4 0 0.3 0 2.7 592.8 1 0 0.8 98.96 N6 0 1.3 0 0.2 0 2.8 593 1.4 0 0.2 99
N7 0 0.9 0 0 0.1 0 0.1 597.2 0 0.7 99.7 N7 0 0.4 0 0 0 0 0.1 597.8 0 0.7 99.8
N8 0 6.4 0.1 0 0.1 0.4 0 0 589 2.9 98.33 N8 0 5.9 0 0 0.2 0.4 0 0 590.7 1.8 98.61
N9 0 6.2 0.3 0 1.3 2 1.2 0.1 2.2 585.6 97.76 N9 0 4.9 0.3 0 0.6 1.3 1.1 0.1 1.8 588.9 98.31

Average Classification Accuracy 99.04 Average Classification Accuracy 99.25
(c) Method #2 (Set A) (d) Proposed algorithm (Set A)

Note: the correct classifications in the diagonal cells and especially the incorrect classifications in the rest to be express in different colors.
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Figure 4 shows the Receiver Operating Characteristic (ROC) curve of multilabel classification for
Table 2. The classification performance was confirmed through the ROC curves of all noises, which are
close to the top and left-hand borders. All of the area under the ROC curve (AUC) were 1.0, meaning
that the score describes the quality of the classification performance.
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Figure 4. The Receiver Operating Characteristic (ROC) curve for Table 2: (a) Conventional Method;
(b) Method #1, only the sharpening mask is applied; (c) Method #2, only the median filter is applied;
(d) proposed algorithm, both the sharpening mask and the median filter are applied; the length of time
of Set A is 1 s.

As can be seen from Table 3, when the environmental noises of the spectrogram image with a
time length of Set B were classified using the four different methods, the classification accuracies were
similar to those of Set A. In the cases of subway noise (N8) and traffic noise (N9), the classification rates
using the sharpening mask and median filter were much better than when the filters were not used.

Café noise (N1) was misclassified as subway noise (N8) and traffic noise (N9), respectively,
because the irregular high-frequency noises in the café presented energy distributions similar to those
of subway noise (N8) and traffic noise (N9). Subway noise (N8) was also misclassified as traffic noise
(N9). Because the energy distributions of these two noises are similar, neither the sharpening mask (c)
nor the median filter (d) produced significantly differing effects from them.
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Table 3. Summary of the classification accuracy (%) applying different methods in Set B: (a) Conventional Method; (b) Method #1, only the sharpening mask is applied;
(c) Method #2, only the median filter is applied; (d) proposed algorithm, both the sharpening mask and the median filter are applied; the length of time of Set B is 2 s.

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

(%) (%)
N0 299 0 0 0 0 0 0 0 0 0 100 N0 299 0 0 0 0 0 0 0 0 0 100
N1 0 289 0 0.2 0.9 0.6 1.3 1 2.8 3.2 96.66 N1 0 293.1 0 0 0.2 0.9 0.9 0.9 0.9 2.1 98.03
N2 0 0 298.2 0 0 0 0 0 0 0.8 99.74 N2 0 0 298.4 0 0 0 0 0 0.1 0.4 99.81
N3 0 0.1 0 298.9 0 0 0 0 0 0 99.96 N3 0 0.2 0 298.4 0 0 0 0 0 0.3 99.81
N4 0 0.2 0.1 0 294.3 0.2 0.4 0.9 1.3 1.4 98.44 N4 0 0 0.2 0 295 0 0.8 0 0.3 2.7 98.66
N5 0 0 0 0 0 297.2 1.6 0 0 0.2 99.41 N5 0.2 0.7 0 0 0 296.3 1.3 0 0 0.4 99.11
N6 0 0.2 0 0 0 1.8 297 0 0 0 99.33 N6 0 0.3 0 0 0 1 296.2 0.3 0 1.1 99.07
N7 0 0.4 0 0 0 0 0.1 298.4 0 0 99.81 N7 0 0 0 0 0 0 0.2 298.7 0 0.1 99.89
N8 0 4.9 0 0 0.4 0.4 0 0 291.6 1.7 97.51 N8 0 3.3 0 0 0.8 1.1 0 0 290 3.8 96.99
N9 0 4.1 0.8 0.1 0.6 0.7 2 0.6 2.2 288 96.32 N9 0 1.7 0 0 0.7 1.7 1.1 0.8 1.1 292 97.66

Average Classification Accuracy 98.72 Average Classification Accuracy 98.9
(a) Conventional Method (Set B) (b) Method #1 (Set B)

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

(%) (%)

N0 299 0 0 0 0 0 0 0 0 0 100 N0 299 0 0 0 0 0 0 0 0 0 100
N1 0 292.3 0 0 0.2 0.8 1.2 0.6 2.7 2.1 97.77 N1 0 291 0 0.2 0.3 0.4 1.2 0 2.6 3.2 97.32
N2 0 0 298.9 0 0 0 0 0 0 0.1 99.96 N2 0 0 298.8 0 0 0 0 0 0 0.2 99.93
N3 0 0 0 298.8 0.2 0 0 0 0 0 99.93 N3 0 0.1 0 298.7 0.1 0 0 0 0 0.1 99.89
N4 0 0.6 0.2 0 295.9 0 0.2 0.2 0.4 1.4 98.96 N4 0 0.1 0.1 0 296.4 0.1 0.8 0 0.3 1.1 99.15
N5 0 0.4 0 0 0 296.2 2.1 0 0.1 0.1 99.07 N5 0 0.4 0 0 0 297.4 1.1 0 0 0 99.48
N6 0 0.2 0.1 0.1 0.1 2.7 295.3 0.2 0 0.2 98.77 N6 0 0.3 0 0 0 1.8 296.3 0.2 0 0.3 99.11
N7 0 0.2 0 0 0 0 0 298.6 0.1 0.1 99.85 N7 0 0.1 0 0 0 0 0 298.3 0.1 0.4 99.78
N8 0 6.4 0 0 0.4 0.1 0 0 289.7 2.3 96.88 N8 0 2 0 0 0.2 0.3 0 0 294.2 2.2 98.4
N9 0 5.4 0.3 0 0.4 0.7 0.6 0 1.8 289.8 96.92 N9 0.1 2.2 0.1 0 0.4 0.6 0.3 0.2 1.3 293.7 98.22

Average Classification Accuracy 98.81 Average Classification Accuracy 99.13
(c) Method #2 (Set B) (d) Proposed algorithm (Set B)

Note: the correct classifications in the diagonal cells and especially the incorrect classifications in the rest to be express in different colors.
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Figure 5 shows the Receiver Operating Characteristic (ROC) curve of multilabel classification for
Table 3. The classification performance was confirmed through the ROC curves of all noises, which are
close to the top and left-hand borders. All of the area under the ROC curve (AUC) were 1.0, meaning
that the score describes the quality of the classification performance.
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Figure 5. The Receiver Operating Characteristic (ROC) curve for Table 3: (a) Conventional Method;
(b) Method #1, only the sharpening mask is applied; (c) Method #2, only the median filter is applied;
(d) proposed algorithm, both the sharpening mask and the median filter are applied; the length of time
of Set B is 2 s.

Table 4 presents the environmental noise classification results for a time length of Set C,
which produced decreased image classification accuracies for some noise types compared with
the classifications for Set A and B. Specifically, the classification accuracies when using the median
filter (Method #2) were lower than the other results. This means that the characteristics and the
distribution of noise could not be distinguished over longer time lengths because the median filter
caused a smoothing effect. In Table 4c, café noise (N1) is incorrectly classified as subway noise (N8)
and traffic noise (N9), and traffic noise (N9) s incorrectly classified as cafe noise (N1) and subway noise
(N8), resulting in a reduced overall classification accuracy. Café noise (N1), traffic noise (N9) have
similar energy distributions because they contain multiple voices in other complexed environments,
with the sounds concentrated in the low-frequency range. In the case of café noise (N1), subway noise
(N8) and traffic noise (N9), for which the conventional method produces relatively low classification
accuracies, proposed algorithm affords significant improvements.
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Table 4. Summary of the classification accuracy (%) applying different methods in Set C: (a) Conventional Method; (b) Method #1, only the sharpening mask is applied;
(c) Method #2, only the median filter is applied; (d) proposed algorithm, both the sharpening mask and the median filter are applied; the length of time of Set C is 4 s.

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

(%) (%)
N0 150 0 0 0 0 0 0 0 0 0 100 N0 150 0 0 0 0 0 0 0 0 0 100
N1 0 144.7 0 0 0 0.4 0.8 0.4 2 1.7 96.44 N1 0 146.4 0 0 0.1 0.3 0.8 0.1 0.3 1.9 97.63
N2 0 0 149.1 0 0 0 0 0 0.3 0.6 99.41 N2 0 0 149.6 0 0 0 0 0 0.2 0.2 99.7
N3 0 0 0 149.7 0.3 0 0 0 0 0 99.78 N3 0 0 0 150 0 0 0 0 0 0 100
N4 0 0.6 0.3 0.1 145.7 0 0.2 0.9 0.7 1.6 97.11 N4 0 0.6 0 0.1 146.3 0.2 0.7 0.2 0.4 1.4 97.56
N5 0 0 0 0 0.1 149.7 0.1 0 0 0.1 99.78 N5 0 0 0 0 0 149.4 0.6 0 0 0 99.63
N6 0 0.6 0 0 0.1 2.8 146.2 0.3 0 0 97.48 N6 0 0 0 0 0 1 148.9 0 0 0.1 99.26
N7 0 0 0 0 0 0 0.1 149.8 0 0.1 99.85 N7 0 0 0 0 0 0 0 150 0 0 100
N8 0 2.4 0.6 0 0 0 0 0.2 145.2 1.6 96.81 N8 0 4.3 0 0 0.1 0 0 0 144.1 1.4 96.07
N9 0.2 7.4 0 0.1 0.2 0.6 0 0.6 2 138.9 92.59 N9 0 2.6 0 0.1 0.3 0.8 0.8 0.1 0.4 144.9 96.59

Average Classification Accuracy 97.93 Average Classification Accuracy 98.64
(a) Conventional Method (Set C) (b) Method #1 (Set C)

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

(%) (%)
N0 150 0 0 0 0 0 0 0 0 0 100 N0 150 0 0 0 0 0 0 0 0 0 100
N1 0 136.2 0 0 0.7 0.2 2.6 0.7 3.6 6.1 90.81 N1 0 147.4 0 0 0.2 0 0.6 0.1 0.7 0.9 98.37
N2 0 0 148.8 0 0.1 0 0 0 0.6 0.6 99.19 N2 0 0 149.6 0 0 0 0 0 0.2 0.2 99.7
N3 0 0 0 149.8 0.2 0 0 0 0 0 99.85 N3 0 0 0 149.9 0.1 0 0 0 0 0 99.93
N4 0 0.3 0.3 1.8 142.7 0 0.6 0.3 2.2 1.8 95.11 N4 0 0.3 0.1 0.2 147.1 0 0.2 0.3 0.1 1.1 98.37
N5 0 0.4 0 0 0 148.6 0.8 0 0.2 0 99.04 N5 0 0 0 0 0 149.4 0.6 0 0 0 99.63
N6 0 0.6 0 0.2 0 3.4 145.1 0.3 0 0.3 96.74 N6 0.1 0 0 0.1 0 1.4 147.9 0.1 0 0.1 98.74
N7 0 0.1 0 0 0 0 0.1 148.8 0.1 0.9 99.19 N7 0 0.1 0 0 0 0 0 149.7 0 0.2 99.78
N8 0 4.8 0 0 0.4 0.2 0 0.2 141.8 2.6 94.52 N8 0 1.7 0 0 0.1 0.1 0 0 147.1 0.7 98.3
N9 0 5.4 1.2 0.6 0.2 0.2 1.8 0.8 3.8 136 90.67 N9 0 1.4 0 0.1 0.3 0.1 0.3 0.3 0.2 146.9 98.07

Average Classification Accuracy 96.51 Average Classification Accuracy 99.09
(c) Method #2 (Set C) (d) Proposed algorithm (Set C)

Note: the correct classifications in the diagonal cells and especially the incorrect classifications in the rest to be express in different colors.
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Figure 6 shows the Receiver Operating Characteristic (ROC) curve of multilabel classification for
Table 4. The classification performance was confirmed through the ROC curves of all noises, which are
close to the top and left-hand borders. All of the area under the ROC curve (AUC) were 0.99, meaning
that the score describes the quality of the classification performance.
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Figure 6. The Receiver Operating Characteristic (ROC) curve for Table 4: (a) Conventional Method;
(b) Method #1, only the sharpening mask is applied; (c) Method #2, only the median filter is applied;
(d) proposed algorithm, both the sharpening mask and the median filter are applied; the length of time
of Set C is 4 s.

Table 5 presents the environmental noise classification results for a time length of Set D. Comparison
of Table 5a,d shows that the proposed algorithm produces a 97.93% classification accuracy for cafe
noise (N1), which is highly classified compared with the other methods. In addition, the classification
accuracy of traffic noise (N9) with the proposed algorithm was also increased to 98.22%.

Overall, the proposed algorithm produces >96.4% classification accuracy for all environmental
noises. That means the results show that the classification accuracy does not significantly decrease
even for a time length of Set D when the two types of filters are applied to the input data of the CNNs.
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Table 5. Summary of the classification accuracy (%) applying different methods in Set D: (a) Conventional Method; (b) Method #1, only the sharpening mask is applied;
(c) Method #2, onyl the median filter is applied; (d) proposed algorithm, both the sharpening mask and the median filter are applied; the length of time of Set D is 8 s.

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

(%) (%)
N0 75 0 0 0 0 0 0 0 0 0 100 N0 75 0 0 0 0 0 0 0 0 0 100
N1 0 64.6 0 0 0.3 0.4 1.4 0.1 3.2 4.9 86.07 N1 0 69.3 0 0 0 0 2.3 0 1.9 1.4 92.44
N2 0 0 74.2 0 0 0 0 0 0.1 0.7 98.96 N2 0 0 74.9 0 0 0 0 0 0 0.1 99.85
N3 0 0 0 74.6 0.4 0 0 0 0 0 99.41 N3 0 0 0 74.9 0.1 0 0 0 0 0 99.85
N4 0 0.3 0.1 0 71.6 0.2 0 0.6 0.4 1.8 95.41 N4 0 0 0.4 0.2 70.8 0.2 0.6 0.4 0.3 2 94.37
N5 0 0.1 0 0 0 74.3 0.3 0 0.1 0.1 99.11 N5 0 0 0 0 0 74.9 0.1 0 0 0 99.85
N6 0 0 0 0 0 4.2 70 0.1 0 0.7 93.33 N6 0 0 0 0 0 0.7 74.3 0 0 0 99.11
N7 0 0 0 0 0 0.1 0 74.3 0 0.6 99.11 N7 0 0 0 0 0 0 0.1 74.9 0 0 99.85
N8 0 2.1 0 0 2 0.2 0 0 69.2 1.4 92.3 N8 0 2.1 0 0 0.3 0.1 0.1 0 70.6 1.8 94.07
N9 0 3.7 0.1 0.1 0.1 0.6 0 0.6 3.3 66.6 88.74 N9 0 2 0 0 0.7 0.6 0.1 0.3 0.7 70.7 94.22

Average Classification Accuracy 95.24 Average Classification Accuracy 97.36
(a) Conventional Method (Set D) (b) Method #1 (Set D)

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9
ACC

(%) (%)
N0 75 0 0 0 0 0 0 0 0 0 100 N0 75 0 0 0 0 0 0 0 0 0 100
N1 0 66.4 0 0 1 0.1 1.8 0 1.8 3.9 88.59 N1 0 73.3 0 0 0.1 0.1 0.4 0 0.2 0.8 97.78
N2 0 0 74.1 0 0 0 0 0 0 0.9 98.81 N2 0 0 74.7 0 0 0 0 0 0.1 0.2 99.56
N3 0 0 0 74.8 0.2 0 0 0 0 0 99.7 N3 0 0 0 74.8 0.2 0 0 0 0 0 99.7
N4 0 0.2 0.3 1.1 70.7 0.2 0.3 0 0.7 1.4 94.22 N4 0 0.4 0.3 0 72.9 0.1 0 0 0.7 0.6 97.19
N5 0 0 0 0 0 74.6 0.4 0 0 0 99.41 N5 0 0 0 0 0 74.9 0.1 0 0 0 99.85
N6 0 0 0 0 0 2.4 72.4 0 0 0.1 96.59 N6 0 0 0 0 0 0.8 74.2 0 0 0 98.96
N7 0 0 0 0 0 0 0.4 74.2 0 0.3 98.96 N7 0 0 0 0 0 0 0.1 74.9 0 0 99.85
N8 0 1.3 0.1 0 0.4 0.1 0 0 71 2 94.67 N8 0 1.1 0 0 0.2 0.3 0 0 72.6 0.8 96.74
N9 0 1.8 1.7 0.3 1 0.4 1.6 0.4 0.4 67.3 89.78 N9 0 0.8 0 0 0.1 0.4 0.3 0.1 0 73.2 97.63

Average Classification Accuracy 96.07 Average Classification Accuracy 98.73
(c) Method #2 (Set D) (d) Proposed algorithm (Set D)

Note: the correct classifications in the diagonal cells and especially the incorrect classifications in the rest to be express in different colors.
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Figure 7 shows the Receiver Operating Characteristic (ROC) curve of multilabel classification for
Table 5. The classification performance was confirmed through the ROC curves of all noises, which are
close to the top and left-hand borders. All of the area under the ROC curve (AUC) were 1.0, meaning
that the score describes the quality of the classification performance.
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Figure 7. The Receiver Operating Characteristic (ROC) curve for Table 5: (a) Conventional Method;
(b) Method #1, only the sharpening mask is applied; (c) Method #2, only the median filter is applied;
(d) proposed algorithm, both the sharpening mask and the median filter are applied; the length of time
of Set D is 8 s.

6. Conclusions

In this study, we proposed an algorithm for the classification of environmental noises in hearing
aids and verified the performance. The proposed algorithm was to transform the sound data into
image data for using as the input data of CNNs. The spectrogram images of the transformation were
generated by dividing 10 environmental noises using four different time lengths, respectively, and the
correct classification accuracies were compared for cases when a sharpening mask, median filter,
and both were applied to the image data, respectively. We found that the correct noise classification
accuracies for hearing aids using a CNNs gradually decreased with increasing time length of the
spectrogram images due to the randomly changing noise characteristics. Regarding the type of filter
used, the classification accuracy for the sharpening mask was higher than that for the median filter.
In other words, it was more effective to sharpen the boundaries of the energy distribution in the
spectrogram images than to remove the noise pixels from the images with obvious colors. Particularly,
the combined use of the sharpening mask and median filter for a spectrogram time length of Set D
increased the classification accuracy from 95.24% when no filter is used to 98.73%, which is comparable
to the classification accuracy (98.79%) without a filter (conventional method) for a time length of Set A.

The proposed noise classification algorithm is thus effective for low computational complexity
in long-term noise estimation and classification for hearing aids, as well as for environmental noise
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monitoring over a period of time, eliminating the need for real-time noise estimation. In addition,
other types of filters that can clearly identify noise characteristics can be combined to further improve
the use of CNNs for noise classification toward enhancing the performance of hearing aids.
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