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The need for new methodologies within drug development 
has been highlighted several times in the last decade by 
regulators,1 the drug industry,2 and external evaluators,3 
and various approaches such as modeling and simulation, 
adaptive trial designs, the use of surrogate end points, etc. 
have been suggested as new strategies. One of the pro-
posed approaches is the use of mixed-effects modeling for 
the development of pharmacometric models,4–8 as the meth-
odology is well-suited for the use of all available data (e.g., 
repeated measurements over time and multiple end points) 
and mechanistic interpretations of the model parameters.

Jonsson and Sheiner9 have previously shown that the use 
of scientific model–based statistical tests can improve the 
efficiency of clinical trials and the use of pharmacometric 
models as decision making tools within drug development is 
increasing,6,7,10 but there are only a few examples of phar-
macometric models being used in the primary analysis of 
clinical trials. Pharmacometric models also offer an improved 
possibility of information propagation between development 
phases, mechanistic interpretation of the model parameters, 
and exploration of different study designs by means of clinical 
trial simulations.11

Proof-of-concept (POC) studies are designed to give 
preliminary evidence of efficacy and safety, with the aim to 
inform a decision about proceeding into full development of 
the drug. In practice, the POC decision is often based on 
whether a required effect size can be detected in comparison 
to placebo or a comparator treatment; be able to answer the 
addressed question within a reasonable time frame and the 
allotted budget; and the studies should be as small as pos-
sible. The study size is usually determined by the primary 
objective of the trial12 and the number of subjects should be 
large enough to be able to detect the defined drug effect but 
at the same time expose a minimum number of subjects to an 

experimental drug. It is also common that dose-ranging POC 
studies are performed to address a secondary objective of 
exploring a dose–response relation.

In this study, we present two motivating examples, within 
the areas of acute stroke and type 2 diabetes, in which the 
use of a pharmacometric models has the potential to reduce 
sample size in POC studies. The examples were addressed 
through clinical trial simulations using previously developed 
pharmacometric models.

Drug development within the area of acute stroke has for 
many years struggled to find a successful drug, and several 
late phase failures13–15 have been experienced. One of the 
issues is the inefficiency of the clinical trials, and several sug-
gestions have been made on how to improve the efficiency 
of these trials.16,17 With the development of pharmacometric 
models for the NIH stroke scale, the Barthel index18 and the 
Scandinavian stroke scale,19 the possibility of using a model-
based analysis on clinical trials within the stroke area have 
emerged.

Type 2 diabetes mellitus is a progressive disease with 
continuous worsening of glycemic control.20 Fasting plasma 
glucose (FPG) and insulin levels are often used as short-
term assessments of the disease; however, for long-term 
assessments of the disease state, these levels are not reli-
able. Instead, glycosylated hemoglobin (HbA1c) is commonly 
used as a biomarker for long-term glycemic control. Hamrén 
and colleagues21 have developed a mixed-effects mecha-
nistic model for the interplay between FPG, HbA1c, and red 
blood cells (RBC). Such a mechanism-based model may offer 
great advantages in the analysis of clinical trials because it 
allows for a mechanistic interpretation of the result as well as 
a simultaneous analysis of multiple end points.

The aim of this article was to compare a pharmacometric 
model–based analysis to a conventional statistical analysis 
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with respect to power of detecting a defined drug effect in 
stroke and diabetes POC studies. The pharmacometric 
models applied for trial simulation and likelihood ratio test-
ing (LRT) are presented in Figures 1 and 2 and detailedly 
explained in the Methods section.

RESULTS

Two study designs were explored: a pure POC design with 
a placebo and an active arm; a dose-ranging scenario. For 
simplicity, the comparison between conventional study power 
and pharmacometric model–based power were made at 80% 
study power in all examples and scenarios; however, the full 
power curves are presented in the graphs.

In the POC stroke example, using a two-sided t-test to detect 
a difference in the change from baseline and day 90 National 
Institutes of Health Stroke Scale (NIHSS) score (using last 
observation carried forward) between placebo and the active 
dose group resulted in a study size of 388 patients (194 
patients/arm), visualized in Figure 3a. Using a pharmacomet-
ric model–based approach, the 80% study power was reached 
with a study size of 90 patients (45 patients/arm), resulting in a 
4.3-fold difference in total study size between the two methods. 
In the diabetes example, the conventional power calculation 
resulted in a study size of 84 patients (42 patients/arm) and 
the pharmacometric approach resulted in a study size of 10 
patients (5 patients/arm), presented in Figure 3b, correspond-
ing to an 8.4-fold difference between the two methods. The 
pharmacometric model–based 80% study power assessed 
with Monte-Carlo Mapped Power (MCMP, further described 
in the Methods section) was verified by stochastic simula-
tions and estimations (data not shown). Both the investigated 

examples show a several fold reduction in study sizes when 
employing a model-based analysis. The reasons that the dia-
betes trial benefits the most are as follows: (i) FPG inherently 
contain more information (i.e., more sensitive to a drug effect 
as compared with stroke scores) than stroke scores, and (ii) a 
more informative study design which included a run-in phase 
to separate the placebo effect (which contained most of the 
between patient variability) from the drug effect, and a total of 
10 repeated measurements of FPG were obtained.

The dose-ranging POC study scenario also resulted in a sev-
eral fold difference between the two analysis methods for both 
disease areas, as visualized in Figure 4. In the stroke example, 
the pharmacometric approach resulted in a total study size of 
184 patients and the t-test based study size was 776 patients 
(i.e., a 4.3 factor difference), as displayed in Figure 4a. Both 
the investigated study designs resulted in several fold larger 
study size to ensure similar power between the two analysis 
methods. However, due to the linear drug effect, the factor 
difference in study sizes remains the same when adding low 
and median dose groups. In the diabetic example, using the 
t-test to detect a significant difference between the placebo 
and the active treatment resulted in a total study size of 168 
patients (42 patients/arm) to reach an 80% power, as shown in 
 Figure 4b. The sample size required to reach the same power 
using the pharmacometric model–based approach resulted in 
a study size of 12 patients (three patients/arm), resulting in a 
14 factor difference in study size between the two methods. 
The reasons for the increased difference between the methods, 
as compared with the pure POC scenario, are the nonlinear 
exposure–response relation that is more informed by multiple 
dose groups, and the inclusion of a follow-up observation add-
ing more support to the drug effect.
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Figure 1 A schematic illustration of the concept of the National Institutes of Health Stroke Scale model, in which a zero score represent 
complete recovery and a score of 42 represent maximum severity. S1, S2, S3, and S4 are observed scores at observations 1, 2, 3, and 4, 
respectively. Gray circles indicate potential scores after each type of transition (which, in reality, could be any value between the score 
minimum and the last observation in the event of a score decline, between the last observation and one unit below the score maximum in 
the event of a score improvement, or the score maximum). Bold lines indicate actual score progression, whereas gray lines represent events 
that were possible, but did not take place, at every transition. P(R=1|I=1), P(R=0|I=1), P(Dr=0|I=0), and P(Dr=1|I=0) are the probabilities of 
reaching maximum score, improvement in score, decline in score, and dropout, respectively. Yrel,j = f(Yj > Yj−1) and Yrel,j = f(Yj < Yj−1) indicate the 
continuous functions describing the relative score change given a decrease, or an increase in disease state, respectively.
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DISCUSSION

POC studies (phase 2A) are often categorized as the first con-
firmatory trial in a drug development program,22 and it is not 
uncommon that the primary analysis is similar to the analy-
ses used in the phase 3 trials. This is unfortunate because the 

informativeness of the trial is diluted when, for example, using 
end of study observations only, discarding all other informa-
tion. The first example, for each therapeutic area, represents a 
pure POC scenario in which the objective is to detect a defined 
drug effect between one active dose and placebo. However, 
because POC trials are often executed with multiple treatment 
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Figure 2 Schematic representation of the mechanism-based model for the FPG–HbA1c relationship, in which plasma concentration-Cp vs. 
FPG effect is described by a sigmoidal EmaxFPG function including EmaxFPG, the maximum effect on KoutFPG the first-order degradation rate constant 
of FPG and EC50FPG, the plasma concentration achieving half-maximal effect on EmaxFPG; red blood cell (RBC) maturation is described by KinRBC, 
a zero-order rate constant of RBC release in blood circulation and Ktr, a first-order transit rate constant between each maturation stage; FPG 
mechanism is described by zero-order production rate constant of FPG and a glycosylation rate Kglucose from RBCs to HbA1c. FPG, fasting 
plasma glucose; HbA1c, glycosylated hemoglobin. Reprinted with permission from Macmillan Publishers, ref. 21 copyright 2008.
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Figure 3 Power curve comparison between the pharmacometric model–based power (gray triangles) and the t-test based power (black 
diamonds), for the proof-of-concept scenario. (a) The power curves for the stroke example in which the difference in study size is a factor of 
4.3 (90 vs. 388 total number of patients) is displayed. (b) In the diabetes example, the difference in study size was 8.4-fold (10 vs. 84 total 
number of patients) in favor of the pharmacometric approach.
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arms to fulfill secondary objectives such as exploring dose–
response relations, a dose-ranging POC scenario was also 
investigated. Multiple active doses can contain valuable infor-
mation to inform the POC decision, as well as support a dose/
exposure–response relation in a pharmacometric model–
based approach. In a conventional approach, t-tests are often 
applied individually on each treatment arm in comparison to 
placebo which make interpolations between treatment arms 
difficult and reduce the ability to propagate knowledge about 
dose/exposure–response to future studies.

As these results show, the use of a pharmacometric model– 
based approach within drug development has the potential 
to reduce study sizes of clinical trials. One of the main rea-
sons for this is the use of longitudinal data as the pure POC 
results show. The POC example contains minimum informa-
tion about the drug effect, involving only one active treatment 
arm and placebo, nevertheless by including all data available 
(i.e., repeated measurements) the pharmacometric approach 
results in a several fold reduction in study size when address-
ing the question of POC. Mixed-effects modeling is a powerful 
and flexible method when dealing with unbalanced repeated 
measurements,23 which is often the case in clinical trials, 
and utilization of a pharmacometric model–based analysis 
does not necessarily mean that the design of the trial has to 
change, just that all available data are used in the primary 
analysis thereby increasing the information content of the 
trial, as these examples clearly illustrate.

We acknowledge that there are many methods available 
for the statistical analysis of clinical trials.24–28 In this study, 
we have chosen to compare the t-test and pharmacometric 
modeling as these two methods can be viewed as the two 

extremes in terms of statistical power. The statistical power 
using other methods can be expected to fall somewhere in 
between the ones from the t-test and the pharmacometric 
modeling. There are few comparisons of statistical power 
between pharmacometric model–based analyses and other 
statistical methods; however, both Jonsson and Sheiner9 and 
Hooker et al.29 have presented results that indicate that mod-
el-based methods lead to a reduction in study sizes.

As already mentioned, POC trials and dose-ranging trials 
are often combined into one single phase 2 study to address 
both POC and dose-finding questions within the same trial. In 
a pharmacometric analysis, the aim is to detect a drug effect 
by establishing a model for the dose/exposure–response 
relation and naturally that will be more informed if multiple 
levels of doses are included. This is particularly true if the 
relation is nonlinear, as the results from the diabetes example 
indicate. In the stroke example, the drug effect was linear with 
respect to dose which resulted in the same factor difference 
in study sizes between the POC and dose-range scenarios. 
However, although not explored in the present investigation, 
the precision of the drug parameter will most likely increase 
with the addition of more dose levels.

Pharmacometric models have other advantages such 
as mechanistic interpretation of the model parameters and 
simultaneous analysis of multiple end points, as exempli-
fied with the HbA1c model. Furthermore, a pharmacometric 
model–based power can be combined with a formal optimal 
design to pin down the most informative clinical trial design in 
terms of both study power and parameter precision.

The use of pharmacometric models when calculating 
the study power is of course dependent on the availability 

Figure 4 Power curve comparison between the pharmacometric model–based power (gray squares) and the t-test based power (black 
diamonds), for the dose-range scenario, with four parallel arms. (a) The power curves for the stroke example in which the difference in study 
size is a factor of 4.2 (184 vs. 776 total number of patients) is displayed. (b) In the diabetes example, the difference in study size was 14-fold 
(12 vs. 168 total number of patients) in favor of the pharmacometric approach. The t-test was based on the difference between placebo and 
the highest dose group and the total study size was calculated with addition of two equal sized treatment arms.
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of a pharmacometric model. Several pharmacometric mod-
els exist in the literature for many clinical end points, and 
Table 1 consists of a nonexhaustive list of pharmacometric 
model candidates in different therapeutic areas. Alternatively, 
a model for placebo treatment can often be generated from 
data from previous trials, if available to the investigator. If the 
compound is a follow-up compound, it may be possible to use 
a model developed for the predecessor, or if the compound 
is first in class, model developed in preclinical or early phase 
studies can be used or a selection of hypothesized models 
can be used to create a “best guess.” However, if the infor-
mation about a model is very limited, a model-based power 
calculation may not be sensible.

The model-based results in this study rely on the assumptions 
of no model misspecification and the detection of a drug effect 
different from zero. It is reasonable to believe that model mis-
specifications will lead to imprecision in the statistical power30 
and in the case in which the model is so uncertain that further 
model building needs to be done, the analysis will suffer from 
uncontrolled type I error rate. Although no clinical relevance cri-
terion was applied in the power calculations, a clinically relevant 
drug effect was used in the simulation of data. In a real-life sce-
nario, the clinical relevance should be evaluated by clinical trial 
simulations in which you have the option to investigate various 
outcome measurements, optimal doses, dose regimens, and 
the impact of possible uncertainties in the model.

The study power calculations based on pharmacometric 
models historically often rely on simulation and estimation 
exercises which can be very time consuming and, therefore, 
not extensively used. The newly developed MCMP method31 
for calculating the study power has the advantage of being a 
much faster method than the traditional simulation and esti-
mation procedures, making a pharmacometric model–based 
power calculation more accessible. The increased speed 
also enables investigations of multiple pharmacometric mod-
els and parameter values to explore the assumptions made 
in the pharmacometric model–based approach.

The members of the Pharmaceutical Research and Manu-
facturers of America Proof of Concept Working Group recently 
recommended a more complex POC definition:32 POC is the 
earliest point in the drug development process at which the 
weight of evidence suggests that it is “reasonably likely” that 

the key attributes for success are present and the key causes 
of failure are absent. To obey this definition, it is necessary to 
combine information about the drug from several sources, not 
only from a single efficacy study, and a pharmacometric analy-
sis is well suited for including data from several studies and 
to combine models for both efficacy and safety into a single 
quantitative POC metric. Ideally, one could also include health 
economic aspects to further inform the POC decision.

Obvious benefits of reduced study sizes are the reduced 
costs and that fewer patients/volunteers will be exposed to 
an experimental drug before efficacy can be confirmed. This 
together with the increased potential for new drugs to reach 
the market faster provide strong incentives to consider a 
pharmacometric approach in the planning of a POC study.

METHODS

In the two example applications, a fixed study design was 
simulated and the results were analyzed using a pharmaco-
metric model–based approach, as described below, and a 
conventional statistical analysis using a t-test. The pharma-
cometric based power, in both examples, was assessed by 
using the MCMP tool implemented in PsN version 3.2.7 (PsN, 
Uppsala University, Uppsala, Sweden)33 and NONMEM ver-
sion 7.1.2 (ICON Development Solutions, Ellicott City, MD),34 
run on a Linux cluster with a Red Hat 9 operating system 
using OpenMosix and a G77 Fortran compiler. The t-tests 
were performed in the statistical software R, version 2.11.1.

MCMP. The power/sample size calculation method proposed 
by Vong et al.31 is based on the hypothesis testing principle 
of the LRT in nonlinear mixed-effect models. Several studies 
have investigated the performance of the LRT in nonlinear 
mixed-effects models, and the performance is generally good 
with type I error rates close to the nominal χ2 distribution.35–37 
The MCMP method is a faster alternative to the multiple sim-
ulations and estimations of studies with different study size 
that constitutes the traditional power/sample size calculation 
method for LRT in mixed-effect models.38 With the MCMP 
method, multiple random samples of individual objective 
function values (iOFV) are used as a substitute for multiple 
simulated and estimated studies. This substitution is based 
on the fact that the individual OFV sum up to the overall OFV 
of a model for a given data set as shown in Eq. 1 (where iL 
denotes the individual likelihood and L the total likelihood).

(1)

The hypothesis of a possible drug effect can be tested 
with the LRT by assessing the difference in the OFV (ΔOFV) 
between two nested models (i.e., including or not including the 
hypothesized drug effect). The ΔOFV follows a χ2 distribution 
with degrees of freedom corresponding to the difference in 
number of parameters between the two competing models. A 
model that corresponds to the null hypothesis of no drug effect 
will hereafter be referred to as a reduced model, and a model 
corresponding to the alternative hypothesis of an existing 
drug effect will be referred to as a full model. With the MCMP 
method, iOFV values estimated with a single full and single 

OFV ln ln OFV= = ∑ = ∑= =− −2 21 1( ) ( )L iL ij
n

j j
n

j

Table 1 Examples of pharmacometric models available in the literature

Disease area Clinical end point Reference(s)

Acute and 
chronic pain

COX-2 Kowalski et al41

Alzheimer’s 
disease

Adas-cog Holford and Peace,42  
Ito et al.43,44

Hepatitis C Sustained virologic 
response

Snoeck et al.45

Non-small cell 
lung cancer

Survival FDA46

Obesity % weight loss FDA46

Parkinson’s 
disease

Unified Parkinson’s 
disease rating scale

Holford et al.,47 FDA39

Rheumatoid 
arthritis

ACR20 Lacroix et al. 48

Sleep disorders Sleep stage Karlsson et al.,49  
Bizzotto et al.50

FDA, Food and Drug Administration.
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reduced model are used to calculate ΔiOFV (Eq. 2). The sum 
of n randomly sampled ΔiOFV is used as a surrogate for the 
ΔOFV of a study with n number of subjects (Eq. 3). The single 
estimation step is performed with a large data set (typically 
≥20 times the sample size needed for 80% power) simulated 
under the full model to form a large pool of ΔiOFVs.

(2)

(3)

The ΔOFV calculation is repeated 10,000 times and the 
study power is computed as the percentage of ΔOFVs out of 
10,000 scenarios that are greater than the significance level 
criterion defined by the LRT. The procedure is repeated with 
varying sample size (e.g., in increments of one patient) to 
map the power vs. sample size relationship up to a defined 
maximum power of interest.

Clinical trial design. In both investigated examples, two study 
scenarios were defined: a pure POC study in which a pla-
cebo arm was compared with an active dose group, and a 
dose-ranging scenario with placebo and three active treat-
ment arms in which the objectives were to address both a 
POC definition and explore the dose–response relationship. 
Data for placebo and three active doses were simulated. In 
the POC study, only the placebo and the highest dose group 
were used whereas in the dose-ranging study, all four study 
arms were used in the pharmacometric approach. The con-
ventional study sizes were based on t-test comparing placebo 
and the highest dose group, and the size of the dose-ranging 
study was calculated under the assumption of four equal 
sized groups, i.e., the conventional dose-ranging study was 
twice the size of the conventional POC study.

Stroke example. A nonlinear mixed-effects model has previ-
ously been developed for stroke disease progression after an 
acute ischemic stroke,18 assessed by the 42 point NIH stroke 
scale39 (NIHSS). The model consists of three submodels for 
conditional probabilities reflecting the likelihood of disease 
improvement or deterioration, reaching complete recovery 
(i.e., NIHSS = 0 as in no neurological disability) and dropout of 
the study, in combination with two linear submodels for of the 
relative magnitude of improvement or deterioration (visual-
ized in Figure 1 and model code available in Supplementary 
Appendix S1a online). The model also includes covariates 
such as age and baseline NIHSS score. This structure of the 
model enables several options on where to introduce a drug 
parameter, depending on the mechanism of the drug. How-
ever, in this simulation study, the drug effect was only added 
linearly on the magnitude of improvement (i.e., relative score 
change given an improvement in disease state).

Data were simulated using four arms: placebo and three 
active doses. Score assessments were made at day 0, 7, 30, 
and 90. The dose–effect relation was calibrated such that a low, 
medium, and high dose level would result in 25, 33, and 55% 
increase in the proportion of fully recovered patients at end of 
study as compared with placebo (resulting in a drug parameter 
value of 0.1 and dose levels of 2.5, 3.8, and 5.8). The defini-
tion of a fully recovered patient was a NIHSS score of 0 or 1.40 
Fifty-five percent relative proportion of fully recovered patients 

∆ =i i iOFV OFV OFVFULL REDUCED−

∆ = ∑ ∆=OFV OFVj
n

ji1

was a clinically relevant effect, assuming an equal treatment 
effect as the potential competitor tissue plasminogen activator 
treatment.40

The pharmacometric model–based study power was defined 
as the power to detect a drug effect, i.e., the possibility to esti-
mate a drug parameter different from zero with a 5% significance 
level. For the purpose of the model-based power calculations, a 
large data set comprising of 2,500 patients/arm were simulated 
and estimated under the full model. In the POC scenario, pla-
cebo and the 5.8 dose arm were used, and in the dose-ranging 
study, all four treatment arms were kept in the data set.

To generate a conventional power curve, calculations were 
made using a two-sided t-test (P < 0.05) under the assump-
tion that the difference in average change from baseline val-
ues at end of study, between the highest dose and placebo 
was 1.75 with SDs of 6.23 and 5.98, respectively. These val-
ues were based on the same distribution of responses (popu-
lation) as used in the MCMP calculations. Last observation 
carried forwarded was applied and patients with only a base-
line score were omitted from the analysis population.

Diabetes example. A nonlinear mixed-effects model in type 2 
diabetes mellitus has previously been developed by Hamrén 
et al.21 to describe the mechanistic relationship between tesa-
glitazar exposure, FPG, HbA1c, and aging RBC. The model 
as shown in Figure 2 (NONMEM control stream available in 
Supplementary Appendix S1b online) consists of three sub-
models including an indirect response model on the effect of 
drug exposure on FPG over time, a transit compartment model 
to describe the RBC life span with a zero-order release of RBC 
into blood circulation, and a model that also includes at any 
stage of the RBC maturation, a function describing the gly-
cosylation of RBC into HbA1c related to the FPG level. The 
structure of the model allows the possibility to evaluate differ-
ent mechanisms for the drug effect. However, this simulation 
study has only investigated one plausible mechanism, which is 
a drug effect increasing the rate of elimination (Kout) of FPG.

The dose-ranging study investigated for the diabetes 
example was similar to the original study described in Ham-
rén et al.21 The study design featured a 6-week run-in period, 
12 weeks treatment, and a 3-week follow-up period. In total, 
it included 11 visits and as many samples of FPG, HbA1c 
was measured at the beginning of run-in, start of treatment, 
after 6 weeks of treatment, and at the end of treatment. Four 
trough pharmacokinetic samples were sampled during the 
treatment period. The study was assumed to include only 
male subjects with previous antidiabetic treatment withdrawn 
at the start of the run-in period. The investigated drug was 
assumed to have similar pharmacokinetic and pharmacody-
namic properties as tesaglitazar, but lacking the hemodiluting 
effect of tesaglitazar. Doses 0.1, 0.5, and 1 mg were tested 
in parallel with placebo. Simulations were performed based 
on the final model and parameters in Hamrén et al.21 with two 
small adjustments to the pharmacokinetic model. The final 
published model included a small dose and time- dependent 
effect on clearance, these two effects were excluded in the 
simulations. Estimation was performed with the same true/
full model corresponding as the alternative hypothesis and a 
model without any drug dependent effect on Kout correspond-
ing as the null hypothesis.
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The POC study design was identical to the dose-ranging 
example but with only placebo and a 1 mg dose. Informa-
tion about pharmacokinetic and treatment follow-up was 
ignored during parameter estimation based on the simulated 
POC study. The full model included a categorical drug effect 
parameter on Kout. Log-normal between subject variability 
was estimated for the drug effect parameter. The correspond-
ing reduced model included no drug dependent effect on any 
glucose parameters.

The large data set utilized for the MCMP calculations com-
prised of 500 patients/arm (i.e., in total 2,000 patients for dose-
ranging trial and 1,000 patients for the POC). The simulated 
mean (SD) baseline characteristics for FPG and HbA1c were 
9.85 (2.20) mmol/l and 7.1 (1.1)%, respectively. The 1 mg dose 
resulted in a mean (SD) placebo corrected change from base-
line of 0.63 (1.02)% for HbA1c at the end of treatment. Power 
calculations for a two-sided t-test (P < 0.05) was carried out 
assuming a group wise comparison between placebo and the 1 
mg dose. For the likelihood ratio–based power calculations with 
the MCMP method, a two degree of freedom difference (one 
fixed effect and one random effect parameter) was assumed in 
the POC example (ΔOFV > 5.99) and a three degree of free-
dom difference (two fixed effect and one random effect param-
eter) in the dose ranging study example (ΔOFV > 7.81).
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