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Wei Chen,6 Ping Zhou,4 Qi Wang,5,* and Hua Jiang1,2,3,7,9,*

SUMMARY

Studies for sepsis prediction using machine learning are developing rapidly in
medical science recently. In this review, we propose a set of new evaluation
criteria and reporting standards to assess 21 qualified machine learning models
for quality analysis based on PRISMA. Our assessment shows that (1.) the defini-
tion of sepsis is not consistent among the studies; (2.) data sources and data pre-
processingmethods, machine learningmodels, feature engineering, and inclusion
types vary widely among the studies; (3.) the closer to the onset of sepsis, the
higher the value of AUROC is; (4.) the improvement in AUROC is primarily due
to usingmachine learning as a feature engineering tool; (5.) deep neural networks
coupled with Sepsis-3 diagnostic criteria tend to yield better results on the time
series data collected from patients with sepsis. The new evaluation criteria and
reporting standardswill facilitate the development of improvedmachine learning
models for clinical applications.

INTRODUCTION

Sepsis is a significant threat to patients’ lives. A meta-analysis estimated about 31.5 million sepsis and 19.4

million severe sepsis cases occur each year, contributing to 5.3 million deaths worldwide (Fleischmann

et al., 2016). This doomed scenario is further amplified under the current COVID-19 pandemic, where

most of the deceased could be traced to sepsis (Alhazzani et al.,2020).

In 2016, the Third International Consensus Definition for Sepsis and Septic Shock (Sepsis-3) defined sepsis

as ‘‘life-threatening organ dysfunction resulting from dysregulated host responses to infection.’’ It pointed

out sepsis’ death risk and the necessity of early identification and intervention (Cecconi et al.,2018). Early

warning and accurate prediction on sepsis, which provides opportunities for physicians to take preventa-

tive measures to alleviate its devastating consequences, is recognized by researchers. A successful early

warning together with the best clinical technique provides the best chance to reduce mortality and lower

the risk of the severe septic shock (Shashikumar et al.,2017; Mira et al.,2017; Singer et al.,2016). Some clin-

ical prognostic tools, such as Sequential Organ Failure Assessment (SOFA), Modified Early Warning Score

(MEWS), Systemic Inflammatory Response Syndrome (SIRS), and quick Sequential Organ Failure Assess-

ment (qSOFA) have been developed to predict the risk of death after the onset of sepsis (Raith

et al.,2017). But these are not sufficiently reliable because most values of the tested markers come from

ICU admission, which can hardly be linked definitively to the onset of infection. Consequently, traditional

methods have limitations to accurately identify or predict the onset of sepsis and make high a fidelity prog-

nosis. A new methodology is clearly in need.

Two systematic reviews evaluated the performance of machine learning models used in prediction for

occurrence and prognosis of sepsis in the past (Fleuren et al.,2020; Islam et al.,2019). However, the influ-

ence brought about by the evolution of diagnostic criteria has never been discussed. Compared to the

old criteria, Sepsis-3 needs more clinical data to complete SOFA assessment and to confirm infection. In

addition, there has not been any consensus on how to establish a reasonable dataset, an appropriate

feature-treatment method, and how to obtain a prediction of sepsis development dynamically. The goal

of this review is to identify the characteristics and shortcomings in the models and methods in the previous

studies, and try to establish a unified standard and evaluation tool for machine learning models in order to

guide the model development in medical science in the future to make reliable predictions on this deadly

ailment.

1Institute for Emergency and
Disaster Medicine, Sichuan
Academy of Medical
Sciences, Sichuan Provincial
People’s Hospital, School of
Medicine, University of
Electronic Science and
Technology of China,
Chengdu, Sichuan 610072,
China

2School of Medicine,
University of Electronic
Science and Technology of
China, Chengdu 610054,
China

3Emergency Center of
Sichuan Provincial People’s
Hospital, Sichuan Academy
of Medical Sciences,
Chengdu 610072, China

4Emergency Intensive Care
Unit of Sichuan Provincial
People’s Hospital, Sichuan
Academy of Medical
Sciences, Chengdu 610072,
China

5Beijing Computational
Science Research Center,
Beijing 100193, China

6Department of Clinical
Nutrition, Peking Union
Medical College Hospital,
Beijing 100730, China

7Sichuan Clinical Research
Center for Emergency and
Critical Care, Chengdu,
Sichuan 610072, China

8These authors contributed
equally

9Lead contact

*Correspondence:
qwang@csrc.ac.cn (Q.W.),
cdjianghua@qq.com (H.J.)

https://doi.org/10.1016/j.isci.
2021.103651

iScience 25, 103651, January 21, 2022 ª 2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:qwang@csrc.ac.cn
mailto:cdjianghua@qq.com
https://doi.org/10.1016/j.isci.2021.103651
https://doi.org/10.1016/j.isci.2021.103651
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.103651&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


RESULTS

Studies included

A total of twenty-one studies are included in this review from two hundred and sixty-two potentially eligible

papers based on our criteria (Figure 1). Most selected studies focused on early sepsis detection, prediction,

andmortality. Only two aimed at predicting severe sepsis (Table 1). We notice that seven studies used data

from The Medical Information Mart for Intensive Care (MIMIC) database. Two studies used data from the

University of California San Francisco Medical Center database and the Beth Israel Deaconess Medical

Center database (UCSF + BIDMC database).

Thirteen studies described preprocessing methods for the clinical data with various methods, including

fillingmissing data by mean, median or nearest measured values, K-means clustering, forward-filling, linear

interpolations, and carry forward/backward extrapolations. Twelve studies provided detailed descriptions

of sample sizes or proportions between training groups and test/verification groups. However, not a single

study discussed the rationale for adopting their methods. Only six studies adopted the latest Sepsis-3

definition, and the others used old criteria (SIRS/ICD [the international classification of diseases defini-

tion]/Angus/the criteria of the Agency for Healthcare Research and Quality).

� SIRS: Heart rate >90 beats/min; Body temperature >38�C or <36�C; Respiration rate >20 times/min

or PaCO2<32mm Hg; White blood cell count >12 3 109/L or < 4 3 109/L

� Sepsis-3: infection + SOFAR2

Quality evaluation

Using the Joanna Briggs Institute Critical Appraisal (JBI) tool, Kwong et al. proposed a method to evaluate

the quality of machine learning research. JBI is a checklist for cross-sectional research, which has been

Figure 1. Literature screening flowchart
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Table 1. Basic information of the included studies

Study Sepsis definition Target Data sources

Missing data

processing

Training

data

Testing

data

Validation

data

Delahanty et al. (2019) sepsis3.0 Early prediction of sepsis 49 urban community

hospitals operated by

Tenet Healthcare

NR 1,839,503 920,026 NR

Barton et al. (2019) sepsis3.0 Detection and early prediction

of sepsis

UCSF data+BIDMC data Carry-forward and

replacing by mean

NR NR NR

Taylor et al. (2016) Infection + SIRS Mortality prediction of sepsis Four emergency departments K-means 4222 NR 1056

Kam and Kim (2017) ICD-9 Detection and early prediction

of sepsis

MIMIC-II Replacing by nearest

measured value

252 72 36

Mao et al. (2018) SIRS Sepsis detection UCSF data+BIDMC data Carry-forward and

replacing by mean

80% 20% NR

Taneja et al. (2017) Clinical adjudication label Early prediction of sepsis Carle Foundation Hospital NR NR NR NR

Saqib et al. (2018) Angus Early prediction of sepsis MIMIC-III Forward-filling 81% 10% 9%

Perng et al. (2019) SIRS + qSOFA Mortality prediction of sepsis Chang Gung Research

Database

Replacing by medium

number of the column

70% 30% NR

Thottakkara et al. (2016) the criteria of the Agency

for Healthcare Research and

Quality

Severe sepsis prediction DECLARE data Replacing by

mean value

70% NR 30%

Bloch et al. (2019) Infection +SIRS Early prediction of sepsis Israel Rabin Medical Center NR 75% 25% NR

Kwon and Baek, (2020) Infection + qSOFA Mortality prediction of sepsis Four hospitals of Korea NR 74% 18% 8%

Nemati et al. (2018) sepsis3.0 Early prediction of sepsis two hospitals within the

Emory Healthcare system

and an ICU database

NR 80% 20% NR

Lauritsen et al. (2020) Infection +SIRS Early detection and prediction

of sepsis

Four Danish municipalities data NR 80% 10% 10%

Scherpf et al. (2019) ICD9+SIRS Early prediction of sepsis MIMIC-III Liner interpolation and

‘‘carry forward/backward’’

extrapolation

NR NR NR

Hou et al. (2020) Sepsis3.0 Mortality prediction of sepsis MIMIC III v1.4 Remove the variables

with more than 20% observations

missing + multiple

imputation method

NR NR NR

Kong et al. (2020) Sepsis3.0 Mortality prediction of sepsis MIMIC III Remove the patients

with more than 30%

predictor variable

missing + Replace by

mean value

NR NR NR

(Continued on next page)
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Table 1. Continued

Study Sepsis definition Target Data sources

Missing data

processing

Training

data

Testing

data

Validation

data

Bedoya et al.(2020) SIRS + infection + end

organ failure

Early detection of sepsis ED of a quaternary academic

hospital

NR NR NR NR

van Doorn et al. (2021) Infection + SIRS/SOFA Mortality prediction of sepsis ED at the Maastricht

University Medical Center+

NR 1244 NR 100

Li et al. (2021) ICD-9 Mortality prediction of sepsis MIMIC-III V1.4 Remove the patients with

data missing more than

30% + Replace by mean value

NR NR NR

Burdick et al. (2020) SIRS Early severe sepsis prediction The Dascena Analysis Dataset

and the Cabell Huntington

Hospital Dataset

last-one carry forward NR NR NR

Qi et al. (2021) Sepsis3.0 Mortality prediction of sepsis MIMIC-III Remove the patients with

data missing more than

40% + Replace by

21% and mean value

NR NR NR

Abbreviation:SIRS: Systemic Inflammatory Response Syndrome; ICD9:international classification of diseases 9; NR: not reported.

ll
O
P
E
N

A
C
C
E
S
S

4
iS
cie

n
ce

2
5
,
1
0
3
6
5
1
,
Jan

u
ary

2
1
,
2
0
2
2

iS
cience
A
rticle



adopted by Islam et al. and Kwong et al. to evaluate quality of machine learning studies (Kwong et al.,2019;

Islam et al.,2018). It consists of eight items. We first applied their tool to evaluate the included studies, and

the results are shown in Table 2.

Prediction in time

Considering that sepsis progression is time-sensitive, a good predictive model should be able to verify the

accuracy at different times. However, we find only seven studies provided the information (see Table 3).

Performance in predictions

Compared with traditional predictive tools in single studies, AUROC of machine learning models mostly

scored more than 0.8, with some studies even over 0.9, which was significantly higher than the traditional

predictive tools where the results were around 0.7 (Table S1). Meanwhile, two studies also detected sepsis.

Their predictive models showed AUROC value around 0.9 (Table 3), demonstrating strong ability to distin-

guish sepsis from no-sepsis patients at 0 h. We are therefore confident that machine learning algorithms

can effectively predict sepsis.

Time sensitivity

The predictions can be divided into three categories: (1.) using only one model, (2.) using more than one

model, and (3.) using the best model among several for the prediction. Among the 21 included studies,

most belong to the third category and focused on the prediction of an early occurrence of sepsis. With

the completion of information collection, the prediction performance of the third category at different

hours is shown in Figure 2. Here, we make trend lines of AUROC in five studies, and find that the model’s

performance increased notably as the time gets closer to the onset of sepsis. The ideal time period for early

sepsis prediction ranges from 0 to 24 h.

Mortality prediction

There are eight studies targeted at predicting sepsis mortality in emergency departments or ICUs, and we

list seven studies’ models, algorithm, AUROC, and prediction time in Table 4. These researchers triedmany

algorithms to build their predictive models. In a study of 28-days mortality prediction by Perng et al., the

use of convolutional neural networks (CNN) + SoftMax resulted in AUROC =0.92, which is the highest

among all the models in the study. Meanwhile, it predicted 72-h mortality, proving that CNN + SoftMax

was the best model (AUROC = 0.94). And we find Ke Li et al. used Gradient Boosting Decision Tree

(GBDT) and random forest (RF) to predict in-hospital mortality. They attained remarkably high AUROC

scores (0.992, 0.980) and demonstrated excellent predictive ability of ensemble learning and traditional

machine learning algorithm in sepsis.

Feature engineering

All studies collected vital signs and laboratory data. For vital signs, researchers collected body tempera-

ture, heart rate, blood pressure, and respiratory rate. For laboratory data, researchers collected white

blood cell count, lactic acid etc. Furthermore, demographic characteristics, clinical scores, and other fea-

tures were also included in a few studies.We show representative ten studies and list their results in Table 5.

In general, feature preprocessing can also be divided into two categories. The studies in category one used

feature engineeringmethods to identify the key factors/features that can be used for machine learning pro-

cesses. For example, Bloch et al. recorded four vital signs of data at the frequency of 6 times an hour, found

median, and calculated mean values. They obtained 20 features and selected the most important 4 in their

machine learning models (Bloch et al.,2019). The studies in category two rely on researchers’ expertise to

choose what factors/variables should be used to devise models. For example, Barton et al. used six factors,

including heart rate and respiratory rate to develop their models to predict sepsis occurrence (Barton

et al.,2019). Mao et al. chose the data that are easily available in intensive care unit and emergency depart-

ment as features (Mao et al.,2018).

DISCUSSION

As the first attempt to systematically review methodologies of sepsis prediction studies, we find that most

studies focused on early prediction and detection of sepsis and mortality. Except for the results mentioned

above, there are nine issues that we would like to address in this review.
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Table 2. Quality evaluation of including studies

Study Inclusioncriteria

Data

preprocessed

Data source and

collection

The source

of the feature

Ethical

issue

Detail

discussion

Measurement of

models’ performance Cross-validation/evaluationmethod

Delahanty et al. (2019) 0 0 1 1 0 1 1 1

Barton et al. (2019) 0 1 1 1 1 1 1 1

Taylro, 2015 1 1 1 0 0 1 1 0

Kam and Kim (2017) 1 1 1 1 0 1 1 0

Mao et al. (2018) 0 1 1 1 0 1 1 1

Taneja et al. (2017) 0 0 1 1 0 1 1 1

Saqib et al. (2018) 1 1 1 1 0 1 1 0

Perng et al. (2019) 0 1 1 1 0 1 1 1

Thottakkara et al. (2016) 1 1 1 1 0 1 1 1

Bloch et al. (2019) 1 1 1 1 0 1 1 1

Kwon and Baek (2020) 1 0 1 1 0 1 1 1

Nemati et al. (2018) 1 0 1 0 0 1 1 0

Lauritsen et al. (2020) 1 0 1 0 0 1 1 0

Scherpf et al. (2019) 1 1 1 0 0 1 1 1

Hou et al. (2020) 1 1 1 1 0 1 1 0

Kong et al. (2020) 1 1 1 1 1 1 1 1

Bedoya et al. (2020) 1 0 1 0 0 1 1 0

van Doorn et al. (2021) 1 1 1 1 1 1 1 1

Li et al. (2021) 1 1 1 1 1 1 1 1

Burdick et al. (2020) 1 1 1 1 0 1 1 1

Qi et al. (2021) 1 1 1 1 0 1 1 0

Annotation: The contents of have been tweaked to better fit machine learning research.
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Diagnostic criteria

Those studies, which adopt old sepsis definition or improper inclusion criteria, performed adequately. They

were however viewed as too lax in sample inclusion and lacking enough specificity and sensitivity. For

example, Mao et al. and Bloch et al. considered patients over 18 years old with a slight limitation and

selected SIRS as diagnostic criteria (Mao et al.,2018; Bloch et al.,2019). They all used large datasets and

had enough patients meeting the SIRS criteria, which led to high AUROC values. Compared to older diag-

nostic criteria, the latest Sepsis-3 includes more stringent clinical features and describes sepsis more

accurately.

Large disparities are found among sepsis definitions, making it impossible to compare AUROC of each

study to find the best machine learning model. However, it should be noted that Kam et al. used the

long short-term memory (LSTM) model to predict sepsis occurrence and obtained high AUROC value (Ka-

mand Kim, 2017). In addition, 1D CNN combined with SoftMax model was selected by Perng et al., which

significantly improved the performance of mortality prediction compared to the traditional predictive

models in the single study. The CNN model reached AUROC 0.92 while the traditional models, such as

KNN, got AUROC only 0.84 (Perng et al., 2019). This is because deep learning algorithms can remove

many redundant dimensions by self-learning (Kamand Kim,2017; Mücke et al.,2021), and multiclass classi-

fication problem can be resolved with SoftMax. We also noted that Ke Li et al. reported that GBDT and RF

predicted sepsis mortality well. GBDT is an ensemble learning method and may correct the training results

and reduce the degree of overfitting by a regularization function (Chen et al.,2020). However, there are con-

flicting l studies which reported not good performance of random forest (Table 4); thus, further studies are

needed to determine the robustness of RF for sepsis prediction.

Prediction time

Prediction times of the studies were different and AUROC changed with time (Figure 2). These character-

istics corroborates with clinical experience. The closer to the onset of sepsis, themore accurately themodel

predicts. We find a study by Delahanty et al. where the results were inconsistent with other conclusions (De-

lahanty et al.,2019). This study used inappropriate inclusion criteria and concluded that neutrophil count

had a negative effect on the RoS model, which was contrary to the pathophysiological mechanism. There-

fore, we think the robustness of RoS should be further discussed. Because there is huge heterogeneity be-

tween studies predicting sepsis mortality, we cannot compare them reasonably to obtain similar rules.

Importance of feature engineering

There are commonly two major steps in machine learning studies. The first is to extract features from input

samples and the second is to feed feature vectors into themachine learning algorithm for training andmak-

ing the prediction. It is especially important to select key features and reduce the data dimension, which is

Table 3. Prediction (AUROC) of each model at different hours in the sepsis studies

Study Model Algorithm

Different hours

�48 �24 �12 �10 �8 �6 �5 �4 �3 �2 �1 �0.25 0

Delahanty et al. (2019) RoS Gradient boosting 0.97 0.93

Barton et al. (2019) MLA Gradient boosted

trees

0.83 0.84 0.88

Kam and Kim (2017) SepLSTM long short-term

memory

0.93 0.94 0.96 0.99

Bloch et al. (2019) SVM-RBF SVM-RBF 0.8141 0.8879 0.8807 0.8639 0.8675

Nemati et al. (2018) Weilbull-Cox

proportional

hazards

Weilbull-Cox

proportional

hazards

0.79 0.8 0.81 0.82

Lauritsen et al. (2020) CNN-LSTM CNN-LSTM 0.752 0.792 0.842 0.879

Scherpf et al. (2019) RNN RNN 0.76 0.79 0.81

Abbreviation:RoS: Risk of Sepsis; MLA: machine learning algorithm; LSTM: long short-term memory; SVM-RBF: support vector machines with radial basis func-

tion; CNN-LSTM: convolutional neural network-long short-term memory; RNN: recurrent neural network.
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known as feature engineering or order reduction. Feature engineering can not only significantly reduce

redundant information and improve computational efficiency but also keep lowest negative influence of

complex data dimensions on model robustness (Dai et al., 2020). There are two categories of feature en-

gineering among the studies: one is designed by the domain expertise while the other is designed using

machine learning methods (Miotto et al.,2018).

Designed by the domain expertise

Three studies chose features that were common and easily obtained in hospitals or based on the re-

searchers’ clinical experience. For example, several features that were common in the intensive care units

(ICU) or emergency departments (systolic blood pressure, diastolic blood pressure, heart rate, respiratory

rate, and body temperature) were selected in studies by Barton et al. andMao et al. (Barton et al.,2019; Mao

et al.,2018). However, only relying on clinical expertise could lead to strong subjectivity and may overlook

some key features (Garcia et al.,2014). Even though the models performed adequately, the outcomes were

difficult to be validated by external data; therefore, the applicability of these models is limited.

Designed by machine learning methods

Traditional reduced-order or feature-extraction algorithms, represented by principal component analysis

(PCA) or auto decoder-encoder methods, can reduce data dimensions and significantly improve model

performance. Perng et al. increased the accuracy of support vector machine (SVM) from 74.33% to

78.91% using PCA to preprocess the data. Meanwhile, AUROC of SoftMax increased from 0.88 to 0.91

(Perng et al., 2019). We can see the same situation here again, where Thottakkara et al. succeeded in

improving the accuracy and AUROC after using PCA to preprocess their data (Thottakkara et al.,2016).

In addition, the deep feedforward neural network (DFN) can independently learn and obtain the most

crucial features. For instance, Kam et al. used DFN to detect early sepsis (Kamand Kim,2017). In addition,

LSTM, a deep recurrent neural network, was adopted to learn long-range dependencies and handle van-

ishing gradient. As a result, the accuracy, sensitivity, and AUROC of LSTM are the highest and the number

of the final features is the smallest.

Data granularity

Before processing data, researchers should first establish the definition for data granularity. The degree of

data refinement and predictive performance can be improved by changing the granularity level (Dormosh

et al.,2020). Here, we screened studies that refined data. In the 21 studies we included in this review, only

Bloch et al. reported and discussed the issue of data granularity in detail, and the others did not mention

this essential information at all (Bloch et al.,2019). Bloch et al. selected four features at the early stage and

then expanded them to 20 features by calculating mean, median, minimum, maximum, and standard de-

viation. As a result, they obtained four satisfying features by ranking the features’ importance. To some

extent, it is another type of feature engineering used to explore intrinsic regularities of the clinical data.

Figure 2. Predicting performance of multi-time points, related to Table 3
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Missing data

It is inadequate to build predictive models when there are missing data (Beaulieu-Jones et al.,2018). There

were 12 studies that reported their methods on how to deal with missing data; six studies filled the missing

data with mean value or median value. Three studies used methods such as filling in missing data by liner

interpolation or ‘‘carry forward/backward’’ extrapolation methods (Table 1). It is a consensus that missing

data should be processed before conducting any analysis (Mehrabani-Zeinabad et al., 2020), but obviously

in the machine learning research field on sepsis, this standard operation has not been widely followed.

Machine learning algorithms

Various algorithms were applied, and their predictive performance is summarized in Tables 3 and 4, respec-

tively. These consisted of popular current machine learning algorithms, including logistic regression,

Table 4. AUROC and time points of mortality prediction studies

Study Model Algorithm AUROC Time

Taylro, 2015 Logistic regression Logistic regression 0.755 28 days

CART Classification and regression tree 0.693

Random forest Random forest 0.860

MEDS score NR 0.705

CURB-65 score NR 0.734

REMS score NR 0.717

Perng et al. (2019) KNN KNN 0.84 28 days

SoftMax SoftMax 0.88

PCA + SoftMax PCA + SoftMax 0.91

AE + SoftMax AE + SoftMax 0.90

CNN + SoftMax CNN + SoftMax 0.92

Kwon and Baek (2020) qSOFA scores NR 0.78 3 days

qSOFA-based

machine-learning models

Extreme gradient boosting, light gradient

boosting machine, and random forest

0.86

Hou et al. (2020) XGBoost eXtreme Gradient Boosting 0.857 30 days

logistic regression logistic regression 0.819

SAPS-II scores Simplified acute physiology score-II 0.797

Kong et al. (2020) LASSO least absolute shrinkage and selection

operator

0.829 In hospital

RF random forest 0.829

GBM gradient boosting machine 0.845

LR logistic regression 0.833

SAPS II Simplified acute physiology score-II 0.77

Li et al. (2021) GBDT GBDT 0.992 In hospital

LR Logistic regression 0.876

KNN k-nearest neighbor 0.877

RF Random forest 0.980

SVM Support vector machine 0.898

Qi et al. (2021) XGBoost Extreme gradient boosting 0.848 In hospital

SAPSII The simplified acute physiology score 0.777

SOFA Sequential organ failure assessment score 0.704

SIRS Systemic inflammatory response syndrome 0.609

qSOFA Quick sequential organ failure assessment 0.580

Abbreviation: CART: classification and regression tree; MEDS: mortality in emergency department sepsis score; KNN: K nearest neighbor; REMS: rapid emer-

gency medicine score; CURB-65 score: the confusion, urea nitrogen, respiratory rate, blood pressure, 65 years of age and older; PCA: principal component anal-

ysis; AE: Autoencoder; CNN: Convolutional Neural Network; qSOFA: quick Sequential Organ Failure Assessment.
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Table 5. Features engineering and included features of each study

Study

Number of initial

features

Number of final

features Including features

Delahanty et al. (2019) 217 13 Lactic acid (max), Shock index age (last), WBC

count(max), Lactic acid(change),

Neutrophils(max), Glucose(max), Blood urea

nitrogen(max), Shock index age (first),

Respiratory rate (max), Albumin (last), Systolic

blood pressure (min), Serum creatinine (max),

Temperature (max)

Barton et al. (2019) 6 6 SpO2, heart rate, respiratory rate, temperature,

systolic blood pressure, diastolic blood

pressure

Taylro, 2015 566 20 Oxygen saturation, Respiratory rate, Blood

pressure, BUN, Albumin, Intubation,

Procedures (in ED), Need for vasopressors,

Age, RN resp care, RDW, Potassium, AST,

Heart rate, Acuity level(triage), ED impression

(Dx), CO2 (Lab), ECG performed, Beta-blocker

(Home Med), Cardiac dysrhythmia (PMHx)

Kam and Kim (2017) 9 9 systolic pressure, pulse pressure, heart rate,

body temperature, respiratory rate, WBC

count, pH, blood oxygen saturation,age

Mao et al. (2018) 6 6 systolic blood pressure, diastolic blood

pressure, heart rate, respiratory rate,

temperature, peripheral capillary oxygen

saturation

Taneja et al. (2017) 31 NR TNF-a, IL-1b, GCSF, IL-6, PCT, sTREM1, IL18,

MMP9, TNFR1, TNFR2, IP10, MCP1, IL-1ra,

NA, CD64, WBC, Lactic Acid, Systolic Blood

Pressure, Diastolic Blood Pressure, Pulse,

Temperature, Respirations, PCO2, Age,

Gender, Bilirubin, Glasgow Coma Scale,

Creatinine, Platelet, SOFA score, qSOFA score

Saqib et al. (2018) 47 34 White blood cell count, Heart rate, Diastolic

blood pressure, Systolic blood pressure, Mean

blood pressure, Weight, Anion gap,

Bicarbonate, Oxygen saturation, Height,

Temperature, pH

Bloch et al. (2019) 20 4 the number of trend changes in respiratory rate

and arterial pressure, the minimal change in

respiratory rate, and the median change in

heart rate

Kwon and Baek (2020) 14 NR Age, sex, diagnoses at the ED, systolic blood

pressure, respiration rate, mental status, body

temperature, heart rate, arterial partial

pressure of carbon dioxide, white blood cell

count, duration of hospitalization, ICU

admission, mechanical ventilation, mortality.

(Continued on next page)
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decision tree, support vector machine, random forest, and deep learning algorithms in supervised

learning. The other category is unsupervised learning, including principal component analysis, K-means

clustering, and autoencoder. Regardless of the influence of diagnostic criteria, the neural network-based

algorithm performed better on average in sepsis detection, mortality, and early prediction. GBDT, which is

a kind of classical and popular ensemble algorithm, may also have a broad prospect in sepsis prediction.

Continuous dataset

The studies contained in this review established outcome prediction models based on sectional data. To

the contrary, some researchers predicted sepsis by using continuous data (time series). Kamaleswaran

et al., Mohammed et al., and Wyk et al. constructed models for predicting sepsis onset with continuous

physiologic data streams (Mohammed et al., 2021; Kamaleswaran et al., 2021a, 2021b, van Wyk et al.,

2019). After preprocessing, they put data into selected algorithms and obtain the best predictive model.

In addition, Kamaleswaran et al. also studied the significance of continuous data in predicting sepsis pa-

tients’ response for volume treatment. We noticed this study reported better performance based on

continuous data than EMR (Kamaleswaran et al., 2021a, 2021b), high-frequency data containing more pa-

tients’ information, which may account for this result. This was an interesting finding. In fact, our team is

conducting a similar research currently, which will be reported later.

Data heterogeneity

Predictive models of sepsis weremostly based on large databases. However, every sepsis patient is unique,

therefore significant differences among the patients. For example, sepsis detection is to distinguish the

Table 5. Continued

Study

Number of initial

features

Number of final

features Including features

Nemati et al.(2018) 65 65 RRSTD, MAPSTD, HRV1, BPV1, HRV2, BPV2,

MAP, HR, O2Sat, SBP, DBP, RESP, Temp, GCS,

PaO2, FIO2, WBC, Hemoglobin, Hematocrit,

Creatinine, Bilirubin and Bilirubin direct,

Platelets, INR, PTT, AST, Alkaline Phosphatase,

Lactate, Glucose, Potassium, Calcium, BUN,

Phosphorus, Magnesium, Chloride, B-type

BNP, Troponin, Fibrinogen, CRP,

Sedimentation Rate, Ammonia, pH, pCO2,

HCO3, Base Excess, SaO2, Care Unit (Surgical,

Cardiac Care, or Neuro intensive care), Surgery

in the past 12 h, Wound Class (clean,

contaminated, dirty, or infected), Surgical

Specialty (Cardiovascular, Neuro, Ortho-Spine,

Oncology, Urology, etc.), Number of

antibiotics in the past 12, 24, and 48 h, Age,

CCI, Mechanical Ventilation, maximum change

in SOFA score over the past 6 h.

Hou et al. (2020) 22 11 urine output, lactate, Bun, sysbp, INR, age,

cancer, SpO2, sodium, AG, creatinine

Annotation: The study of Tanejia2017 and YS2020 has established a variety of different models with different numbers of

included features, so all features are provided. The Saqib et al. (2018) study provides only partial features.

Abbreviation: WBC count: white blood cell count; BUN: blood urea nitrogen; RDW: Red blood cell distribution width; AST:

aspartate transaminase; ED: emergency department; ECG: electrocardiogram; SOFA: Sequential Organ Failure Assessment;

qSOFA: quick Sequential Organ Failure Assessment; RRSTD: standard deviation of respiratory rate intervals; MAPSTD: stan-

dard deviation of mean arterial pressure; HRV1: average multiscale entropy of respiratory rate; BPV1:averagemultiscale en-

tropy of mean arterial pressure; HRV2:average multiscale conditional entropy of respiratory rate; HRV2:average multiscale

conditional entropy of respiratory rate; MAP: Mean Arterial Blood Pressure; HR: Heart Rate; O2Sat: Oxygen Saturation;

SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; RESP: Respiratory Rate; Temp: Temperature; GCS: Glasgow

Coma Scale; PaO2: Partial Pressure of Arterial Oxygen; FIO2: Fraction of Inspired O2; INR: International Normalized Ratio,

PTT: Partial Prothrombin Time, AST: Aspartate Aminotransferase, BNP:B-type Natriuretic Peptide; CCI: Charleston Comor-

bidity Index; sysbp: systolic blood pressure; AG: anion gap.
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confirmed sepsis patients from the non-sepsis patients, but it is difficult to carry out the classification in clin-

ical settings because the symptoms and therapeutic medicine of every patient are different. There are large

discrepancies among each individual patient so that it could be misleading to put all patients’ data into a

single dataset for training or testing when conducting machine learning. Therefore, all models mentioned

above lack certain universality in machine learning protocols and cannot be usedwidely to assist any clinical

decision-making (Fohner et al.,2019).

Combined with clinical experience, researchers can collect necessary higher frequency clinical data every

day to observe dynamical evolution of sepsis. Meanwhile, sepsis progression can be simulated by the ma-

chine learning model based on neural networks so that patients’ prognosis will be predicted. Although we

have discussed that we cannot solely rely on physician’s experiences to select feature, it is necessary to inte-

grate physician’s experiences when transferring the model to new patient. It will mitigate the inherent

heterogeneity. In a recent study, we have developed a deep learning method to integrate the clinical

knowledge with clinical data to make successful short-term predictions (up to 48 h) for clinical practitioners

(Lei et al.,2020).

Based on the above discussions, we recommend strongly that future model development should incorpo-

rate clinical experience into data preprocessing instead of relying solely on the routinely collected data.

Certain objective-oriented data preprocessing standard must be established so that the preprocessed

data will be AI-ready for machine learning use.

Quality reevaluation and reporting standards

Through comparative study, we believe the JBI is a crude tool for evaluating machine learning methods.

Based on the analysis above, we propose a new quality evaluation tool for machine learning methods.

(1.) The evaluationmethodology should include an appropriate and accurate disease definition, a data pre-

processing protocol, and reasonable inclusion criteria. For example, we think that only Sepsis-3 can

describe patient conditions accurately and be a basis for patient inclusion. (2.) For common problems in

clinical data, such as missing data, data redundancy, data collected in different forms, noisy data etc.,

one should develop a protocol to produce standardized or normalized datasets, making sparse data

non-sparse and ‘‘smooth’’ and improve data granularity. (3.) To avoid data redundancy and improve

computational efficiency, feature engineering should include how many types of the original features

are included, how many key features are selected, and how many types are classified. (4.) The process of

sample removing, and grouping should be provided in the flowchart, and the rationales clearly explained.

(5.) One needs to introduce algorithms, including the rationale for their choices based on relevant mathe-

matical and statistical principles. (6.) Every model needs to have a set of corresponding evaluation criteria.

We suggest adopting AUROC as an evaluation standard for the model performance. (7.) Finally, a prospec-

tive validation process is needed to ensure the predictive model developed can be adapted to clinical

settings.

Based on the new criteria alluded to above, we reevaluate the models in the 21 studies. We score 1 for any

item meeting a criterion above and 0 otherwise. Total score more than or equal to 8 is considered high

quality, 5–8 (including 5) average quality, and less than 5 low qualities. The quality reevaluation results

of this review are shown in Tables 2, 10 studies are ranked low and 11 average. There are no high-quality

models based on the score table.

It is obvious that there are significant differences in data sources, data preprocessing, and feature engi-

neering among sepsis prediction models. In addition, using diverse types of evaluation indices and pre-

dicted sepsis occurrence in various times, could result in distinctive model performance. Naturally, we

believe there should be a unified standard to be a guideline of machine learning models in clinical research

and applications. Referring to Standards for Reporting Diagnostic Accuracy (STARD) and combining with

the above quality evaluation table, we propose a new report list of machine learningmodels in clinical med-

icine (Table 6).

Conclusions

Through a systematical review, we find that the number of studies using machine learning to predict the

occurrence and mortality of sepsis grows rapidly in recent years, and the accuracy of predictions has

improved considerably. However, there is no model that can be widely adopted in the real world yet,
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because of the lack of unified validation standard and procedure and the heterogeneity in a cohort of pa-

tients. In addition, the data collected from patients with sepsis are normally high-dimensional, highly het-

erogeneous, including both structured and unstructured data that evolve in a time-sensitive fashion and

static data. Compared to traditional tools, deep neural networks are more suitable for this type of data.

The traditional SIRS criteria cannot describe sepsis comprehensively due to the lack of sufficient features,

and cannot be included for sepsis machine learning study. We note that studies based on Sepsis-3 just

begin so that further studies are necessary. Hence, the new quality evaluation tool and reporting standard

list suggested in this review would help improve the effective use of machine learning methods in clinical

medicine.

Limitations of the study

We do not have access to enough medical information on the treatment process of sepsis and therefore

cannot evaluate its significance in the model development. Moreover, limited to very few open-source

Table 6. Report standards list of machine learning in clinical medication

Section and topic Item Description

Title/Abstract/Keywords 1 Can be judged as a machine learning

predictive research. (Keywords,such as

machine learning,prediction)

Introduction 2 Introduce background, existing problems, and

study targets,such as evaluating machine

learning models to predict prognoses and

probability of disease occurrence

Method research subject 3 Inclusion and exclusion criteria, locations

where data is collected and time range

4 Describe reasons of patients’ selection,

including symptoms, laboratorial results, or

disease golden standard.

5 Describe golden standard and provide

references

Research data 6 Describe whether study is based on past

datasets (retrospective study) or latest

collection data (prospective study).

7 Describe the data collection process.

8 Describe the process of feature engineering.

At least explain why choose this way to select

features.

Results Building model 9 Provide flowchart of the including and

excluding process, describe demographic and

clinical characteristics (such as age, sex, height,

and weight)

10 Describe data preprocessing methods,

including missing data processing, and

smoothly processing sparse data.

11 Describe the mathematical theory of the

algorithm and its advantages.

12 Describe numbers and names of finally

including features

Research results 13 Describe models performance at different time

points (provide at least one evaluation

indicator, such as AUROC, accuracy).

Discussion 14 Discuss clinical universality of predictive

models, including heterogeneity discussion

and clinical prospective validation.
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databases, it is difficult to compare them and have a meaningful discussion. We do not find any study that

described the specific influence of data preprocessing and have not come to the conclusion on which

method is the best.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further requests for resources andmaterials should be directed to and will be fulfilled by the Lead Contact,

Hua Jiang (cdjianghua@qq.com).

Materials availability

This study did not yield new unique reagents.

Data and code availability

dThis paper analyzes existing, publicly available data, they can be shared by the lead contact upon request.

dThis paper does not report original code.

dAny additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

METHODS DETAILS

Eligibility criteria

There should be a consensus that eligible studies should provide clear data source based on Electronic

Medical Record (EMR) or Electronic Healthy Record (EHR) from Emergency Department (ED) or Intensive

Care Unit (ICU), so we can obtain disease and demographic information from the patients. In addition,

we need AUROC and a clearly delineated detail of predictive models to compare and determine which

model is the best. Considering the definition of sepsis has changed several times in the past, we require

each study to provide at least one acceptable definition based on the current standard. We only study

the prospection of machine learning algorithms in adults’ sepsis and the target conditions include early

detection and mortality of sepsis and severe sepsis.

Search strategy

A comprehensive literature retrieval is conducted in PubMed, ScienceDirect, Engineering Index (EI), Web

of Science, China National Knowledge Infrastructure (CNKI) and WANFANG DATA for papers published

between January 2010 and November 2021. Keywords like sepsis/machine learning/prediction are used

for the search.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Studies’ methodologies and AUROC of prediction Contained in the article N/A

Other

MIMIC database MIMIC database https://mimic.mit.edu/

A literature retrieval strategy for sepsis prediction

Databases Search strategy

PubMed ((sepsis [Title/Abstract]) and (machine learning [Title/Abstract])) and (prediction [Title/

Abstract])

ScienceDirect Title, abstract, keywords: sepsis, machine learning, predict

The engineering index (((sepsis) and (machine learning) and (prediction) and (mortality) and (onset)) WN KY)

Web of science Title:(sepsis) and Title:(machine learning) and Title:(prediction)

CNKI ky = ’sepsis’ and ky = ’machine learning’ and ky= ’prediction’

WANFANG DATA Title or keywords: ‘‘sepsis’’ and ‘‘machine learning’’ and ‘‘prediction’’
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All the included papers are perused by two independent reviewers (TL and DHL), including title-abstract

and full text. All disagreements between the two authors are resolved by a third author (TY) and principal

investigators (HFD, HJ). The chosen papers are limited to languages in Chinese and English.

Evaluating tool and reporting standard

After rules of evaluating machine learning models on sepsis prediction are established, we realize that, like

clinical medicine, there is the need for specialized tools for quality evaluation and reporting standard to

guide research analogous to those used in evidence-based medicine. Therefore, based on the above anal-

ysis, we propose a new quality evaluation tool and a new reporting standard from the aspects of data acqui-

sition, algorithm selection, feature engineering, and model building with reference to the Standards for

Reporting Diagnostic Accuracy (STARD). These are more comprehensive than existing tools and standards,

and more appropriate for machine learning research in medicine.

QUANTIFICATION AND STATISTICAL ANALYSIS

This work systematically evaluate the method of statistical and quantification analysis of published

researches. The authors of this work did not do further quantification analysis, eg, meta-analysis.
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