
ARTICLE
Translational Therapeutics

Impacts of combining anti-PD-L1 immunotherapy and
radiotherapy on the tumour immune microenvironment
in a murine prostate cancer model
Yiannis Philippou1, Hanna T. Sjoberg1,2, Emma Murphy2, Said Alyacoubi2, Keaton I. Jones1, Alex N. Gordon-Weeks 1, Su Phyu1,
Eileen E. Parkes1, W. Gillies McKenna1, Alastair D. Lamb2, Uzi Gileadi3, Vincenzo Cerundolo3, David A. Scheiblin4, Stephen J. Lockett4,
David A. Wink5, Ian G. Mills2, Freddie C. Hamdy2, Ruth J. Muschel1 and Richard J. Bryant1,2

BACKGROUND: Radiotherapy enhances innate and adaptive anti-tumour immunity. It is unclear whether this effect may be
harnessed by combining immunotherapy with radiotherapy fractions used to treat prostate cancer. We investigated tumour
immune microenvironment responses of pre-clinical prostate cancer models to radiotherapy. Having defined this landscape, we
tested whether radiotherapy-induced tumour growth delay could be enhanced with anti-PD-L1.
METHODS: Hypofractionated radiotherapy was delivered to TRAMP-C1 and MyC-CaP flank allografts. Tumour growth delay, tumour
immune microenvironment flow-cytometry, and immune gene expression were analysed. TRAMP-C1 allografts were then treated
with 3 × 5 Gy ± anti-PD-L1.
RESULTS: 3 × 5 Gy caused tumour growth delay in TRAMP-C1 and MyC-CaP. Tumour immune microenvironment changes in
TRAMP-C1 at 7 days post-radiotherapy included increased tumour-associated macrophages and dendritic cells and upregulation of
PD-1/PD-L1, CD8+ T-cell, dendritic cell, and regulatory T-cell genes. At tumour regrowth post-3 × 5 Gy the tumour immune
microenvironment flow-cytometry was similar to control tumours, however CD8+, natural killer and dendritic cell gene transcripts
were reduced. PD-L1 inhibition plus 3 × 5 Gy in TRAMP-C1 did not enhance tumour growth delay versus monotherapy.
CONCLUSION: 3 × 5 Gy hypofractionated radiotherapy can result in tumour growth delay and immune cell changes in allograft
prostate cancer models. Adjuncts beyond immunomodulation may be necessary to improve the radiotherapy-induced anti-tumour
response.

British Journal of Cancer (2020) 123:1089–1100; https://doi.org/10.1038/s41416-020-0956-x

BACKGROUND
Radiotherapy (RT) combined with androgen deprivation therapy
(ADT) is a standard-of-care therapy for high risk localised or locally
advanced prostate cancer (PCa).1,2 Technological advances in RT
delivery have improved treatment efficacy, however patients with
high-risk PCa have a 32–70% 5-year biochemical recurrence rate,3

and RT reduces the quality of life due to side effects.4–6 Improved
RT efficacy in terms of cure, and reduced treatment toxicity
through the use of reduced RT doses, might be achieved by
combining immunomodulation with RT (iRT). RT to the primary
tumour in low-burden metastatic PCa may also provide benefit7

through RT-induced anti-tumour immune responses enhanced
with iRT. Whilst iRT may improve tumour control, the evidence
from pre-clinical PCa models investigating RT combined with
adjuncts8–14 frequently use RT doses considerably higher than in
clinical practice, such as 10, 20, or 25 Gy fractions. Standard clinical
RT delivers 2 Gy fractions over 6 weeks to a dose of 74–78 Gy.

Recent developments have seen moderate hypofractionation with
62 Gy in 20 fractions over 4 weeks, and ultrahypofractionation
with 36.25 Gy in 5 fractions over 1–2 weeks, with no increase in
acute toxicity.15 Although these studies suggest a change in
practice with increased dose per fraction, and reduced overall
numbers of fractions, the dose per fraction in clinical practice
remains lower than those in pre-clinical iRT PCa experiments.
Anti-tumour RT effects include DNA breaks causing apoptosis,16

immunological effects17–19 and anti-tumour immune
responses.18,20–23 Despite the observation of pro-inflammatory
tumour effects following RT, the immunosuppressive tumour
immune microenvironment (TIME) of pre-clinical models includes
abundant tumour-associated macrophages (TAMs) and myeloid-
derived suppressor cells (MDSCs). These myeloid-derived cells may
impede RT-induced anti-tumour responses24,25 and promote
tumour progression through growth factors, cytokines, chemokines
and reactive oxygen species, increasing survival and growth of
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cancer cells. Although RT is a potential immunostimulatory anti-PCa
therapy, with opportunities for combination with immunotherapy,
it may be difficult to harness immune-mediated anti-tumour
responses in PCa based on its moderate mutational burden and
disappointing immunotherapy clinical trial results.26–28 However,
the first FDA-approved immunotherapy, albeit without RT, for a
solid-organ cancer was Sipuleucel-T in PCa,29–31 and immunomo-
dulation may be effective if appropriately combined with RT.
A clinical study combining anti-CTLA4 with a 8 Gy fraction to PCa
bony metastases demonstrated a non-significant improvement in
overall survival,32,33 and a trial investigating the efficacy of anti-PD-
1 and RT in high-risk and oligometastatic PCa is underway.34

To test the hypothesis that RT fractions used in the clinic induce
PCa TIME effects, flank tumour allografts in immunocompetent
mice were treated with RT and effects of RT investigated as a
primary objective using tumour growth delay, flow cytometry
(FACS) and NanoString immune gene expression changes. Effects
of iRT with concomitant anti-PD-L1 were investigated as a
secondary objective, testing the hypothesis that iRT increases
anti-tumour effects.

METHODS
Cell lines and cell culture
TRAMP-C1 (ATCC® CRL-2730™) and MyC-CaP (ATCC® CRL-3255™)
cells were purchased from American Type Culture Collection
(ATCC®). TRAMP-C1 cells were derived from the TRAMP (trans-
genic adenocarcinoma mouse prostate) model in C57BL/6 mice
harbouring a construct comprising the minimal rat probasin
promoter driving prostate-specific epithelial expression of SV40
large T antigen.35,36 MyC-CaP cells were derived from a c-myc
transgenic mouse with prostate cancer.37 Both TRAMP-C1 and
MyC-CaP cells express androgen receptor,36–38 however, TRAMP-
C1 are androgen-independent whilst MyC-CaP cells are androgen-
sensitive. TRAMP-C1 and MyC-CaP cells are useful for immuno-
competent subcutaneous tumour models investigating therapies
requiring an immune system prior to clinical trials. TRAMP-C1 cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
with 4 mM L-glutamine, 1.5 g/L sodium bicarbonate, 4.5 g/L
glucose, 0.005mg/ml bovine insulin, 10 nM dehydroisoandroster-
one, 5% Nu-Serum IV, 5% foetal bovine serum (FBS), 1% penicillin
and 100 μg/ml streptomycin. MyC-CaP cells were cultured in
DMEM with 10% FBS, 1% penicillin and 100 μg/ml streptomycin.
Cells were maintained mycoplasma free (LookOut® Mycoplasma
PCR Detection Kit) at 37 °C and 5% CO2.

FACS and western blot analysis of in vitro MHC-I and PD-L1
expression following IFN-γ and radiotherapy
40,000 TRAMP-C1 or MyC-CaP cells were plated in duplicate in
6-well plates and treated with 0, 0.1, 1.0 or 10 ng/mL mouse
recombinant murine gamma interferon (γIFN) (Invitrogen
PMC4034) for FACS quantification of MHC-I complex (H-2Kb) and
PD-L1 expression, and changes induced by γIFN. To test whether
RT induces MHC-I and PD-L1 expression, TRAMP-C1 cells were
treated with 2, 6 and 10 Gy RT using a Caesium irradiator at
1.46 Gy/min ± 1.0 ng/mL γIFN. After 72 h incubation cells were
detached using Accutase solution, washed with PBS and stained
with Pe-Cy7 H-2Kb (MHC-I, eBioscience, AF6–88.5.53), BV421-
CD274 (B7-H1, PD-L1, Biolegend, 10F.9G2) and LIVE/DEAD™
Fixable Green Dead Cell Stain Kit (ThermoFisher Scientific,
L23101) or Propidium Iodide in 100 μl FACS buffer (PBS with 2%
FBS). For western blot analysis, whole-cell extracts were prepared
from PBS-washed cells using RIPA lysis buffer containing protease
and phosphatase inhibitors. Protein concentration was deter-
mined using Pierce™ Rapid Gold BCA Protein Assay Kit (Thermo-
scientific) using a bovine serum albumin standard. Proteins
were reduced at 95 oC with Laemmli gel loading buffer containing
2-mercaptoethanol, separated on 4–15% polyacrylamide gels

containing SDS and transferred to PVDF membranes. Anti-PD-L1
(1:400, R&D systems) and vinculin (1:1000, sc-25336 Santa Cruz
Biotechnology) primary antibodies were used, and membranes
incubated with 1:5000 HRP conjugated secondary antibodies
(anti-Goat, Sigma-Aldrich and anti-Rabbit IgG, GeneTex, respec-
tively) and visualised with ECL detection reagent (Amersham, GE
Healthcare).

Tumour challenge and treatment experiments
Animal procedures were performed according to UK Animal law
(Scientific Procedures Act 1986) and ARRIVE guidelines, with local
ethics and Home Office approval. Naive male 6–8 week old
immunocompetent C57BL/6 and FVB mice (Mus Musculus, Charles
River Laboratories, UK) were housed in groups of six to limit
fighting, in a pathogen-free facility with 12-h light cycles, in
individually ventilated cages on woodchip bedding, with access to
water and food ad libitum, at 22 °C (range 21–24 °C) and 50%
humidity (range 35–75%), with environmental enrichment and
bedding material, and monitored for body weight changes twice
weekly. TRAMP-C1 (2 × 106) or MyC-CaP (1.0 × 106) cells in PBS and
1:1 high concentration phenol red-free Matrigel (Corning) were
injected into the flank of mice under isofluorane inhalational
anaesthesia on a heat mat to aid recovery. Tumours were
measured pre- and post-treatment using digital callipers three
times weekly (tumour volume= π/6 × length × width × height).
When tumours reached 100mm3 mice were assigned to
treatment groups on a ‘first come, first allocated’ basis using a
randomly generated treatment list (GraphPad Prism 8, GraphPad
Software, USA). RT was delivered in the afternoon under
isofluorane inhalational anaesthesia with physiological monitoring
(pneumatic cushion; breathing rate 40–60 breaths/min) on a heat
mat using a Gulmay 320 irradiator (300 kV, 10 mA, 2.25 Gy/min). 10
mg/kg anti-PD-L139 (BioXCell, clone 10F.9G2) or isotype control
(BioXCell, rat IgG2b) in PBS was administered by intra-peritoneal
injection on days 1 (i.e. with the first 5 Gy RT fraction at 100mm3

tumour size), 4, 7, and 10.39 All procedures were conducted in the
home cage except tumour cell injection, RT and recovery from
anaesthetic. All mice were culled by a schedule one procedure at
end-point in the morning using pentobarbitone injection over-
dose followed by cervical dislocation according to institutional
guidelines.

Flow cytometry (FACS) analysis of tumours following in vivo
treatment with radiotherapy
Tumours were mechanically dissociated into 2–3 mm pieces and
treated with 5 mL digestion cocktail containing 400 µl 5 g/ml
collagenase IV (Worthington, LS004189), 5 U/mL DNAse I
(195 U/mL) (Invitrogen, 1928344) in Hanks Balanced Salt
Solution and passed through a 70 µm nylon cell strainer. Red
blood cells were removed using lysis buffer (BioLegend,
B256521). Cells were incubated for 5 min at room temperature
with purified anti-mouse CD16/CD32 Fc block (BioLegend,
B255480) before the addition of cell surface antibodies. An
eBiosciences FOXP3 intracellular staining kit (eBioscience,
1999385) was used, and antibodies used for immune cell
staining (Table S1). Data were acquired using the Thermo Fisher
Attune NxT and analysed using FlowJo v10.0. Gating strategies
for immune cells are shown in Figs. S1, S2. An increased
proportion of cells within each tumour expressing a particular
combination of immune cell-specific cell surface markers was
taken as a surrogate for an increased proportion of that
immune cell.

NanoString analysis of tumours following in vivo treatment with
radiotherapy
Total RNA was extracted from four 10 µm sections of formalin-
fixed paraffin-embedded tissue samples using an RNeasy FFPE kit
(Qiagen, 160012457). Samples were analysed using the nCounter®
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mouse PanCancer Immune Profiling Panel, and data acquired with
the nCounter® SPRINT profiler. Data were imported into nSolverTM

analysis software v2.5 for quality control and normalisation of
gene transcripts using NanoString analysis guidelines and
housekeeping genes.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 8
(GraphPad Software, USA). For in vitro work ordinary one-way
ANOVA tests were performed with Dunnett’s or Tukey’s post hoc
adjustment for multiple comparisons. For in vivo tumour growth
delay experiments, ordinary one-way ANOVA was performed
using Tukey’s test for multiple comparisons following Brown-
Forsythe’s test for equality of the means. Tumour growth delay
was defined as a significant increase in time (days) for a tumour
treated at 100mm3 to reach end-point size of 400mm3 compared
against control untreated tumours, a single mouse being
considered an experimental unit. T-tests were performed for FACS
data. All results are mean ± standard error of the mean, p < 0.05
being statistically significant.

RESULTS
MHC-I and PD-L1 expression is induced by γIFN treatment in
TRAMP-C1 cells
To select PCa cells for iRT experiments in a syngeneic immuno-
competent in vivo model, TRAMP-C1 and MyC-CaP cells were
chosen for in vitro and in vivo analysis. As RT induces a γIFN
response cells were initially treated with γIFN, and effects on MHC-I
and PD-L1 analysed with FACS. In vitro treatment of TRAMP-C1
with γIFN increased MHC-I expression in a dose-dependent manner
at 72 h. This effect was not observed in MyC-CaP cells, where
baseline MHC-I expression remained low with increasing γIFN
(Fig. 1a, b). Increased PD-L1 expression was observed in TRAMP-C1
and MyC-CaP 72 h following 10 ng/mL γIFN, with PD-L1 upregula-
tion following γIFN greater in TRAMP-C1 versus MyC-CaP (Fig. 1c,
d). PD-L1 expression in TRAMP-C1 following 1 ng/mL γIFN peaked
at 48 h and returned to baseline 120 h post-treatment (Fig. S3A).
These results suggest TRAMP-C1 is a suitable model for in vivo
investigation of combined anti-PD-L1 and RT.

MHC-I and PD-L1 expression is induced by radiotherapy in TRAMP-C1
cells
To assess the suitability of TRAMP-C1 for iRT experiments
combining anti-PD-L1 and RT, MHC-I and PD-L1 expression was
investigated in vitro following RT. MHC-I expression was increased
in TRAMP-C1 at 72 h following 6Gy RT with 1 ng/mL γIFN, whereas
expression of control transferrin receptor protein remained
unchanged (Fig. 2a). A non-significant increase in MHC-I expres-
sion was seen following 6 Gy without γIFN (Fig. 2b). PD-L1
expression was increased 72 h following 6 Gy and 10 Gy in the
presence or absence of γIFN (Fig. 2c, d). Maximal increased PD-L1
expression in TRAMP-C1 post-6 Gy was observed 24 h later
(Fig. S3B). Increased PD-L1 expression at 72 h following treatment
of TRAMP-C1 with 6 Gy RT with or without 1 ng/mL γIFN was
confirmed on western blot analysis (Fig. S3C). These in vitro results
suggest TRAMP-C1 is a suitable PCa model for pre-clinical iRT
experiments, as 6 Gy RT induces expression of MHC-I and PD-L1.

Hypofractionated radiotherapy induces tumour growth delay in
TRAMP-C1 and MyC-CaP flank prostate cancer allografts
Flank TRAMP-C1 and MyC-CaP tumour allografts were treated with
2 Gy, 5 Gy and 10 Gy RT fractions at 100mm3 (Fig. 3a). Treatment
of TRAMP-C1 with 3 × 5 Gy and 5 × 5 Gy resulted in significant
tumour growth delay compared with untreated control tumours,
however tumours eventually recurred (Fig. 3b, c). TRAMP-C1
tumour growth was well controlled with 3 × 10 Gy, however, this
caused skin toxicity compared with lower doses. No significant

tumour growth delay was seen with 5 × 2 Gy. Treatment of
MyC-CaP with 3 × 5 Gy caused significant tumour growth delay
compared with untreated control tumours, however, tumours
eventually recurred (Fig. 3d, e) consistent with TRAMP-C1 results.

Hypofractionated radiotherapy using 3 × 5 Gy induces immune
changes in TRAMP-C1 and MyC-CaP flank prostate cancer
allografts
FACS analysis of the TIME of TRAMP-C1 tumours at 7-days post
initiation of 3 × 5 Gy RT demonstrated an increased proportion
of cells expressing the CD45+ general leukocyte marker
compared to control untreated tumours. The CD45+ immune
cells were predominantly myeloid cells, with a significantly
increased proportion of CD11b+F4/80+ expressing TAMs
and CD11b+CD11c+MHCII+ expressing dendritic cells (DCs)
in RT-treated tumours compared to control untreated tumours.
A significantly reduced proportion of CD11b+Gr1+ expressing
MDSCs was observed in 3 × 5 Gy RT-treated tumours compared to
untreated controls (Fig. 4a, c). iNOS and CD206 expression
(markers of M1 and M2 polarisation respectively) was analysed to
define the activation status of TAMs within the TIME following 3 ×
5 Gy RT. The majority of TAMs were M2-polarised in both 3 × 5 Gy
RT-treated tumours and untreated control tumours, however,
following 3 × 5 Gy there was a non-significant increase in iNOS-
expressing TAMs (Fig. S4A, B). An increase in CD45+CD3+CD4+

expressing T-cells, and a non-significant increase in
CD45+CD3-NK1.1+ expressing NK cells, was seen in 3 × 5 Gy RT-
treated tumours compared to untreated control tumours. The
proportion of CD45+CD3+CD8+ expressing T-cells and
CD45+CD4+CD25+FoxP3+ expressing regulatory T-cell (Treg)
cells remained unchanged in 3 × 5 Gy RT-treated tumours
compared to untreated control tumours (Fig. S4C).
NanoString analysis of TRAMP-C1 tumours at 7-days post-RT

revealed increased expression of CD8+ T-cell, DC, and Treg-
specific function genes (Fig. S5). The TIME FACS and NanoString
data suggest that 7-days following RT mixed immunological
tumour responses have been generated. For example, the
increased CD11b+F4/80+ TAMs seen on FACS may be pro-
tumorigenic, whereas the increased DC number/function may
have an anti-tumour effect. In contrast, at tumour regrowth post-
3 × 5 Gy the TIME was similar on FACS to untreated control
tumours of similar volume. There were no significant differences in
the proportion of immune cell subtypes in 3 × 5 Gy RT-treated
tumours versus untreated controls at tumour regrowth end-point,
although there was a non-significant increase in proportion of
CD11b+Gr1+ myeloid cells (p= 0.072), CD11b+Ly6C-Ly6G+ (p=
0.057) cells, and CD11b+Ly6G+ neutrophils (p= 0.070) in radio-
recurrent tumours versus controls (Fig. 4b). PD-1 expression in
CD45+CD8+ T-cells was upregulated in 3 × 5 Gy treated TRAMP-C1
tumours at regrowth to ≥400 mm3 compared to untreated control
tumours (p= 0.02) (Fig. 4d). Corresponding NanoString analysis at
tumour regrowth demonstrated that CD8+ T-cell, helper T-cell,
and DC gene expression was reduced in radio-recurrent tumours
versus controls (Fig. S6), even though the proportion of these
immune populations on FACS were similar between these groups
at end-point. Significantly altered NanoString immune genes at
7-day and regrowth end-points are listed for TRAMP-C1 in
Tables S2, S3 and shown in Fig. S7A, B. These results illustrate
that FACS and NanoString analysis of TRAMP-C1 tumours
following 3 × 5 Gy suggests a DC immune response at 7-days
post-treatment, along with increased PD-1 expression in
CD45+CD8+ T-cells at the tumour regrowth end-point, which
may be harnessed by iRT targeting PD1/PD-L1.
A similar orthogonal immune cell analysis was performed in

MyC-CaP flank PCa allografts 7-days post-RT and at tumour
regrowth end-point. FACS analysis of the TIME in MyC-CaP at
7-days post-RT demonstrated no change in the relative proportion
of CD45+ cells, however a significant reduction in the proportion
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Fig. 1 FACS analysis of MHC Class I and PD-L1 expression following in vitro treatment of TRAMP-C1 and MyC-CaP cells with γIFN.
Increased expression of MHC Class I on FACS was observed in TRAMP-C1 (a) following 1 ng/mL and 10 ng/mL γIFN but not MyC-CaP (b) cells at
72 h. Increased expression of PD-L1 following in vitro treatment with 10 ng/mL γIFN was seen in both cell lines (c, d) at 72 h, with the degree of
PD-L1 upregulation in response to γIFN being greater in TRAMP-C1 than in MyC-CaP cells. Data are presented as mean fluorescent intensity
(MFI) ± SEM, and analysed using ordinary one-way ANOVA with Dunnett’s post hoc adjustment for multiple comparisons (n= 3 independent
experiments). **p < 0.01; ***p < 0.001.
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of CD45+CD3+CD4+ T-cells, and a non-significant reduction in the
proportion of CD45+CD3+CD8+ T-cells (p= 0.08) was seen in
treated versus untreated tumours (Fig. S8A). No significant
difference in myeloid cell proportion (including TAMs, neutrophils
and DCs) was observed in 3 × 5 Gy RT-treated versus control
tumours, although a non-significant increase in M-MDSC infiltra-
tion (p= 0.075) was seen in 3 × 5 Gy RT-treated tumours.
The TAM cell population in MyC-CaP was M2-polarised in
3 × 5 Gy RT-treated and untreated control tumours. A non-
significant increase in iNOS-expressing TAMs following 3 × 5 Gy
RT in MyC-CaP was observed (data not shown), consistent with
findings in TRAMP-C1. At the tumour regrowth end-point in MyC-
CaP, TIME FACS analysis demonstrated no significant differences
in the proportion of myeloid immune cell subtypes in 3 × 5 Gy RT-
treated versus control tumours (Fig. S8B). Analysis of the lymphoid
immune cell subtypes in MyC-CaP demonstrated an increased
tumour infiltrate of CD45+CD4+CD25+FoxP3+ Treg cells (Fig. S8C),
and a non-significant reduction in the proportion of
CD45+CD3+CD8+ T-cells, in 3 × 5 Gy RT-treated tumours versus
untreated controls.

NanoString analysis of MyC-CaP at 7-days following 3 × 5 Gy RT
showed increased heterogeneity in control tumours compared
with TRAMP-C1. The analysis suggests increased expression of
CD8+ T-cell, DC, and Treg function genes in 3 × 5 Gy RT-treated
tumours compared to controls (Fig. S9), suggesting “early” anti-
tumour immunogenic effects post-RT in MyC-CaP as seen in
TRAMP-C1. NanoString analysis at tumour regrowth end-point in
MyC-CaP demonstrated reduced DC gene expression in radio-
recurrent tumours versus controls (Fig. S10).

Concomitant inhibition of PD-L1 does not enhance anti-tumour
effects of hypofractionated radiotherapy using 3 × 5 Gy in
TRAMP-C1 flank prostate cancer allografts
FACS analysis of the CD45- non-immune cell population within the
TRAMP-C1 TIME at 4-days following initiation of 3 × 5 Gy revealed
increased PD-L1 expression (Fig. 5a), and NanoString analysis at 7-
days demonstrated increased PD-1 expression and a non-
significant increase in PD-L1 expression (Fig. 5b). To test the
hypothesis that anti-PD-L1 enhances RT effects, flank TRAMP-C1
tumours were treated with 3 × 5 Gy plus anti-PD-L1, and
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Fig. 2 Irradiation increases prostate cancer cell surface expression of MHC Class I and PD-L1. In vitro FACS analysis of MHC Class I and
control transferrin receptor expression following treatment of TRAMP-C1 cells with 6 Gy RT in the presence (a) or absence (b) of 1 ng/mL γIFN.
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relative expression normalised to untreated control and analysed using ordinary two-way ANOVA with Tukey’s post hoc adjustment for
multiple comparisons (n= 3 independent experiments). *p < 0.05; **p < 0.01; *** p < 0.001, ****p < 0.0001.
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compared against 3 × 5 Gy, anti-PD-L1, or untreated tumours
(Fig. 5c). Inhibition of PD-L1, rather than combined inhibition of
PD-L1 and PD-1, was chosen as iRT with 3 × 5 Gy due to concerns
that combined anti-PD-L1 and anti-PD-1 might cause excessive
toxicity in vivo, and given that only one agent is usually
administered in the clinic. Anti-PD-L1 or isotype control was
given at days 1 (along with the first 5 Gy fraction), 4, 7, and 10.39

Commencement of anti-PD-L1 with the first 5 Gy fraction was
chosen to ensure therapeutic levels of anti-PD-L1 coincided with
RT-induced PD-L1 upregulation in TRAMP-C1 tumours, and four
doses were administered as this has no welfare implications in
previous studies.39 Combined 3 × 5 Gy and anti-PD-L1 did not
enhance tumour growth delay compared to 3 × 5 Gy alone in
these conditions (Fig. 5d). FACS analysis of the TIME at tumour
regrowth showed a non-significant increase in CD8+ T-cell

infiltrate in tumours receiving anti-PD-L1 alone or RT plus anti-
PD-L1 (Fig. S11).

DISCUSSION
RT is a standard treatment for localised and locally advanced PCa,
and has been investigated in clinical trials treating the primary
tumour in low-burden oligometastatic advanced disease.7 RT may
cause immune-mediated anti-tumour responses40 through
increased tumour peptide availability, tumour cell expression of
MHC-I, enhanced antigen presentation, and sensitisation to tumour-
specific cytotoxic lymphocytes, generation of neoantigens,21,41–44

and type I and type II interferon production.45,46 These effects
sensitise irradiated tissue to tumour-specific cytotoxic lymphocytes,
inducing immunological anti-tumour responses. RT may therefore
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“prime” the immune system to enhance anti-tumour effects of
immunotherapy.40

Pre-clinical studies demonstrate that tumour cell MHC-I expres-
sion is a surrogate marker of immunogenicity, and correlates with
increased cytotoxic T-cells in the TIME and increased response of
tumour models to immunotherapy, with an inverse relation to

tumour growth rate.47,48 We investigated baseline in vitro cell
surface expression of MHC-I and PD-L1 in TRAMP-C1 and MyC-CaP
cells, along with the response to γIFN, as a measure of de novo
immunogenicity. These results suggest TRAMP-C1 has a greater
potential for immunogenicity than MyC-CaP, given the higher
MHC-I and PD-L1 expression at baseline and following γIFN. This is
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supported by observations in TRAMP-C1 allografts versus MyC-
CaP; a greater CD45+ cell infiltrate at baseline and following RT;
RT-induced altered expression of immune-related genes on
NanoString; and reduced tumour growth rate. Increased cell
surface MHC-I expression following RT may be due to direct
effects on the pool of poly-ubiquitinated proteins targeted for
proteosomal degradation, resulting in more peptides for MHC-I
antigen presentation, and enhanced MHC-I expression.49 Consis-
tent with the previous reports21,50,51 we observed RT increased
MHC-I expression in TRAMP-C1 tumour allografts. These observa-
tions suggest TRAMP-C1 is relatively immunogenic and a suitable
pre-clinical model to investigate iRT.
RT has been regarded as immunosuppressive and potentially

inappropriate for combination with immunomodulation.52 How-
ever, RT may also be an immunostimulatory anti-PCa therapy,52

and the relationship between RT and immunoreactivity is complex.
Data on use of RT and immunotherapy are accumulating and
suggest opportunities for RT to “prime” the immune system and
enhance anti-tumour effects of immunotherapy.46 FACS analysis of
the TRAMP-C1 TIME following 5 Gy fractions suggests an “early”
predominantly immunostimulatory TIME 7-days post-RT, with
increased DCs and CD4+ T-helper cells, and reduced MDSCs.
NanoString analysis in TRAMP-C1 allografts at this 7-day time-point
suggests anti-tumour immunogenic effects, with increased expres-
sion of CD8+ T-cell and DC function genes. The lack of increased
infiltration of cytotoxic CD8+ T-cells in the TIME on FACS may be
due to use of 5 Gy RT fractions, and higher fraction sizes doses may
be necessary to achieve this effect. Despite 3 × 5 Gy RT achieving a
significant tumour growth delay and predominantly immunosti-
mulatory effects, treatment was sub-lethal and failed to generate a
sufficient anti-tumour response for cure. In contrast, and support-
ing potential immunosuppressive effects of RT, “early” time-point
FACS in MyC-CaP demonstrated significantly reduced CD4+ helper
T-cells, increased CD4+ Treg cells, and a trend towards a reduction
in the proportion of the CD8+ T-cell population.
Pre-clinical PCa models, such as TRAMP-C2 allografts, have

demonstrated barriers to generating anti-tumour immune
responses, including poor CD8+ T-cell infiltrates, and high intra-
tumoural proportions of immunosuppressive myeloid cells such as
TAMs and MDSCs.53 We observed poor infiltration of CD8+ T-cells
in TRAMP-C1, with TAMs and MDSCs comprising the majority of
CD45+ cells. Whilst RT doses in the literature are higher than the
3 × 5 Gy used in our experiments, our observation of an increase in
CD11b+F4/80+ expressing TAMs 7-days post-3 × 5 Gy is consistent
with observations in TRAMP-C1.14 TAMs are myeloid cells present
in many solid-organ tumours including PCa, and they demonstrate
functional plasticity, differentiating into various phenotypes
during inflammatory responses. TAMs are described as “M1” with
predominantly anti-tumorigenic effects, or “M2” with predomi-
nantly pro-tumorigenic effects such as angiogenesis and immu-
nosuppression. Our analysis of TAM activation status using iNOS
and CD206 suggests M2 TAMs are predominantly present in the
TRAMP-C1 TIME. In TRAMP-C1 allografts treatment with 3 × 5 Gy
recruited both M1 and M2 TAMs, and we speculate that blocking
this recruitment may enhance anti-tumour RT responses. The
observed trend towards an increased proportion of MDSCs at the
“late” tumour regrowth time-point following 3 × 5 Gy RT may
result in immunosuppression and CD8+ T-cell exhaustion, beyond
that induced by a RT-induced influx of TAMs. The observation that
PD-1 expression is increased in CD8+ T-cells at tumour regrowth
following 3 × 5 Gy RT suggests the presence of T-cell exhaustion in
TRAMP-C1, and the reduced CD8+ T-cell, helper T-cell, and DC
gene expression on NanoString analysis in radio-recurrent
compared with control untreated tumours suggests an immuno-
suppressed TIME at eventual tumour re-growth. Further experi-
ments to target this effect are warranted.
Differentially expressed genes in TRAMP-C1 at the “early” 7-day

time-point post-RT included upregulation of chemokine genes such

as CCL2 and its receptor CCR2, CCL17, CCL22, CXCR3 and CCL7.
Chemokines and their receptors are expressed by cancer cells and
play roles in tumour progression and therapeutic outcomes. Several
chemokines and their receptors, in particular CCL2 and CCR2, are
implicated in PCa progression, metastasis and chemoresistance,54,55

and may be expressed by tumour cells or TAMs recruited to the
TIME. Tumour-derived CCL2 mediates RT resistance in pre-clinical
pancreatic ductal adenocarcinoma through recruitment of TAMs
and MDSCs, supporting cancer cell proliferation and neovascular-
isation post-RT.56 Approaches to mitigate immunosuppressive TIME
effects of RT-induced TAMs by blocking CCL2-CCR2, or depleting
these cells using concomitant anti-CSF with RT, may be necessary in
PCa to derive benefit from iRT.57

Analysis of TRAMP-C1 tumours demonstrated that the PD-1/PD-
L1 axis is upregulated in the TIME following 3 × 5 Gy. We tested
the hypothesis that iRT through PD-L1 inhibition with concomitant
3 × 5 Gy RT may enhance tumour growth delay compared to RT
alone. There are several possible explanations for the absence of a
demonstrable increase in tumour growth delay through iRT in
these conditions in this model. The 3 × 5 Gy RT dose may be
insufficient to generate CD8+ T-cell dependent anti-tumour
responses that can be further harnessed through anti-PD-L1.
Moreover, combined anti-PD-1 and anti-PD-L1 with RT may be
necessary to harness a response through enhanced blockade of
the PD-1/PD-L1 axis, however, we did not test this combination
due to concerns about possible in vivo toxicity, and given that
combined anti-PD-1 and anti-PD-L1 is not standard in the clinic.
The tumour growth delay and survival curve analysis suggest a
possible initial enhanced response to anti-PD-L1 with RT
compared to RT alone, however, this is not maintained, with no
difference once the anti-PD-L1 is no longer administered. It may
be the case that administration of anti-PD-L1 for a longer time
period than the x4 doses delivered over 12 days in our model and
as previously described39 may be necessary. It is possible that the
anti-PD-L1 needs to be continued for several weeks post-RT,
however, we did not pursue this approach due to concerns that
prolonged anti-PD-L1 may be poorly tolerated and lead to
significant toxicity. It is also possible that the experiment was
under-powered given the variable response of TRAMP-C1 tumours
to 3 × 5 Gy RT, with three of the combined treatment animals
demonstrating enhanced response, whilst a further three did not,
leading to no significant difference. Future experiments using a
longer time course of concomitant anti-PD-L1, and using
combined anti-PD-1 and anti-PD-L1 and RT, subject to acceptable
toxicity in vivo, may help to answer these issues.
Previous experiments in autochthonous TRAMP models devel-

oping spontaneous PCa suggest that neither RT (administered as
3 × 10 Gy, with a 5-day interval between doses) nor immunother-
apy alone (in the form of a tumour vaccine) can prime an anti-
tumour immune response in animals with evolving tumours, but
that iRT could result in anti-tumour T cell activation, although
this effect was dependent on the relative timing of RT and
immunotherapy.10 Anti-tumour immune responses occurred when
immunotherapy was administered 3–5 weeks post-RT, but these
responses were undetectable when immunotherapy was adminis-
tered at either earlier (peri-RT) or later time-points. It is possible
that there is a relatively narrow therapeutic temporal window of
opportunity for immunotherapy post-RT to be effective in highly
aggressive immunosuppressive tumour models such as the
autochthonous TRAMP model and our TRAMP-C1 flank allograft
models, albeit these studies used different RT doses and
fractionation. The TIME results from our experiments suggest that
despite RT, the CD8+ T-cells which play important roles in the anti-
tumour effects of ablative RT58 remain at low levels following 3 ×
5 Gy RT, despite iRT with anti-PD-L1. This observation suggests
that therapeutic strategies combining RT with T-cell-based
therapies such as immune checkpoint blockade may not be
clinically effective without first finding strategies to enhance T-cell
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immunosurveillance. Monocytes, in particular, play important roles
in the immune evasion/tolerance of PCa,59 and it may be that
immunotherapy directed at inhibiting TAMs or MDSCs recruitment
to the TIME in combination with RT are needed to improve disease
control in PCa.
These experiments have several limitations. Flank tumour

allografts were used, rather than orthotopic tumours, or de novo
PCa arising within transgenic mice, which might better recapitu-
late the TIME of spontaneously arising PCa. Standard implanted
tumour models may not be ideal for iRT studies as they may fail to
properly model the physiological setting in which tolerogenic
tumours arise over extended time periods. However, the flank
allograft tumour approach within immunocompetent syngeneic
mice was necessary to deliver iRT with follow-up and measure-
ment of tumour growth. It is possible that the length of time
between subcutaneous injection of TRAMP-C1 cells and formation
of 100 mm3 tumours, which we found to be 6–8 weeks in the
conditions tested, led to changes in the immunogenicity of these
tumours, perhaps with the development of immune tolerance in
the animals, such that iRT was less effective. A variation in the
efficacy of immunomodulation, dependent upon the timing of
initiation of treatment following tumour implantation, and
consistent with a decay of the initial immune response following
tumour implantation has been reported.60 However, failure of
delayed immunomodulation may be due to accumulation of a
greater tumour burden or acquisition of an immunosuppressed
TIME. RT may need to be continued for a greater number of
fractions than 3 × 5 Gy to enhance effects of anti-PD-L1. This
warrants further analysis, provided animals tolerate a higher
number of RT fractions over several weeks, and given that RT is
administered under general anaesthetic. An additional limitation
of these experiments is the absence of concomitant ADT, given
that this is administered with 2 Gy RT fractions as standard-of-care
in patients. However, adding ADT would have introduced a third
variable (in addition to RT and anti-PD-L1), and the TRAMP-C1
model is androgen independent. Moreover, recent clinical trials
such as PACE (Prostate Advances in Comparative Evidence)15 are
investigating hypofractionated RT without ADT versus conven-
tional RT plus ADT. It may be the case that ADT plus RT leads to
enhanced anti-tumour responses through addition of anti-PD-L1,
and this possibility warrants investigation in future studies.
The possibility for an iRT approach to be beneficial in patients

with PCa is an important idea to test given that the 5-year
biochemical relapse rate for high-risk patients is 32–70%.3 If iRT
was successful then this may permit a reduction in the necessary
RT dose for effective treatment, and could have clinical benefit
for patients as RT reduces quality of life due to side effects.4–6

Immunotherapy is an attractive option combined with RT given
recent clinical trial results where RT to the primary tumour in
oligometastatic disease led to clinical benefit,7 suggesting
possible RT-induced immunological responses which may be
enhanced with iRT. However, for iRT to be successfully used in
the clinic, studies need to be performed in pre-clinical models
and early phase clinical trials to determine the optimal timing,
sequence of delivery, and type of immunomodulation used
in iRT.
In conclusion, 3 × 5 Gy hypofractionated RT resulted in a

tumour growth delay in MyC-CaP and TRAMP-C1 PCa models.
3 × 5 Gy resulted in an initial increase in TAMs and DCs, and
upregulation of PD-1/PD-L1, in the TRAMP-C1 TIME, however,
anti-PD-L1 combined with RT in the conditions tested did not
increase tumour growth delay. These results suggest that
adjuncts beyond immunomodulation, such as perhaps combi-
nation with PCa focal ablation therapies or other cancer cell-
targeting treatments, which warrants evaluation in future
studies, are necessary to improve the anti-tumour response
from RT fraction sizes used in the clinic.
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