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Purpose: To introduce an end-to-end automatic segmentation model for organs at risk
(OARs) in thoracic CT images based on modified DenseNet, and reduce the workload of
radiation oncologists.

Materials and Methods: The computed tomography (CT) images of 36 lung cancer
patients were included in this study, of which 27 patients’ images were randomly selected
as the training set, 9 patients’ as the testing set. The validation set was generated by cross
validation and 6 patients’ images were randomly selected from the training set during each
epoch as the validation set. The autosegmentation task of the left and right lungs, spinal
cord, heart, trachea and esophagus was implemented, and the whole training time was
approximately 5 hours. Geometric evaluation metrics including the Dice similarity
coefficient (DSC), 95% Hausdorff distance (HD95) and average surface distance (ASD),
were used to assess the autosegmentation performance of OARs based on the proposed
model and were compared with those based on U-Net as benchmarks. Then, two sets of
treatment plans were optimized based on the manually contoured targets and OARs
(Plan1), as well as the manually contours targets and the automatically contoured OARs
(Plan2). Dosimetric parameters, including Dmax, Dmean and Vx, of OARs were obtained
and compared.

Results: The DSC, HD95 and ASD of the proposed model were better than those of U-
Net. The differences in the DSC of the spinal cord and esophagus, differences in the HD95
of the spinal cord, heart, trachea and esophagus, as well as differences in the ASD of the
spinal cord were statistically significant between the two models (P<0.05). The differences
in the dose-volume parameters of the two sets of plans were not statistically significant
(P>0.05). Moreover, compared with manual segmentation, autosegmentation significantly
reduced the contouring time by nearly 40.7% (P<0.05).
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Conclusions: The bilateral lungs, spinal cord, heart and trachea could be accurately
delineated using the proposed model in this study; however, the automatic segmentation
effect of the esophagus must still be further improved. The concept of feature map reuse
provides a new idea for automatic medical image segmentation.
Keywords: non-small-cell lung cancer, organs at risk, medical image segmentation, deep learning, DenseNet,
feature reuse
INTRODUCTION

In China, lung cancer ranks first in both incidence and mortality
rates, accounting for 17.9% of all new cases and 23.8% of total
cancer deaths according to GLOBOCAN 2020 (1). Non-small-
cell lung cancer (NSCLC) constitutes the majority of lung
cancers. Radiotherapy (RT) is usually used in all stages of
NSCLC treatment and is required at least once in more than
half of patients for either cure or palliation. In a typical clinical
workflow of RT, a radiation oncologist manually segments the
tumor target and organs at risk (OARs) based on the information
provided by CT, MRI and/or PET/CT images (2, 3). This process
is often time consuming and laborious, and the quality of the
segmentations largely depends on the experience of radiation
oncologists. It is easy to distinguish the organs with high contrast
on CT images; however, it is difficult to distinguish the boundary
between tumor tissue and surrounding normal tissue with
similar contrast. Moreover, inconsistencies in target and OARs
segmentations have been reported for both inter-and
intraobserver segmentation variability (4–8). These factors will
affect the accuracy and efficacy of RT. Therefore, improving the
consistency and efficiency of image segmentation becomes an
urgent task.

In recent years, automatic medical image segmentation based
on deep learning has become a popular research topic in RT, and
several convolutional neural networks (CNNs) including U-Net,
ResNet and DenseNet, have shown great success in
autosegmentation of the target and OARs (9–16). DenseNet
was proposed by Huang G et al. (17) in 2017, using the
concept of feature map reuse to address the small training
datasets in supervised learning. Moreover, DenseNet connects
multiple dense blocks with a transition layer and concatenates
the channels of each dense block feature map in series to increase
the number of feature maps and improve the utilization rate of
feature maps. Tong N et al. (18) improved the performance of
their previous shape constrained fully CNNs for head and neck
OARs segmentation on CT and low field MRI by incorporating
generative adversarial network (GAN) and DenseNet. With the
novel segmentation method, they showed that the low field MR
images acquired on a MR guided radiation radiotherapy system
can support accurate and fully automated segmentation of both
bony and soft tissue OARs for adaptive radiotherapy. Fu J et al.
(19) proposed a novel three-dimensional (3D) multipath
DenseNet for generating the accurate glioblastoma (GBM)
tumor contour from four multimodal pre-operative MR
images. The multipath DenseNet demonstrated an improved
2

accuracy over comparable algorithms in the clinical task of GBM
tumor segmentation. To our best knowledge, there has not been
an automatic segmentation study based on the DenseNet for
NSCLC radiotherapy.

In this study, a deep learning model based on DenseNet and
FCN (fully convolutional network) is proposed. The model uses
the idea of feature reuse. It learns the planar distribution
characteristics of OARs in CT images through a denseblock
module and supplements details through long connections to
achieve an end-to-end accurate OAR delineation for
NSCLC patients.
MATERIALS AND METHODS

Data Acquisition and Preprocessing
The CT images of 36 NSCLC patients of the Seventh Medical
Center of the PLA General Hospital were provided. The CT
images were scanned on a Philips Brilliance Big Bore simulator
(Philips Medical Systems, Madison, WI, USA) from the level of
the larynx to the bottom of the lungs with a 3-mm slice thickness
on helical scan mode. The study was approved by the Ethics
Committee of the Seventh Medical Center of Chinese PLA
General Hospital. All of the patients provided written consent
for the storage of their medical information in the hospital
database. Patients characteristics are shown in Table 1. By
analyzing the DICOM file, the grayscale value of the original
CT image was mapped to the range of 0-255, the window width
was set to 400, and the window level was set to 40. Different
manual OARs serving as the ground truth were filled with
different grayscale values to generate mask images as training
labels, as shown in Figure 1.

The training dataset included 3803 CT images of 27 patients.
The testing set included 567 images of 9 patients. In order to
improve the utilization of the data and obtain a more stable
model, the validation set was generated by cross validation and 6
patients’ images were randomly selected from the training set
during each epoch as the validation set. After data cleaning and
augmentation, these images were sent to the proposed model.
The deep learning inference platforms used Tensorflow-gpu
1.7.0 as the underlying framework, Keras2.2.4 neural network
library and python (version 3.6). All training, validating and
testing were run on an NVIDIA GeForce GTX 1070 Ti GPU with
8 GB video memory. The starting and ending times of the
manual and autosegmentation operations for each patient in
the testing set were recorded.
March 2022 | Volume 12 | Article 861857
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The Proposed Model for Segmentation
In this study, the model was trained to realize the
autosegmentation of six OARs for NSCLC. The specific
architecture of the model is shown in Figure 2. The
segmentation process was mainly divided into two parts: the
left half was called the analysis path, composed of a dense block
module and a transition down module and connected by a short
cut layer to extract image features; the right half was called the
synthesis path, upsampled by a transition up transposition
convolution module to recover the size of the feature map
layer. To improve the accuracy of the reconstructed image and
accelerate the convergence process of the network parameters,
the feature maps of the same size in the analysis path were
connected in series as the input of the next layer of the
dense block.

The input of each layer of the dense block was intensively
composed of all of the outputs of its front layer after dense
connection (as shown in Figure 3). The output of each layer had
the following corresponding functional relationship with the
output of other front layers:

Xi+1 = H(X1,X2,…,Xi) (1)

where H(*) is a nonlinear function denoting a series of
operations, including batch normalization (BN), ReLU
activation, pooling and convolution, which are used to extract
features, adjust the size of the feature map and reduce the
channel dimension. The bottleneck architecture was set in each
network since the operation of dense connections could bring
Frontiers in Oncology | www.frontiersin.org 3
about a surge in the number of channels and increase the
difficulty of training. The bottleneck architecture used a 1×1
convolution kernel to realize cross-channel feature fusion and
enhance the feature extraction ability of the network.

Training of The Proposed Model
After cleaning and augmentation, data were sent to the model for
training. The weight and bias of the network were updated using
the cross entropy loss function as follows.

Ls = −ok
i=1 y log by + (1 − y) log (1 − by )ð Þ (2)

by = (1 + ew
Tx+b)−1 (3)

where x is the input of the network, ŷ is the posterior probability
output after network regression and k is the number
of categories.

In this study, the early stopping module was added to detect
the network accuracy and loss function value with the increase in
the number of iterative epochs, and the network architecture
based on DensNet56 in the 30th epoch was selected. During the
network training process, the initial learning rate was set as 1e-3
and decreased with increasing epochs. This process ensured that
the network could converge quickly in the initial stage of
training, on the one hand, and avoided the problem of poor
feature generalization due to network overfitting, on the other
hand. In order to prevent the performance of the network from
swinging at the local optimum, the Adam optimizer was used for
training error. The Adam optimizer introduced the concept of
second-order momentum, and the network weight was updated
as the learning rate multiplied by the ratio of the gradient average
to the square root of the gradient variance. The advantage of the
method was that gradient updating was not only affected by the
current gradient; but also by the accumulated gradient updating
(20). The average segmentation time for the training set is
approximately 12.58 min/epoch, the average segmentation time
for a single 512×512 CT image is approximately 0.17 s, and the
time for delineating all CT images of a patient is approximately
13.4 s.
A B

FIGURE 1 | (A) Original image and (B) mask map (label).
TABLE 1 | Characteristics of patients in the training and testing sets.

Characteristics Training set Testing set

No. patients 27 9
Tumor site, right:left 16:11 3:6
Lobe location
Upper left 7 5
Lower left 4 1
Upper right 7 1
Middle right 5 1
Lower right 3 1
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Accuracy Evaluation
Geometric Metrics
In this study, geometric evaluation metrics, including the Dice
similarity coefficient (DSC), 95% Hausdorff distance (HD95) and
average surface distance (ASD) (21), were used to assess the
autosegmentation results of OARs based on the proposed model
and were compared with those based on U-Net as benchmarks.
Dosimetric Metrics
To assess the dosimetric impact of the proposed model on
treatment planning, we designed two sets of stereotactic body
Frontiers in Oncology | www.frontiersin.org 4
radiation therapy (SBRT) treatment plans for each patient in the
testing set using manually segmented target volumes and OARs
(Plan1), as well as the manually segmented target volumes and
automatically segmented OARs (Plan2). Intensity modulated
radiotherapy (IMRT) treatment plans were optimized with 6-MV
photons using 5 coplanar beams. All of the plans were prescribed 6
Gy per fraction for 10 fractions and normalized as 100%
prescription dose to 95% of the planning target volume (PTV).
Dosimetric parameters including Dmax (meaning the dose received
by 2% of the volume), Dmean, V40, V30, V20, V10, and V5
(meaning the volume receiving more than x Gy dose as a
percentage of the total volume), were obtained and compared to
FIGURE 3 | Scheme of dense block.
FIGURE 2 | The architecture of the proposed model.
March 2022 | Volume 12 | Article 861857
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assess the clinical feasibility of the proposed model. The dosimetric
characteristics of OARs were gauged by the conformity index (CI)
and homogeneity index (HI) of the PTV, so the CI and HI of the
PTVwere also calculated according to the formula in reference (22).

Statistical Analysis
SPSS statistical software (version 20.0, SPSS Inc., Chicago, IL,
USA) was used for statistical analysis. Wilcoxon’s signed rank
test was used to compare the differences in DSC, HD95, ASD,
and dosimetric parameters. Quantitative data are expressed as
the mean ± standard deviation (�x ± s), a value of P< 0.05 was
considered statistically significant.
RESULTS

Geometric Metrics
The DSC, HD95, and ASD of OARs based on the proposed
model and U-Net are listed in Tables 2–4, respectively. The
proposed model showed better performance than U-Net,
although there was no significant difference between the two
models in several OARs (P>0.05). The comparison of the results
between manual and automatic segmentation based on the
proposed model for a typical patient is shown in Figure 4.

Dosimetric Metrics
The dose-volume parameters of the OARs based on manual and
automatic segmentation are listed in Table 5. There were no
statistically significant differences between the dosimetric
parameters of manual and automatically delineated OARs
(P>0.05). The CIs of PTV in Plan1 and Plan2 were 0.74 ± 0.07
and 0.73 ± 0.07, respectively, while the HIs of PTV in Plan2 were
0.10 ± 0.02 and 0.09 ± 0.02, respectively. The differences in both
CI and HI were not statistically significant (P>0.05).

Delineating Time Analysis
The average time for manual segmentation by experienced
radiation oncologists for 9 patients in the testing set was 15.2
min, while the total autosegmentation time of the 9 patients in
the testing set was 9.0 min. Autosegmentation greatly improved
the working efficiency in contouring the OARs (P<0.05).
DISCUSSION

The results of this study are relatively consistent with those of the
challenge report of automatic segmentation of thoracic organs
organized by the American Association of Physicists in Medicine
Frontiers in Oncology | www.frontiersin.org 5
(AAPM)’s annual meeting in 2017 (21),with the right lung
having the highest average DSC (0.96) and the esophagus
having the lowest average DSC (0.67). Compared with U-Net,
the autosegmentation results of the OARs based on the proposed
model were better with higher DSC as well as lower HD95 and
ASD. Among them, DSC differences of the spinal cord and
esophagus, HD95 differences of the spinal cord, heart, trachea
and esophagus, as well as ASD difference of the spinal cord were
statistically significant (P<0.05).

Lustberg T et al. (23) used a deep learning autosegmentation
software (Mirada) to create thoracic OARs contours and the model
was built by using 450 lung patients’ images as the training set. For
20 CT scans of stage I-III NSCLC patients in the testing set, the
median DSCs of the spinal cord, the lungs, and heart were 0.83,
>0.95, >0.90, respectively. Zhang T et al. (24) developed a 2D AS-
CNN based on the ResNet101 network using a training dataset of
200 lung cancer patients. The average DSCs of the left lung, right
lung, heart, spinal cord, and esophagus of 19 NSCLC patients were
0.94, 0.94, 0.89, 0.82, and 0.73, respectively. Zhu JH et al. (25)
proposed an automatic segmentation model based on depth
convolution to segment CT images from 36 lung cancer patients.
The average DSCs of the lungs, heart, liver, spinal cord and
esophagus were 0.95, 0.91, 0.89, 0.76 and 0.64, respectively. Dong
X et al. proposed a U-Net-generative adversarial network (U-Net-
GAN) and realized the segmentation of 5 thoracic OARs. Among
them, the left lung, right lung, and heart were automatically
segmented by a 2.5D GAN model, while the esophagus and
spinal cord were automatically segmented by a 3D GAN model.
The average DSCs of the left and right lungs, spinal cord,
esophagus, and heart were 0.97,0.97, 0.90, 0.75, and o.87,
respectively. He T et al. (26) proposed a uniform U-like encoder-
decoder architecture abstracted from the U-Net and trained it using
40 patients’ thoracic CT scans. High DSC values were obtained for
esophagus (0.86), heart (0.95), trachea(0.92) and aorta (0.95) from
20 patients in the testing set. Feng X et al. (27) developed a model
based on 3D U-Net to autosegment thoracic OARs using 36
thoracic CT scans as the training set. The performance of the
model was evaluated on two groups of testing set consisting of 12
patients and 30 patients, respectively. The average DSCs of the
spinal cord, right lung, left lung, heart and esophagus of the first
testing set reached 0.89, 0.97, 0.98, 0.93, and 0.73 while those of the
second testing set were 0.85, 0.98, 0.98, 0.86 and 0.69, respectively.

The differences in all dosimetric metrics of the OARs between
manual and automatic delineations were not statistically
significant (P>0.05) in our study. The maximum dosimetric
metrics differences were 0.41Gy for Dmean of the trachea and
0.64% for V5 of bilateral lungs, while the clinically acceptable
dose difference and volume difference of OARs between manual
and automatic delineation are supposed to be within 1Gy and
TABLE 2 | Comparison of DSC of two models (�x ± s).

Spinal cord Heart Right lung Left lung Trachea Esophagus

U-Net 0.82 ± 0.04 0.83 ± 0.09 0.96 ± 0.02 0.94 ± 0.02 0.86 ± 0.07 0.55 ± 0.11
Proposed 0.89 ± 0.01 0.86 ± 0.09 0.96 ± 0.01 0.95 ± 0.02 0.91 ± 0.03 0.67 ± 0.12
P value 0.008 0.535 0.897 0.709 0.212 0.008
Mar
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1%, respectively. Zhu J et al. (28) evaluated the performance of
automatic segmentation of the OARs with dosimetric metrics for
esophageal cancer patients. The maximum metrics differences
were 0.35 Gy for Dmax of the spinal cord and 0.4% for V30 of
bilateral lungs. The results in our study were consistent with
those of the above study.

Due to the different training datasets, it is difficult to compare
the advantages and disadvantages of the proposed model and the
published model. However, the number of training cases used in
our study was obviously fewer; the proposed model has strong
feature extraction ability in the training of small samples, and the
segmentation results are similar to those of the training model of
relatively large datasets. A limitation of this study needs to be
pointed out. That is, due to low soft tissue contrast, small volume,
and large shape variability across patients, the automatic
segmentation results of the esophagus are not ideal, and the
DSC value is lower than 0.7, which is clinically unacceptable
(29, 30), therefore, we did not take into account the esophagus
when analyzing the dose-volume parameters in the treatment
plan. In the next work, we need to further optimize the model and
expand the size of data to increase its generalization and
segmentation effect.
Frontiers in Oncology | www.frontiersin.org 6
Currently, there are three main development directions for
deep learning networks in medical image segmentation. The first
direction is to deepen the network level and depth, extract deeper
semantic features to obtain stronger expression ability, or widen
the network to increase the number of channels to obtain more
information in the same layer, such as the texture features of
different grayscales and boundary features in different directions.
The second direction is to obtain a more effective spatial feature
extraction ability by learning the sequence concatenation
properties of multiple CT slices of a patient, represented by 3D
U-Net and many other derivative networks. The third direction
represented by DenseNet is to improve the utilization rate of the
feature map by sharing the feature map layer by layer to enhance
the feature expression ability of the image and improve the
generalization performance of the network (31).
CONCLUSION

Compared with U-Net, the proposed model based on DenseNet
is better in the OARs segmentation task; even if the training set
has fewer images, it can still fairly effectively prevent the
TABLE 3 | Comparison of HD95 (mm) of two models (�x ± s).

Spinal cord Heart Right lung Left lung Trachea Esophagus

U-Net 3.75 ± 1.23 14.42 ± 2.94 7.24 ± 4.22 9.04 ± 5.97 4.46 ± 2.61 12.40 ± 5.99
Proposed 2.05 ± 0.38 9.75 ± 2.34 6.09 ± 1.56 6.47 ± 3.27 2.44 ± 1.17 6.14 ± 3.07
P value 0.000 0.008 0.897 0.260 0.039 0.008
Mar
ch 2022 | Volume 12 | A
TABLE 4 | Comparison of ASD (mm) of two models (�x ± s).

Spinal cord Heart Right lung Left lung Trachea Esophagus

U-Net 2.01 ± 0.70 7.70 ± 6.10 1.32 ± 0.45 1.57 ± 0.65 1.42 ± 0.87 6.95 ± 7.30
Proposed 0.81 ± 0.18 5.93 ± 4.03 1.11 ± 0.31 1.23 ± 0.54 0.94 ± 0.51 3.27 ± 2.67
P value 0.000 0.425 0.375 0.264 0.281 0.123
FIGURE 4 | Comparison of manual and automatic segmentation of the OARs based on the proposed model (Color wash: the manual segmentation contour; line:
the automatic segmentation contour).
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occurrence of overfitting. At the same time, it can effectively
alleviate the problem of the gradient disappearing in the training
process by repeatedly using different levels of feature maps,
providing a new idea for medical image segmentation.
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