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ABSTRACT
Five established clearing protocols were compared with a modified and simplified method to determine an optimal clearing reagent for three-
dimensionally visualizing fluorophores in the murine liver, a challenging organ to clear. We report successful clearing of whole liver lobes by
modification of an established protocol (UbasM) using only Ub-1, a urea-based amino sugar reagent, in a simpler protocol that requires only a 24-
h processing time. With Ub-1 alone, we observed sufficiently preserved liver tissue structure in three dimensions along with excellent preservation
of fluorophore emissions from endogenous protein reporters and lipophilic tracer dyes. This streamlined technique can be used for 3D cell lineage
tracing and fluoroprobe-based reporter gene expression to compare various experimental conditions.

METHOD SUMMARY
This study presents a simplified protocol for optically clearing murine liver tissue in only 24 h using one simple urea-based amino sugar solution
and a single incubation. This method preserves fluorescence of transgenically expressed proteins and lipophilic tracer dyes within the context
of native spatial morphology.
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Over the past several decades, optical clearing techniques have been developed to visualize large tissue volumes or small whole organ-
isms in order to evaluate structural organization and patterning of functional consequence [1–7]. Optical clearing techniques coupled
with 3D microscopy, such as confocal microscopy, light sheet fluorescence microscopy, optical projection tomography and ultrami-
croscopy [8,9], improve qualitative and quantitative evaluation of structural information that may be limited in single 2D tissue sections [8].

Protocols utilizing optical clearing agents (OCAs) reduce inherent variations in refractive index (RI) within tissues, while decreasing
light scatter in order to render them transparent [10]. The various published OCAs offer different advantages and disadvantages in
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terms of depth of clearance, preservation of fluorescent reporters, immunofluorescence compatibility, sample distortion, cost, toxicity,
handling and speed [1,11–13]; some of these protocols take 1–2 weeks to complete. These techniques have been used to optically clear
brain tissue, although other organs have also been studied [1,13–15].

Numerous challenges exist when attempting to optically clear the liver. Denser organs such as the liver typically require longer pro-
cessing times to optically clear given their greater protein content [16] and pigmentation [17,18]. While OCAs ideally preserve fluorescent
labeling [1], the emissions of commonly used fluorophores such as green fluorescent protein (GFP) are unfortunately quenched with some
of more effective clearing protocols [11,14,19–21]. Fluorescent lipophilic dyes, such as Di-I, are taken up within intact membranes [19,22–
27], making them incompatible with clearing protocols that rely heavily on delipidating detergents or organic solvents [14,28]. Never-
theless, a number of OCAs – such as BABB [29], SeeDB [30], ScaleS [12], UbasM [28], clear unobstructed brain/body imaging cocktails
and computational analysis (CUBIC) [12,18], CLARITY-electrophoretic tissue clearing (CLARITY-ETC) [3] and active CLARITY technique-
pressure related efficient and stable transfer of macromolecules into organs (ACT-PRESTO) [31] – have been used to optically clear the
liver, albeit with some limitations.

Here, we report the use of Ub-1, the initial reagent in the multistep UbasM clearing protocol. The UbasM protocol requires nearly
2 weeks of processing time. Ub-1, however, adequately clears the murine liver with preservation of transgenically expressed fluoroprobes
and infused lipophilic dyes in only 1 day. We compare the performance of Ub-1 with that of BABB and iDISCO, ScaleS, SeeDB and the
complete UbasM protocol. We show that Ub-1 is an effective and time-efficient OCA for the murine liver that is useful for cell lineage
tracing experiments.

Materials & methods
Mice
For the whole-mount 3D-imaged experiment with lipophilic dyes, we generated Prom1CreERT2-nLacZ/+;Rosa26Lsl-GFP+ mice (obtained from
R Gilbertson and Jackson Laboratory, #006148, respectively) in a C57BL/6 background [32]. At 6 weeks of age, mice were injected
intraperitoneally with tamoxifen at a dose of 200 μg/g body weight. 1 week post-injection, the mice were euthanized by carbon dioxide
asphyxiation. A midline incision was made from pubis to sternal notch, providing full exposure of the abdominal and thoracic cavity.
A right ventriculotomy was performed and approximately 20 ml phosphate-buffered saline (PBS) was infused systemically via the left
ventricle using a 25-gauge needle until effluent from the right ventricle was clear. The extrahepatic portal structures were then identified,
and the common bile duct and portal vein individually ligated using 5.0 silk suture. Two hundred microliter of Vybrant R© Di-D dye (Thermo
Fisher Scientific; 1:1 dilution in PBS), with absorbance and fluorescence emissions of 644 and 665 nm respectively, was injected into the
dome of the gallbladder, and 1 ml of Di-l (1:1 dilution in PBS) (absorbance and fluorescence emissions of 549 and 565 nm, respectively)
into the portal vein. Livers were then collected and individual lobes separated for further processing.

For the whole-mount 3D-imaged injury experiments, we generated C57BL/6 Prom1CreERT2-nLacZ+;Rosa26Lsl-tdTomato;Collagen1a1
(Col1a1)GFP mice (the latter two from Jackson Laboratory [#007914] and D Brenner, respectively) [33,34]. These triple transgenic mice
underwent bile duct ligation (BDL) or sham laparotomy as previously described [33]. Fourteen days after BDL or the sham procedure,
the mice were euthanized and the liver flushed as described above. Di-D was injected into the gallbladder with retrograde filling of the
bile duct. For standard immunofluorescence, Prom1CreERT2-nLacZ/+;Rosa26mTmG mice (Jackson Laboratory, #007676) liver lobes were col-
lected for processing 14 days after BDL or the sham operation. All animal experiments were conducted under a protocol approved by
the Children’s Hospital Los Angeles Institutional Animal Care and Use Committee.

Clearing protocols
Liver lobes were fixed in 4% paraformaldehyde at 4◦C overnight and dehydrated in 30% sucrose/PBS at 4◦C for 24 h. Tissue was em-
bedded in Tissue-Tek OCT R© compound and frozen at -80◦C until ready for clearing. Lobes were thawed in PBS. Our modified protocol
for clearing was taken from the UbasM protocol described by Chen et al. [28]. The UbasM protocol for whole organ clearing consists
of three steps: immersion in Ub-1 (25% meglumine, 25% urea, 20% 1,3,dimethyl-2-imidazolidinone, 0.2% Triton™-X100 and 29.8% water;
RI: ∼1.45) for 3–5 days at 37◦C, followed by PBS for 12 h at 4◦C, then immersion in Ub-2 at 37◦C for 3–5 days. In our modified clearing
protocol, we excluded the Ub-2 step, using only Ub-1 at 37◦C on a gentle rocker for only 24 h. Cleared lobes were then directly imaged by
confocal microscopy. Our step-by-step protocol can be viewed at dx.doi.org/10.17504/protocols.io.bfs2jnge. For comparison purposes,
liver lobes were cleared using published protocols for agents BABB (RI: ∼1.56) [35,36], iDISCO (RI: 1.56) [23,37], ScaleS (RI: 1.44) [23],
SeeDB (RI: 1.50) [24] and UbasM (RI: ∼1.47–1.48) [28].

Confocal microscopy, transmission analysis & optical density
Liver lobes were imaged on a Zeiss LSM 710 confocal system mounted on an Axio Observer.Z1 microscope equipped with a C-
Apochromat 10×/0.45 water-immersion lens (Carl Zeiss Microscopy, NY, USA). Z-stacks were acquired with 488, 561 and 633 nm laser
light to excite GFP, Di-I and tdTomato, and Di-D, respectively. The confocal pinhole was set at 1 Airy unit and the z-interval at 5 μm. 3D
volumes were rendered with Vision 4D software (arivis AG, Rostock, Germany). To collect images for optical density (OD) calculations,
the microscope was adjusted for Köhler illumination and brightfield images were acquired with 405, 458, 488, 514, 561 and 633 nm laser
light using the transmitted light detector. A z-stack of inherent tissue fluorescence was acquired with the 514-nm laser and a z-interval of
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Figure 1. Temporal comparison of optical clearing methods tested. Whole liver lobes were cleared with BABB, iDISCO, ScaleS, SeeDB, UbasM and Ub-1
reagents according to the timeline (shown in hours).

50 μm to measure specimen thickness. Thickness and percentage transmittance were quantified with FIJI Image J (NIH, MD, USA) [38].
Z-stacks were resliced to generate orthogonal projections of each specimen and the thickest part in the field of view was measured. The
observed thickness was adjusted to correct for RI mismatch by the ratio of the RI of the OCA to that of water. To measure transmittance,
regions of interest were drawn inside and outside of the tissue at one plane and average intensity was measured. OD was calculated
with the formula: OD = log(transmittance)/thickness. For transmission analysis, the mean intensity of the T-PMT channel was measured
within a circular region of interest inside the tissue at 210 μm from the edge and outside the tissue.

Morphological changes
To assess morphological changes in cleared tissue, samples were imaged using a Leica MZ 12.5 stereo microscope. Tiles were stitched
with the PhotoMerge function of Adobe Photoshop CC 2019 and perimeter measurements calculated with Image J.

Detection of fluorescent signals in liver sections
Liver lobes were collected after sham or BDL laparotomy, fixed in 4% paraformaldehyde for 1 h, dehydrated in 30% sucrose/PBS at 4◦C
overnight and stored in Tissue-Tek OCT compound. Tissue was frozen at -80◦C and sectioned by cryotome. Nuclei were counterstained
with DAPI. Samples were then imaged with a Leica DM5500B IF microscope using Leica Suite Advanced Fluorescence 6000 software
(Leica Microsystems, Wetzlar, Germany).

Statistical analyses
Statistics were performed with GraphPad Prism Version 6.05 (GraphPad, CA, USA). Analysis of variance with post-hoc Tukey test was
performed. A p-value of <0.05 was considered significant.

Results & discussion
For this study, we sought to identify an OCA that effectively clears a lobe of liver while preserving GFP and tracer dye emissions. Based
on prior published studies, we initially selected methods utilizing organic solvents (BABB and iDISCO) as well as three methods based on
aqueous solvents (Sca/eS, SeeDB and UbasM) for our initial analyses. BABB’s main reagents are benzyl alcohol and benzyl benzoate [35].
Its clearing performance is very good but its fluorescence profile (FP) and lipophilic dye compatibility are poor [28]. The iDISCO protocol
sequentially utilizes tetrahydrofuran, dichloromethane and dibenzyl ether to clear tissue [37]. iDISCO produces good tissue clearing and
is useful for immunofluorescence imaging; however, the reagents are highly noxious and require very careful handling [37]. The main
components of ScaleS are urea and sorbitol [23]. Its clearing ability is considered good, as are its FP and lipophilic dye capability [28].
SeeDB’s primary reagent is fructose [24]. It has been shown to have moderate clearing capability and good FP and Di-I compatibility [28].

In preliminary experiments with UbasM, we observed substantial clearing of the liver within 24 h with only the initial incubation
with Ub-1 reagent. We therefore included a modified ‘Ub-1 protocol’ in our comparative analysis (Figure 1). Among the protocols tested,
UbasM required the longest processing time (7 days) but was methodologically simple, involving sequential incubations in three different
solutions. The BABB, Sca/eS and SeeDB protocols required 3 days of processing but involved more steps. BABB involved progressive
dehydrating/solvent incubations requiring multiple (but simple) solution changes, with reagents handled safely in a fume hood due to
toxicity. The ScaleS and SeeDB protocols involved relatively long incubation periods. In contrast, iDISCO was relatively expeditious in
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Figure 2. Morphological changes. Contraction and expansion of samples was evaluated to assess morphological changes. Surface area
measurements were taken before and after clearing. Incubation of liver lobes in Ub-1 for 24 h resulted in less expansion than with UbasM (p = 0.021).
Error bars represent the standard deviation of measurement from nine replicates. Samples significantly different from one (no contraction or
expansion) are shown with an asterisk.
*p < 0.05; ****p < 0.0001.
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Figure 3. Gross transparency comparison between methods. Clearing performance was assessed with brightfield images before (top) and after
clearing (bottom). Macroscopic transparency can be evaluated by visualizing the grid beneath samples. Crosshatch grid is 2 × 2 mm.

terms of processing time (∼27 h) but required careful handling of a toxicity class II solvent. Of the six methods we tested, the simplest
was Ub-1, requiring just one solution with few components.

We assessed relative tissue expansion/contraction of our liver specimen with each OCA (Figure 2). Tissue distortion after clearing
could potentially deform ultramicroscopic structures or disturb existing labels due to contraction, expansion or alterations of membrane
or protein integrity [1,14,19,39]. These changes occur due to hyperhydrating, dehydrating or lipid-dissolving methods of action, though
specific aqueous reagents have been formulated to optimize tissue stability with reproducible structural anatomy and fluorescent sig-
nals [23,24,28]. The literature, however, lacks a robust quantitative comparison of microstructural integrity preservation across reagents.
Our results show that BABB and iDISCO shrunk samples due to dehydration and rendered tissues brittle. ScaleS and SeeDB maintained
tissue consistency with little expansion or contraction. UbasM expanded sample volumes to a significant degree (∼180%) and tissues
became gelatinous and tended to fall apart. The second reagent in the UbasM protocol, Ub-2, is meant to restore tissue to original vol-
umes with a closer tissue RI match [28]. However, in our experiments, we found Ub-1 used alone for 24 h resulted in less expansion than
with UbasM (p = 0.021), with less observed tissue fragility.

To evaluate clearing efficacy, liver tissue transparency was assessed qualitatively via transmitted light microscopy (Figure 3). Both
iDISCO and BABB rendered tissue very clear; however, both are known to quench endogenous fluorophore reporters because they are
organic solvents [1,11,19,39]. Although ScaleS and SeeDB have been demonstrated to preserve fluorescence and tissue structure very

Vol. 70 No. 2 C© 2021 Kasper Wang www.BioTechniques.com76



0

10

20

30

40

50%

405 457 633

100

90

80

70

60

561514488

ScaleS SeeDB PBS Ub-1 UbasM BABB iDISCO

Figure 4. Transmission analysis. Transmission was compared in cleared samples at wavelengths 405, 457, 488, 514, 561 and 563 nm. Mean intensity of
the T-PMT channel was measured within a circular region of interest inside the tissue at 210 μm from the edge and just outside the tissue. Error bars
represent the standard deviation of measurement from three or two replicates for iDISCO.

well [23,24], they cleared less effectively. UbasM and Ub-1 exhibited effective clearing in our comparison; additionally, being aqueous
reagents, they were likely to preserve fluorescent protein signaling.

Next, we analyzed the fraction of light transmission of the cleared tissues at different wavelengths (Figure 4) and observed that
UbasM had the highest transmission of all agents tested. The transmission of Ub-1-cleared tissue paralleled that of UbasM but was
slightly lower across all wavelengths tested. Although Ub-1’s transmission was slightly less than with UbasM, the Ub-1 procedure saves
time in processing (1 week vs 1 day). For the three protocols that had the highest measured intensity, we performed OD.

We carried out OD analyses for BABB, UbasM and Ub-1, each of which performed well in terms of light transmission (Figure 5). The
protocol that rendered the clearest (least optically dense) tissue across all wavelengths was UbasM; Ub-1 achieved a similar OD profile
to UbasM in a much shorter time. BABB-cleared tissue was less clear at the blue end of the visible spectrum (405, 458 and 488 nm) but
was similar to UbasM and Ub-1 at longer wavelengths (561 and 633 nm). Considering the popularity of BABB as an effective OCA, and
that it has been particularly recommended for use in liver [29,30], these results were very promising for UbasM and Ub-1.

To assess preservation of protein and organic dye fluorescence by our modified Ub-1 clearing technique, we utilized
Prom1CreERT2-nLacZ;Rosa26Lsl-GFP mice injected with tamoxifen to permanently label Prom1-expressing hepatic progenitor cells (HPCs)
and their progeny with GFP. One week later, we injected lipophilic tracers (Di-I and Di-D) into the gallbladder and portal vein in order to
label the intrahepatic bile ducts and the sinusoidal endothelium, respectively. We then collected the liver lobes, performed Ub-1 clearing
and imaged the cleared tissue with confocal microscopy. Using high-resolution 3D rendering of confocal z-stack images, we were able to
visualize the GFP+ labeling, likely only in quiescent Prom1-expressing HPCs under basal noninjury conditions, either adjacent to or over-
laid with Di-D-labeled endothelium of intrahepatic bile ducts (Figure 6 & Supplementary Video 1: https://figshare.com/articles/media/Ub-
1 optical clearing with DiD DiI and GFP preservation in the murine liver /12219950). We also observed uptake of Di-I in the pericentral
but not periportal sinusoidal endothelium. Our observations were consistent with prior findings of the proximity of Prom1-expressing
HPCs to biliary ductular cells [32,40]. The positive uptake of lipophilic dyes depicting intact branching ductular and vascular structures
also emphasized that Ub-1 preserves membrane integrity. Our findings ultimately demonstrate the preservation of fluorescent labeling,
including GFP and lipophilic dyes, following clearing by Ub-1.

To further assess Ub-1’s applicability, we performed lineage tracing of fluorescently labeled cells using both traditional 2D tissue
section histology and 3D microscopy after clearing to assess tissue structure and fluorescent labeling in a cholestatic injury model.
Liver sections from Prom1CreERT2-nLacZ/+;Rosa26mTmG mice that underwent BDL or the sham operation were fluorescently stained and
imaged by widefield microscopy. For comparison, Prom1CreERT2-nLacZ;Rosa26Lsl-tdTomato;Col1a1GFP mice also underwent BDL or the sham
operation. At 2 weeks, Di-D was injected into the intrahepatic biliary tree to visualize the biliary system; liver lobes were then cleared
and imaged by confocal microscopy. In 2D tissue sections, BDL livers compared with sham demonstrated increased expansion of GFP+

Prom1 HPC lineage within periportal regions (Figure 7A & B) [32,40]. Using Ub-1 to obtain greater 3D resolution, cleared livers demon-
strated marked expansion of tdTomato+ Prom1-expressing cells adjacent to as well as colocalized with the Di-D+ biliary tree (Figure 8A
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Figure 6. Di-D, Di-I and green fluorescent protein preservation in the normal liver from tamoxifen-induced Prom1CreERT2-nLacZ/+;Rosa26Lsl-GFP cleared
with Ub-1. Di-D labels biliary epithelium (red), Di-I labels venous vasculature (blue) and Prom-1-expressing hepatic progenitor cells (indicated by
arrowheads) are labeled with GFP (green). CV indicates central vein. Images accompany 3D video rendered by confocal microscopy (Supplementary
Video 1). Scale bar = 100 μm.
CV: Central vein; GFP: Green fluorescent protein.

& B & Supplementary Video 2A: https://figshare.com/articles/media/Ub-1 optical clearing with Col1a1GFP tdTtomato and DiD preserv
ation in sham condition in the murine liver /12219953 & Supplemental Video 2B: https://figshare.com/articles/media/Ub-1 optical c
learing with Col1a1GFP tdTtomato and DiD preservation in bile duct ligation condition in the murine liver /12219959). There was no
observed colocalization of tdTomato with the expanded population of GFP+ Col1a1-expressing myofibroblasts. Ub-1 combined with 3D
microscopy therefore enabled successful appreciation of the volume of Prom1 HPC progeny expansion, and their spatial proximity to
myofibroblasts and intrahepatic biliary tree, in a comprehensive 3D perspective.

We conclude that our protocol using Ub-1 is favorable for use in optically clearing the murine liver, achieving adequate light transmis-
sion with adequate tissue preservation for the purpose of visualizing transgenically expressed reporter fluoroprobes and exogenously
introduced lipophilic dyes. This protocol offers the advantage of simplicity in terms of solution preparation and minimal exchanges
of incubation solutions. Moreover, our Ub-1 protocol accomplishes this in only 24 h. Further efforts are needed to determine whether
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Figure 7. Detection of fluorescence emissions in liver sections from tamoxifen-induced Prom1Cr-ERT2-nLacZ/+;Rosa26mTmG mice that underwent bile duct
ligation or sham operation. Murine liver sections prepared from (A) sham and (B) bile duct ligation were used for detection of GFP+ Prom1-expressing
hepatic progenitor cells (green, indicated by arrowheads). All cells that are not GFP+ are tdTomato+ (red). Nuclei were counterstained with DAPI
(blue). Scale bar = 100 μm.
GFP: Green fluorescent protein; PV: Portal vein.
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Figure 8. Ub-1 preserves emission of Col1a1-green fluorescent protein, tdTomato and Di-D tracer dye in sham and bile duct ligation condition in the
livers of tamoxifen-induced Prom1CreERT2-nLacZ;Rosa26Lsl-tdTomato;Col1a1GFP mice. (A) Di-D-labeled bile ducts (blue) with sparse tdTomato-labeled
Prom-1-expressing HPCs (red, indicated by arrowheads) and GFP-labeled Col1a1-expressing cells (green) proximally in the sham condition. (B)
Di-D-labeled biliary tree (blue) shown with proliferative tdTomato-labeled Prom-1-expressing cells (red, indicated by arrowheads) and GFP-labeled
Col1a1-expressing cells (green) in the bile duct ligation condition.
Images accompany 3D video rendered by confocal microscopy (Supplementary Video 2A & B). Scale bar = 100 μm.
GFP: Green fluorescent protein; HPC: Hepatic progenitor cell.

immunofluorescence labeling of antigens is possible, as is the case with iDISCO. Our technique provides an adjunct to visualizing cell
lineage tracing in the liver in three dimensions.

Future perspective
An explosion of advances in optical tissue clearing and maturation of 3D imaging technologies has occurred in recent years. Simulta-
neously, the computing power necessary to visualize large 3D volumes at high resolution has become accessible to mainstream users.
The nexus of modern clearing, imaging and computing technologies has given researchers unprecedented, complete views of whole
tissues, organs and entire organisms, leading to insights that may be impossible to gain from traditional 2D imaging approaches such
as tissue sectioning [14–16,41]. Imaging technologies, data processing and quantitative analysis capabilities will continue to improve,
offering better visualization and quantification of data for users to draw insights from [42–44]. For example, OCAs have already enabled
the discovery of a previously unknown subpleural acinar pattern in the lungs that has implications in recoil and tethering forces relevant
in disease [45]. Efforts will evolve toward ultimately mapping human tissues to single-cell resolution. Emerging tools and techniques hold
promise for observing developing processes at the molecular and cellular function level, and potentially guiding treatment models. Liu
et al. [46] used OCAs with optical coherence tomography angiography to characterize port wine stain in human skin, facilitating treatment
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decisions. Cremer et al. [47] used whole-mount clearing and fluorescent coronary angiography to discover diminished inflammation in
a recurrent myocardial infarction mouse model, with the potential implication that post-infarction anti-inflammatory medications may
have diminished utility as therapeutic interventions.

We present our approach for liver tissue clearing with the aim of accelerating discoveries that depend on knowledge about the 3D
organization of not only the liver, but a variety of other organs. Because Ub-1 successfully clears liver tissue – a challenging organ to
clear [12,16,28] – with excellent FP, we believe it can be used to clear other tissues for 3D imaging. Our protocol is likely compatible with
immunofluorescence labeling, but for the purposes of this report, we did not successfully accomplish this. Future progress will likely
lie in data/image capture technology which may enable less well-cleared tissues to still provide fluorescence information for digitized
imaging purposes.

Supplementary data
To view the supplementary data that accompany this paper please visit the journal website at: www.future-science.com/doi/suppl/10.
2144/btn-2020-0063
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