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ABSTRACT
Several factors are necessary for the growth and 

survival of healthy follicles in the folliculogenesis process, 
including endocrine and paracrine glands, and a regulated 
ratio of granulosa cells to oocytes. One of the most powerful 
methods for studying folliculogenesis is the culture 
of ovarian follicles and oogenesis within a completely 
controlled environment. Follicle culture systems are highly 
developed and are rapidly evolving. However, the methods 
for separating the follicles, the cultivation techniques, the 
culture medium, and the dietary and hormonal supplements 
vary depending on the species studied. This study made a 
literature review of follicular culture techniques, and we 
investigated the heterogeneity among these key variables 
in follicular culture.
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INTRODUCTION
The ovaries produce steroid hormones as well as fer-

tilized eggs. The ovarian function unit is the follicle. Each 
follicle contains one egg surrounded by granulosa and The-
ca cells (Edson et al., 2009). Folliculogenesis starts with 
the transformation of primordial follicles into primary fol-
licles and the transformation of granulosa cells into cube 
cells. Granulosa cells proliferate, the oocyte grows, and 
a secondary follicle takes shape. Theca cells produce an-
drogens. They differentiate outside the basal membrane, 
and the follicles are dependent on gonadotropins. When 
a cavity filled with follicular fluid forms, this is called the 
antral follicle. Depending on the species, folliculogenesis 
completes one or more follicles and ovulation occurs, but 
the remaining follicles are involved in the growth process, 
and suffer from atresia (Mesbah et al., 2018; Green & Shi-
kanov, 2016; West et al., 2007; Bahmanpour et al., 2020). 
Folliculogenesis and oogenesis are controlled by compli-
cated paracrine, autocrine and juxtacrine genetic factors, 
and are vital to sustainable fertility (Dehghani et al., 2018; 
Matzuk & Burns, 2012; Richards & Ascoli, 2018) (Figure 
1).

A number of in vitro follicular culture systems have 
been developed to preserve the reproductive ability of 
threatened species or iatrogenic infertility in women (Marin 
et al., 2018). In addition, it is used as a method to iden-
tify the toxicity of medications and undesirable fertility 
chemicals in vitro (Xu et al., 2015a). There is now a broad 
spectrum of culture techniques. Here we investigated the 
follicular culture variables in detail. Including species dif-
ferences, age, isolation techniques, two-dimensional (2D) 
vs. three-dimensional (3D) systems, cultivation medium 
and hormonal supplementation.

Follicle culture systems in different species
Follicle cultures occur in a variety of species. Oocyte 

growth rate and follicle size (Griffin et al., 2006) vary be-
tween species (Pepling et al., 2010). Follicles are usually 
classified according to diameter. The term “preantral fol-
licles” is used to describe their different phases (Mehra-
bianfar et al., 2020). Follicles produced in vitro are small 
compared to follicles produced in vivo (Xiao et al., 2015; 
Rodrigues et al., 2015). Rodents and mammals are the 
most prevalent models, approximately one-fifth of the 
studies use human follicles (Xiao et al., 2015; Telfer et 
al., 2008), and other mammalian follicles, like the Rhesus 
monkey (Rodrigues et al., 2015; Xu et al., 2009a; Peluffo 
et al., 2010; Xu et al., 2011a; Hornick et al., 2012; Xu et 
al., 2013; Xu et al., 2015b; Xu et al., 2018; Baba et al., 
2017); baboon (Xu et al., 2011b); bovine (Yamamoto et al., 
1999; Rossetto et al., 2013a;b; Araújo et al., 2015); ovine 
(Arunakumari et al., 2010; Muruvi et al., 2005); caprine 
(Rossetto et al., 2013a; Ferreira et al., 2018; Silva et al., 
2015; Magalhães et al., 2011); swine (Hirao et al., 1994; 
Wu et al., 2001); cats (Songsasen et al., 2017; Thongkitti-
dilok et al., 2018); dogs (Songsasen et al., 2011); horses 
(Haag et al., 2013); wildcats (Wiedemann et al., 2013).

The main reason for the differences between species is 
the difference in follicular culture outcomes. For instance, 
the diameter of the follicles in large mammal species in 
the preantral stage is much larger than in rodents. In the 

Figure 1. Key steps in developing follicles and oocytes.
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pre-ovulation stage, adult mouse follicles have a diameter 
of 420 μm; ovine 600 μm; 750 microns in goats; swine 
800 μm and 20 000-23 000 μm in cattle and humans; re-
spectively (Simon et al., 2020).

Folliculogenesis and ovulation stages are also different 
from one species to another. For example, mice follicles 
reach their maximum diameter within 19 days (Hoage & 
Cameron, 1976); but large mammals require months (Scar-
amuzzi et al., 2011). Because the growth stages of the fol-
licles in large mammals are long, the presence of nutrients, 
gas exchange, and hormonal needs are the main challenges 
of cultivation (Telfer & Zelinski, 2013; West et al., 2007). 
Follicle structures vary from species to species as well. For 
instance, in large mammals, the theca cellular layer is thick-
er and affects the exchange of food and gas. Follicle culture 
and live birth have occurred in mice (Xu et al., 2006a;b). 
However, the follicle culture of rats (Daniel et al., 1989), 
pigs (Wu et al., 2001), buffaloes (Manjunatha et al., 2007), 
sheep (Arunakumari et al., 2010), goats (Magalhães et al., 
2011), and Rhesus monkeys (Peluffo et al., 2012) were suc-
cessful in pre-implantation after fertilization. In vitro oocyte 
maturation (IVM) have also been observed in rhesus mon-
key (Peluffo et al., 2010) and Baboon (Xu et al., 2011b) 
follicles. In general, for different reasons, particular species 
have been used in different follicular culture studies.

Age and growth stages for follicle culture in dif-
ferent species

In most rodent follicle culture studies, prepubertal follicles 
have been used, and in less than 30% of adult follicles (Diaz et 
al., 2007; Simon et al., 2020). Young animals of reproductive 
age have been used in studies of mammalian follicles such 
as sheep (Thomas et al., 2003; Arunakumari et al., 2010), 
goats (Ferreira et al., 2018; Magalhães et al., 2011), and cat-
tle (Gutierrez et al., 2000; Itoh et al., 2002; Araújo et al., 
2014a;b; 2015). Prepubertal follicles and smaller follicles have 
been used to evaluate the use of FSH supplementation in cattle 
and sheep (Wandji et al., 1996; Cecconi et al., 1999; Muruvi et 
al., 2005). Prepubertal follicles were used in comparison to the 
follicles of young and adult goats in 2D or 3D culture system 
(Leal et al., 2018). Prepubertal follicles were used to assess 
whether smaller preantral follicles could develop into antral 
follicles in vitro (Wu et al., 2001). In dogs, different stages of 
the estrus (Songsasen et al., 2011), and in marsupials (Na-
tion & Selwood, 2009) were used in follicular cultures. In the 
rhesus monkey, the follicles used were primarily of young an-
imals of reproductive age (Rodrigues et al., 2015; Baba et al., 
2017; Xu et al., 2018). Small adult follicles were cultivated in 
adult baboons and were capable of producing live embryos 
(Xu et al., 2011b). Follicular culture studies have been con-
ducted on different species at different ages and cycle stages; 
and demonstrate that these factors are chosen based on study 
objectives and ease of access to ovarian tissue.

Procedures for isolating the follicle
The separation of the follicle from the ovary tissue is 

the first step in follicle cultivation. Isolated follicles should 
have a similar morphology (Demeestere et al., 2002). 
Generally, the techniques of separating the follicles from 
the ovarian tissue include enzymatic, mechanical, or both. 
In the enzymatic separation of the follicles, proteolytic 
extracellular matrix (ECM) digestion such as collagenase, 
deoxyribonucleic, or liberase is utilized. The number of fol-
licles obtained is typically higher in the enzyme digestion 
method and in compared to mechanical separation meth-
ods, they require less time, particularly for fibrous tissues 
in house mammals (Araújo et al., 2014a;b). However, in 
the enzyme digestion method, the follicles are more likely 
to be damaged. In mice, for example, collagenase leads 
to the production of preantral granulosa cell-oocyte com-
plexes (PGOCs) and cell-oocyte complexes (COCs) from 

ovarian tissues, rather than whole follicles. In the mechan-
ical separation method, special needles are used to sepa-
rate the follicles of the ovarian stroma or tissue grinders, 
homogenizers, and cell strainers (Songsasen et al., 2017; 
Mahalingam et al., 2016a;b; Craig et al., 2010). The me-
chanical separation method results in less damage to the 
follicle than the enzyme method, and provides improved 
protection to the theca layer and follicular morphology 
(Araújo et al., 2014a;b), but the worst problem is that this 
method takes a lot of time (Demeestere et al., 2002). Usu-
ally, the selection of the isolating method depends on the 
follicular stage and the species used in the study. General-
ly, a short enzymatic digestion step and mechanical sepa-
ration are used to maintain the structure of the follicle and 
obtain the maximum number of follicles (Table 1).

Culture systems
Follicular culture systems are known as two-dimensional 

(2D) or three-dimensional (3D) (Figure 2). In 2D cultures, 
the follicles are static, but in 3D cultures, the follicles float in 
biomaterial matter (West et al., 2007). 2D-systems include 
the droplet method, substrate method (ECM coating), and 
membrane insert systems. In general, the 2D-method is used 
for small culturing follicles, hormonal studies, and gene ex-
pression studies. It is difficult to evaluate folliculogenesis and 
oocyte maturation in the 2D-method, because during oocyte 
proliferation, granulosa cells migrate to the surface of the cul-
ture medium (Kreeger et al., 2006). Logout of the communi-
cation between follicular cells stops follicular growth, inhibits 
ovulation, and meiosis in the egg (Green & Shikanov, 2016; 
West et al., 2007). In general, the follicles may be maintained 
for a short period of time in the 2D-culture.

A - 2D-culture systems
1. Droplet culture
Within the droplet system, each follicle is implanted into 

a drop of culture medium, and each drop is covered with oil. 
There are drop methods for different stages and different 
species including mice (Adam et al., 2004; Wycherley et 
al., 2004; Adriaens et al., 2004), Rhesus monkey (Peluffo 
et al., 2012), sheep (Arunakumari et al., 2010), marsupial 
(Nation & Selwood, 2009), goat (Rossetto et al., 2013a; 
Ferreira et al., 2018) and cows (Araújo et al., 2014a;b) 
have been used. It typically takes about 6-18 days for the 
droplet method (Nation & Selwood, 2009; Arunakumari et 
al., 2010), A18 (Ferreira et al., 2018; Magalhães et al., 
2011) and 32 (Araújo et al., 2014a;b) (Figure 2-A).

2 - 2D-culture
In the two-dimensional method, the follicles are grown 

directly on a surface covered by ECM compounds, such as 
collagen, laminin, or Matrigel. ECM plays an important role in 
folliculogenesis and affects cellular behavior, differentiation, 
and secretory activity (Desai et al., 2010). Collagen com-
pounds have elasticity properties and contribute to intercellu-
lar communication, while Matrigel promotes cell proliferation 
and differentiation (Belli et al., 2012). Larger follicles such as 
preantral and antral follicles, PGOCs, and COCs have been 
used more in systems with 2D plastic substrates (Zhou & 
Flaws, 2017; Xu et al., 2018; Araújo et al., 2015; Patel et al., 
2016; Mahalingam et al., 2016a;b; Peluffo et al., 2010). In 
large mammals, the follicles are larger and require more time 
in the culture environment to grow. Thus, the growing time 
of larger follicles may be reduced (Araújo et al., 2014a;b), 
and the duration of the culture varies in hours and days. For 
example, some studies have used the method to grow mam-
malian follicles such as those of Rhesus and cattle (Xu et al., 
2018; Gutierrez et al., 2000). A fibronectin-coated plate was 
also used to culture the primordial and primary follicles of 
sheep. The growth of follicles was not much different from 
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Isolation Species Follicle - Stage References
E
n
zy

m
at

ic
Bovine Preantral (60–179µm) Wandji et al., 1996

Canine Pre-and early antral (100–500μm) Songsasen et al., 2011

Human

Preantral (90–240µm) Yuan & Guidice, 1999

Immature and secondary (176.46±7.20µm) Laronda et al., 2014

Class I and II (90µm and <90µm) Roy & Treacy, 1993

Primordial/primary follicle (≤60µm)
Primary/early secondary follicle (>60–120µm) 
Secondary (>120–250µm)

Yin et al., 2016

Small preantral follicles (42.98±9.06µm) Amorim et al., 2009

Murine

PGOC
Eppig, 1991
Diaz et al., 2007
O’Brien et al., 2003

PGOC and COC Sugiura et al., 2010
Pangas et al., 2003

Secondary (100–130μm) Desai et al., 2012

Small follicles Torrance et al., 1989

Ovine Primordial and primary (40–60µm) Muruvi et al., 2005

M
ec

h
an

ic
al

Bovine

Preantral (≥190µm) Araújo et al., 2015

Preantral (166±2.15µm) Gutierrez et al., 2000

Preantral (190.0±6.6µm) Araújo et al., 2014

Secondary (268.6±4.5μm) Antonino et al., 2019

Preantral (145–170µm) Itoh et al., 2002

Secondary (≥150µm) Rossetto et al., 2013a

Caprine

Secondary (≥150µm) Rossetto et al., 2013a

Preantral (>200µm) Magalhães et al., 2011

Preantral and early antral (~250μm, ~350µm) Ferreira et al., 2016

Preantral (150–250μm) Silva et al., 2015

Human

Secondary (≥100µm) McLaughlin et al., 2014

Secondary (100–150µm) McLaughlin et al., 2018

Preantral (66–132µm) Telfer et al., 2008

Multi-layered secondary (165.8±32.3μm) Xiao et al., 2015

Preantral (>120µm) Abir et al., 1997

Marsupial Primordial (63.6–215.5µm) Nation & Selwood, 2009

Murine

Secondary (111–137μm) Jin et al., 2010

Preantral (85–115μm) Hornick et al., 2013

Two-layered: (100–130μm); multi-layered: (150–180μm) Kreeger et al., 2005; 2006

Two-layered secondary (100–130μm)
Shikanov et al., 2009
 Xu et al., 2006b
 Mainigi et al., 2011

Primary (60–80mm); two-layered (90–100µm) Tagler et al., 2014

Secondary (~90, 100–105, or 120μm) Tingen et al., 2011

Secondary (180–210µm) Skory et al., 2015

COC Buccione et al., 1990

Antral (360.94±16.1µm) Craig et al., 2010

Antral (200–350µm) Craig et al., 2013

Antral (250–400µm)

Hannon et al., 2015
Hannon et al., 2015
Peretz & Flaws, 2013
Zhou & Flaws, 2017
Patel et al., 2016
Peretz et al., 2013

  Table 1. Summary of follicular isolation methods in follicular culture studies.
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Antral (225–400µm) Mahalingam et al., 2016a; 2016b

Antral (>200 µm) Miller et al., 2005

Preantral (180–240µm) Wycherley et al., 2004

Preantral (150–200µm) Adam et al., 2004

PGOC Eppig, 1980

Early preantral (100 and 130µm) Adriaens et al., 2004

Preantral (150-160µm) Heise et al., 2005

Preantral (140-170µm) Heise et al., 2009

Ovine

Preantral small (130±10µm)
Preantral medium (185±14µm) 
Preantral large (250±10µm)

Cecconi et al., 1999

Preantral (161±2μm) Thomas et al., 2003

Preantral (250–400µm) Arunakumari et al., 2010

Porcine Preantral (296±9µm) Wu et al., 2001

Rhesus

Secondary (100–300µm) Xu et al., 2009a

COC Peluffo et al., 2012

Small antral (≥0.5mm) Peluffo et al., 2013

Secondary (140–225μm) Xu et al., 2018

Secondary (125–250μm) Baba et al., 2017

Secondary (125–225µm) Rodrigues et al., 2015

Secondary (125–250µm) Ting et al., 2015

Primary (80–120µm)
secondary (125–225µm) Xu et al., 2013

Secondary (130–220µm) Xu et al., 2015b

Feline
Secondary (100–200µm) Songsasen et al., 2017

Secondary (208±7.9µm diameter)
Early antral (329.8±5.4µm) Thongkittidilok et al., 2018

C
om

b
in

ed
 E

n
zy

m
at

ic
/M

ec
h
an

ic
al

Baboon Preantral (270–300µm) Xu et al., 2011b

Human

Secondary (74–260µm) Skory et al., 2015

Primary (47.0±8.2µm) Abir et al., 1999

Preantral (190±30µm) Aziz et al., 2017

Secondary (~170µm) Xu et al., 2009b

Murine

Preantral (~60–69µm) Oktem & Oktay, 2007

Preantral follicles and COC Vanderhyden et al., 1992

Immature secondary (140–150μm) Shikanov et al., 2011

Multi-layered secondary (150–180μm) Xu et al., 2006a

Porcine Preantral (200–300µm) Hirao et al., 1994

Rhesus
COC Peluffo et al., 2010

Secondary (125–225μm) Xu et al., 2011a
Xu et al., 2010

Continued Table 1.

the follicles cultured in fibronectin-free plates (Muruvi et al., 
2005) (Figure 2B).

3 - Membrane insert culture
Membrane insertion systems function in the same way 

as 2D-systems, and may contain ECM protein coatings, but 
in this method, the follicles are in an insert within a well 
of a culture plate and immersed in the environment. The 
mice follicles were cultured using a membrane inserting 
system, which improved the growth and ovulation of the 

follicles (Adam et al., 2004). For the first time, human fol-
licles were cultured with a membrane insert system for 4 
weeks. COC culture studies using membranes coated with 
ECM proteins (Sugiura et al., 2010) were also reported. 
Other 2D methods of follicle culture, include the use of 
glass coverslips coated with various ECM components. Al-
though the earliest methods for cultivating ovarian follicles 
are 2D-systems, the 2D-methods damages the structure 
of the follicles, so that it is better suited for short-term 
cultures and small follicles (Figure 2C).
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Figure 2. Schematic overview of 2D, 3D and multi-stage culture systems.

B - 3D-culture systems
3D-culture acts as in vivo and is adapted to long-term 

follicle culture. A major disadvantage of two-dimensional sys-
tems is that it damages the structure of the follicle surround-
ed by granulosa cells. This system is problematic for the cul-
ture of large mammalian follicles, which require culture and 
long-term communication among cells. In a 3D culture sys-
tem, the structure of the intact follicles retains, in which the 
follicles are surrounded by biomaterials or have little access 
to a substrate. There are different types of 3D-systems, some 
using different scaffolding and encapsulation follicles, others 
using floating culture, or using in situ culture. To encapsu-
late the follicles, several matrices are used, which, in vivo, 
creates a very restricted environment, similar to that of the 
ovary and maintains the follicular structure and intercellular 
communication (Belli et al., 2012). Matrix compounds include 
natural substances such as collagen, alginate, or matrigel, or 
synthetic compounds such as polyethylene glycol (PEG) hy-
drogels that bind to protein-sensitive peptides (Figure 2).

1. Suspension culture
In this 3D-system, there is no scaffold and the structure 

of the follicles is protected by a system of rolls, inversion, 
or magnetic grains (Nation & Selwood, 2009; Wycherley et 
al., 2004). In marsupials, using inverted droplets, mature 
oocytes were obtained, which were more effective than fol-
licles cultivated in different systems such as vertical drop-
lets and roller systems. In tubes containing polypropylene, 
rat follicles produced eggs capable of performing meiosis, 

and were fertilized with intra cytoplasmic sperm injection 
(ICSI). Using a 3D magnetic system, cattle follicles pro-
duced live eggs that resumed meiosis after in vitro mat-
uration (IVM) (Antonino et al., 2019) and follicle survival 
was higher than in the 2D-system (Figure 2D).

2. Encapsulated culture
In these culture systems, a biocompatible substance such 

as agar and collagen surround the follicle and protects its 
3D structure. These materials are placed in layers on culture 
sheets to insert the follicles between these layers. In the first 
report of using the collagen gel matrix in the three-dimen-
sional method, due to the stiffness of the matrix, no antrum 
was formed. Other studies have used collagen and agar ma-
trices to grow follicles in mice (Vanderhyden et al., 1992) and 
pigs (Hirao et al., 1994), which, in comparison to 2D-systems, 
has maintained follicle structure and extended culture. In hu-
man studies, the use of collagen and agar in the 3D system 
made it possible to maintain the structure of the follicle and 
the egg for only 24 to 120 hours.

Brown algae are capable of producing a hydrogel called 
alginate that is biocompatible and can be used as a ma-
trix in follicle culture (Belli et al., 2012). Alginate was first 
used in the culture of mice COCs. The results showed that 
alginate maintains intercellular communication, the prolif-
eration of granulosa cells, and increases egg volume. Usu-
ally, ovarian cortex follicles move from the hard medulla 
to softer layers as they develop. Results of studies have 
demonstrated that concentrated alginate contributes to 
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the growth of mice primary follicles, but it is not suitable 
for the development of larger follicles and the formation 
of antrum (Xu et al., 2006a;b; Skory et al., 2015). Also, 
studies of follicular culture in a 3D-system containing algi-
nate have shown that low levels of alginate contribute to 
follicular growth, but, concentrated alginate is appropriate 
for hormone production (Songsasen et al., 2011).

Alginate encapsulation was used in other mammals, such 
as the Rhesus monkey, which could produce embryos at the 
cleavage stage (Xu et al., 2011a). By culturing the follicles in 
the combination system, the first mature human metaphase 
II (MII) oocytes were produced. First, the preantral follicles 
were cultured in 0.5% alginate for 10-15 days, and then the 
antral follicles were placed in low attachment plates for up 
to 40 days (Xiao et al., 2015). Supplements can impact 2D 
and 3D-culture systems. For example, one study found that 
vascular endothelium growth factor (VEGF) contributes to the 
growth of bovine secondary follicles in the 2D-system, and 
the growth hormone (GH) induces estradiol production in the 
3D-alginate system (Araújo et al., 2014a;b). In a study using 
the caprine model, the encapsulation of 3D alginate was com-
pared to the 2D substrate system that increased follicular sur-
vival and increased the number of eggs appropriate for IVM 
and IVF in the 3D-system. But in the 2D-culture, the follicles 
produced higher levels of progesterone.

Using the combination of alginate and fibrin, a dynam-
ic permeable fibrin-alginate (IFN) network was developed 
(Shikanov et al., 2009). Within this matrix, follicular pro-
teases degrade fibrin, reducing alginate concentration and 
matrix rigidity. This matrix mimics the internal environ-
ment of the ovary, as in ovarian tissue, follicles smaller 
than the hard cortex move into the soft marrow (Shikanov 
et al., 2011). With IFN in rodents, high meiotic follicles 
were developed (Jin et al., 2010) but in monkeys, it did not 
increase secondary follicle production. Embryonic stromal 
cells and fibroblasts (MEF) in mice were also grown with 
alginate-encapsulated follicles (Tagler et al., 2014). Ovar-
ian stromal cells are involved in the growth, survival, and 
production of androgens in primary and secondary mice 
follicles. Culture of MEF cells with primary follicles contain-
ing alginate enhanced growth but decreased cell survival. 
Matrigel matrix is also used in three-dimensional culture, 
which in addition to maintaining the structure of the folli-
cle, creates a protein-rich environment for folliculogenesis. 

In matrigel, with fibrin and alginate, baboon follicles 
were enclosed, grew, and were able to produce mature 
eggs. The hyaluronan matrix was also used to grow folli-
cles (Belli et al., 2012). The hyaluronan-ECM (no alginate) 
matrix on rat follicles increased follicular survival and in-
creased the steroid hormone (Desai et al., 2012). The syn-
thetic matrix of polyethylene glycol (PEG) acts like fibrin 
and is degraded by follicular proteases. Using the PEG ma-
trix increased follicle growth in mouse models by 17 times 
(Shikanov et al., 2011) (Figure 2E).

3. Multi-step culture
Multi-step methods have been developed for follicle 

growth and the creation of a more similar physiological envi-
ronment that primordial, primary, and early-secondary stage 
follicles can be cultured. First, the small follicles are grown 
in situ in the ovarian natural environment, and then the cul-
tured follicles are separated from this tissue (McLaughlin et 
al., 2014; Jin et al., 2010; McLaughlin et al., 2018; Telfer et 
al., 2008). This method helps grow human follicles until they 
become mature gametes. For example, in one study using 
human ovarian tissue, secondary follicles were isolated and 
encapsulated in alginate. As the follicles grew and the an-
trum formed, they were released from the alginate matrix 
and transferred to low attachment plates for 40 days. Which 
turned human follicles into mature eggs (Xiao et al., 2015). 

In the next study, an alternative multistage method was used. 
In the first stage, cortical strips were cultured for 8 days. Sec-
ondly, the follicles were cultured for 8 days, and the COC cells 
were cultured on the membranes for 4 more days (Step 3). In 
the fourth stage, eggs larger than 100 μm were selected for 
IVM (McLaughlin et al., 2018). Also, a multi-step method was 
used for follicle growth in rodents. Generally, these systems 
have been very useful for long-term cultures of large mam-
mal follicles. Therefore, the introduction of microfluidic sys-
tems or other natural scaffolding can be very useful in healthy 
in vitro follicles (Gargus et al., 2020) (Figure 2F).

Media composition and supplements
To grow the follicles, it is necessary to enrich the grow-

ing medium with nutrients, growth supplements, and hor-
mone compounds. The selected culture medium should 
protect the growth of follicles and the maturation of eggs. 
As a result, the main media used in follicular culture typi-
cally include minimal essential medium (MEM), Dulbecco’s 
modified eagle medium (DMEM), Waymouth’s medium, 
McCoy’s 5a medium), balanced salt solutions (Earle’s bal-
anced salt solution) (EBSS)), or mixed media (DMEM + 
F12, α-MEM + Glutamax).

Also, supplements are added to the follicular culture 
medium. For example, glucose as a source of carbon en-
ergy (Nation & Selwood, 2009), L-glutamine or fetuin as a 
source of amino acids (Asadi et al., 2017); ascorbic acid 
for reducing apoptosis and maintaining follicular structure, 
penicillin, streptomycin, and kanamycin as antibiotics (De-
meestere et al., 2005) is used. Additionally, for the growth 
of follicles in vitro from the combination of ITS (insulin, 
transferrin, selenium) to increase the absorption of amino 
acids (Abedelahi et al., 2008). Protein supplements such 
as fetal calf serum (FCS), fetal bovine serum (FBS), and 
bovine serum albumin (BSA) are used in culture medium. 
Results from a mice model study showed that over a 10-
day period, α-MEM, DMEM, and DMEM + F12 media had 
a better effect on antrum formation, follicle growth than 
Waymouth, M199, IMDM, and RPM1640. Also resulted in 
an increase in the number of MII oocytes (Simon et al., 
2020). For culturing the human ovarian cortical tissue over 
a 10-day period, the MEM medium enriched with 10% 
human serum and 300 mIU/mL FSH may have a greater 
effect on follicular growth than the Waymouth and EBSS 
media (Wright et al., 1999). In another study, TCM-199 
enriched with 10 ng/ml EGF was used over a 7-day period 
and had a better effect on the growth of goat and sheep 
follicles than α-MEM with the EMF (Andrade et al., 2014).

The TCM199 medium also increased the rate of an-
trum formation from bovine preantral follicles, relative to 
a-MEM or McCoy 5a medium (Rossetto et al., 2013a;b). 
Another factor affecting folliculogenesis is oxygen stress. 
Oxygen 5% is near the physiological oxygen levels. High 
oxygen stresses may produce reactive oxygen radicals 
(ROS) with cytotoxic effects (Rajabi et al., 2018). In one 
study, oxygen stress was induced in the follicle culture 
environment in rats. Which resulted in the production of 
mature eggs with higher performance in terms of stat-
ic control. The rate of antrum formation in culture with 
5% oxygen from caprine, ovine, and bovine (Gigli et al., 
2006) follicles had more than 20% oxygen. Also, the cul-
ture of dog COCs in 5% oxygen decreased cell apopto-
sis compared to that in 20% oxygen (Silva et al., 2009). 
Low-oxygen stress along with high FSH and high fetuin 
in rhesus monkey, increased follicle growth, and antrum 
formation (Xu et al., 2011a). In general, these studies 
show that the selection of a suitable culture medium for 
follicle growth depends on the species. Furthermore, the 
protective effect of oxygen is much more important at the 
physiological level (Table 2).
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Culture Medium Species Follicle Stage References

Whitten’s medium Murine PGOC Eppig, 1980

Bicarbonate buffered M199 Murine Small follicles Torrance et al., 1989

Waymouth’s medium

Murine PGOC Eppig, 1991
O’Brien et al., 2003

Human Immature Laronda et al., 2014

Ovine Primordial and primary (40–60µm) Muruvi et al., 2005

Porcine Preantral (200–300µm) Hirao et al., 1994

Way/IBMX/lTS/BSA medium Bovine Preantral (60 to 179µm) Wandji et al., 1996

Murine Preantral and COC Vanderhyden et al., 1992

DMEM
Human

Class 1 (90µm) 
Class 2 (<90µm) Roy & Treacy, 1993

Preantral (90–240µm) Yuan & Guidice, 1999

Marsupial Primordial and primary (63.6–215.5µm) Nation & Selwood, 2009

αMEM

Baboon Preantral (270–300µm) Xu et al., 2011b

Bovine
Preantral (190.0±6.6µm) Araújo et al., 2014

Secondary (≥150µm) Rossetto et al., 2013a

Caprine

Secondary (≥150µm) Rossetto et al., 2013a

Secondary (≥150µm) Rossetto et al., 2013a

Preantral (≥200µm) Magalhães et al., 2011

Preantral (150–250μm) Silva et al., 2015

Preantral (~250μm) 
early antral (~350µm) Ferreira et al., 2018

Canine Pre- and early antral (100–500μm) Songsasen et al., 2011

Feline

Secondary (208±7.9µm)
Early antral (329.8±5.4µm) Songsasen et al., 2017

Secondary (100-200µm) Thongkittidilok et al., 2018

Human

Pre- and early antral (≥120μm) Abir et al., 1997

Secondary (170–178µm) Xu et al., 2009b

Secondary (176.46±7.20µm) Laronda et al., 2014

Murine

COC Pangas et al., 2003

Preantral (150–200µm) Adam et al., 2004

Preantral (180–240µm) Wycherley et al., 2004

Antral (≥200 µm) Miller et al., 2005

Two-layered (100–130μm)
Multi-layered (150–180μm) Kreeger et al., 2005; 2006

Two-layered (100–130µm)
Xu et al., 2006b
Shikanov et al., 2009
Desai et al., 2012

Multi-layered secondary (150–180μm) Xu et al., 2006a

Preantral (~60–69µm) Oktem & Oktay, 2007

Secondary (111–137μm) Jin et al., 2010

Antral (360.94±16.1µm) Craig et al., 2010

Immature secondary (140–150μm) Shikanov et al., 2011

Secondary (~90, 100–105, or 120μm) Tingen et al., 2011

  Table 2. Media usage through various species and follicular stages.
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Early preantral (100–130µm) Adriaens et al., 2004

Antral (200–350µm) Craig et al., 2013

Antral (250–400µm)

Peretz & Flaws, 2013
Peretz et al., 2013
Hannon et al., 2015
Zhou & Flaws, 2017
Patel et al., 2016

Preantral (85–115μm) Hornick et al., 2013

Primary (60–80 µm)
two-layered (90–100µm)
Antral (225–400µm)

Tagler et al., 2014
Mahalingam et al., 2016a; 
2016b

Secondary (180–210µm) Skory et al., 2015

Preantral (150-160µm) Heise et al., 2005

Preantral (140-170µm) Heise et al., 2009

Early secondary (100-130µm) Mainigi et al., 2011

Ovine
Preantral (small 130±10µm)
Preantral (medium 185±14µm)
Preantral large (250±10µm)

Cecconi et al., 1999

Rhesus

Secondary (100–300µm) Xu et al., 2009a

Secondary (125–225μm)
Xu et al., 2011a
Xu et al., 2010
Rodrigues et al., 2015

Primary (80–120µm)
secondary (125–225µm) Xu et al., 2013

Small antral (≥0.5mm) Peluffo et al., 2013

Secondary (125–250µm) Ting et al., 2015
Baba et al., 2017

Secondary (130–220µm) Xu et al., 2015b

Secondary (140–225μm) Xu et al., 2018

αMEM + F12 Human Multi-layered (165.8±32.3μm) Xiao et al., 2015

αMEM + Glutamax

Human

Preantral (190±30µm) Aziz et al., 2017

Secondary (74–260µm) Skory et al., 2015

Small preantral (42.98±9.06µm) Amorim et al., 2009

αMEM + TCM199 Bovine Preantral (≥190µm) Araújo et al., 2015

αMEM + Earle’s balanced salts
Murine COC and PGOC

Buccione et al., 1990
Diaz et al., 2007
Sugiura et al., 2010

TCM199B
Bovine

Preantral (40–70µm) Schotanus et al., 1997

Preantral (145–170µm) Itoh et al., 2002

Secondary (268.6±4.5μm) Antonino et al., 2019

Ovine Preantral (250–400µm) Arunakumari et al., 2010

Earle’s Balanced Salts Human Primary (47.0±8.2µm) Abir et al., 1999

McCoy’s 5a Bovine Preantral (166±2.15µm) Gutierrez et al., 2000

Human

Preantral (66 to 132µm) Telfer et al., 2008

Secondary (≥100µm) McLaughlin et al., 2014

Primordial/primary follicle (≤60µm)
primary/early secondary follicle 
(>60-120µm)
Secondary (>120–250µm)

Yin et al., 2016

Secondary (100–150µm) McLaughlin et al., 2018

Ovine Preantral (161±2μm) Thomas et al., 2003

NUSC-23 Media Porcine Preantral (296±9µm) Wu et al., 2001

TALP Rhesus COC Peluffo et al., 2010; 2012

Continued Table 2.
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CONCLUSIONS
The general process of follicular culture has changed a 

lot from the past until now, and the main purpose of these 
changes has been to imitate the natural ovarian environ-
ment. By identifying the structure of the ovarian scaffold, 
information about 3D printing of the ovary was obtained. 
Ovarian function was thoroughly investigated by making 
3D-printed scaffolds (Laronda et al., 2017). In addition, 
depending on physiological needs of the cell, other tech-
nologies such as microfluidics can be used to grow fol-
licles. In static models, the use of a microfluidic system 
can be very effective. Because in addition to oxygenation, 
nutrient exchange and cellular communication, it provides 
a three-dimensional environment for the follicles (Desai et 
al., 2010). In order to reconstruct the human ovary envi-
ronment in vitro, factoring plays a major role in the men-
strual cycle. Therefore, in the context of a microfluidic chip 
(Scaramuzzi et al., 2011), alginate encapsulation (Gomes 
et al., 2015) was used to mimic the hormonal changes of 
the menstrual cycle in follicle culture. Microfluidics have 
made possible the successfully recombine the 28-day hu-
man menstrual cycle by fusion of tissues, such as mice 
ovaries and human fallopian tubes, ectopic uterus, and 
liver (Xiao et al., 2017). Microfluidic operating systems 
should be readily available and promote follicular culture 
among different species. Follicle culture methods vary de-
pending on the species, the age of the animals, and the 
stage of the follicle.
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