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Abstract: Electrowetting is a widely used and effective method to tune the wettability of ionic liquids
at solid-liquid interfaces, but it usually requires an external electric field. Here, we proposed a
strategy for conveniently tuning ionic liquid wettability by adopting ferroelectric LiNbO3 single
crystals as functional substrates. A heating pretreatment process was applied to modulate the surface
charge characteristics of LiNbO3 substrates, leading to an improved wettability of [EMIM][BF4] and
[EMIM][NTf2] on the LiNbO3 substrates with both positively poled (+Z) and negatively poled (−Z)
surfaces. This work may be of great interest in the field of ferroelectric-based microelectronics.
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1. Introduction

Surface wettability plays a vital role in numerous engineering fields, such as super-
hydrophobic surfaces in windshields, superhydrophilic surfaces in microelectronics and
self-cleaning surfaces. The main factors affecting surface wettability are surface chemistry
and surface structure [1]. External factors such as light, electricity, magnetism and heat also
have a great impact on surface wettability [2].

Ionic liquids (ILs) are also known as room-temperature melt salts, usually composed
of organic cations and inorganic/organic anions. A wide variety of ILs can be designed by
combining different anions and cations. As a “green solvent”, ILs have been used in fields
of chemical research including catalysis [3,4], separation [5,6], and electrochemistry [7,8]
due to their unique properties of low vapor pressure, strong solubility, excellent thermal
stability, and a wide electrochemical window [9]. Most physical and chemical reactions
in the applications occur on the solid-liquid interface [10]. For example, the ionic liquid
(IL) wettability on catalyst surfaces greatly affects catalytic efficiency and that occurring on
electrode surfaces determines the final performance of photoelectrochemical devices.

Since the electrostatic force between anions/cations of ILs and charges of solid sur-
faces can increase the wetting tension (Wel) and reduce the contact angle (θ), the charge
distribution on the solid surface can significantly affect the wettability of ILs. Surface
chemical modification and electrowetting are the main methods to modulate the charge
distribution on the solid surface. Surface chemical modification refers to the modification
of specific electrochemical groups on the solid surface to change the charge distribution,
thereby adjusting the wettability of ILs on the solid surface [11–13]. Li et al. [13] used
chemical grafting to precisely control the surface charge of the porous network of poly
(tert-butyl acrylate) (PtBA) to adjust the wettability of specific ILs and prepare functional
membrane materials for the efficient recovery of ILs. Electrowetting refers to adjusting the
wettability of ILs by applying an external electric field to change the charge distribution at
the solid-liquid interface. [14–18]. Li et al. [16] placed a conductive polymer with properties
similar to ILs on a low surface energy-treated SiO2/Si substrate and adjusted the interaction
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between solid-liquid interface charges to reduce the saturation contact angle by changing
the polarity and magnitude of the applied voltage. Restolho et al. [17] found that ILs
have a similar electrowetting behavior to traditional salt solutions on the hydrophobic
surface and that the contact angle of ILs decreases with the increase of the applied voltage.
Liu et al. [18] studied the electrowetting characteristics of imidazole-based ILs and found
that the wettability of ILs on the negatively charged surface of the electrode plate was
more significant.

Ferroelectric materials have a net electric dipole moment in the absence of an external
field due to the non-coinciding center of the positive and negative charges in the crystal
lattice, which is known as spontaneous polarization (P). The polarity of spontaneous
polarization can be reversed by applying an external electric field beyond the intrinsic
coercive field (Ec). The LiNbO3 single crystal is a well-known ferroelectric material and has
found a variety of applications in electro-optics and non-linear optics [19,20]. Below the
Curie temperature (Tc~1210 ◦C), the Li and Nb ions in the LN single crystal move along
the c-axis to form a large spontaneous polarization of about 75 µC/cm2 [21]. The large
spontaneous polarization generates numerous bound charges on the LiNbO3 inner surface
perpendicular to the crystallographic c-axis, i.e., σpol = Pn, where σpol is the polarization
bound charges density and n is the normal unit vector. The surface accumulating with
positive bound charges is referred to as a positively poled surface (+Z surface), while
that with negative bound charges is noted as a negatively poled surface (−Z surface).
Therefore, the LiNbO3 single crystal with +Z and −Z surfaces can exhibit strong surface
charge characteristics and is suitable for use as a functional substrate [22–30]. At room
temperature (RT) in air, the polarization bound charges are usually neutralized by charged
particles absorbed from the environment [31–34]. However, the surface neutralization can
be disrupted with a thermal stimulation due to the pyroelectric effect, i.e., dP = ρdT, where
ρ is the pyroelectric coefficient and dT is the temperature change.

In this work, LiNbO3 single crystals with +Z and −Z surfaces are used as the functional
substrates, while a glass slide is used as the control substrate. 1-ethyl-3-methylimidazolium
bis[trifluoromethylsulfonyl]imide ([EMIM][NTf2]) and 1-ethyl-3-methylimidazolium
tetrafluoroborate ([EMIM][BF4]) are selected to investigate the influence of the surface
tensions of different ILs species on the wettability. A heating pretreatment with a temper-
ature of up to 110 ◦C was conducted to modulate the charge distribution of the LiNbO3
substrates. Since the heating temperature (110 ◦C) is far below the Curie temperature
(~1210 ◦C), the heating pretreatment will not affect the surface charge characteristics of
the LiNbO3 substrate. The effect of the solid surface charge and IL surface tensions on the
wettability was analyzed by comparing the contact angle of the ILs on the LiNbO3 and glass
substrates going through the same heating pretreatment process. Different from surface
chemical modification and electrowetting, the surface charge distribution of ferroelectric
LiNbO3 can be simply modulated by the heating pretreatment. However, further studies
are needed to enhance the wettability variation of ILs on ferroelectric substrates.

2. Materials and Methods

Both [EMIM][NTf2] and [EMIM][BF4] with a purity of >90% were purchased from
Macklin Biochemical Co., Ltd. (Shanghai, China). The surface tensions (RT in air) of
[EMIM][NTf2] and [EMIM][BF4] are ~36 mN/m and ~49 mN/m, respectively [17]. LiNbO3
single crystals were purchased from Yamaju Ceramics Co., Ltd. (Nagoya, Japan), and glass
slides were purchased from Feizhou Glass Co., Ltd. (Yancheng, China). The size of all
the substrates was 1 × 1 cm2. All the substrates were ultrasonically cleaned with acetone,
ethanol and deionized water to remove surface contaminants, and then blow-dried with
nitrogen. A contact angle meter (SIND-200T, Shengding Precision Instrument Co., Ltd.,
Dongguan, China) was used to measure the contact angle of the ILs on the substrates
before and after the heating pretreatment. The surface potential property of the LiNbO3
substrates before and after the heating pretreatment was characterized by Kelvin probe
force microscopy (KPFM) via scanning a tip at a constant level of 50 nm from the substrate
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surface at a fast scan rate of 2 Hz. The surface morphology of the substrates used in this
work was characterized by an atomic force microscope (AFM) in the ac mode. Both KPFM
and AFM measurements were performed through a scanning probe microscope (Cypher
S, Oxford Instrument Technology Co., Ltd., Oxford, UK) by using a conductive cantilever
with a spring constant of 2.8 N/m.

The heating pretreatment process is as follows: first set a heating rate of 5 ◦C/min by
tuning the power of the temperature control station (PR-RE-TC, Purui Material Technology
Co., Ltd., Shenzhen, China), then heat the substrate to 110 ◦C and keep it for 10 min, and
finally cool down rapidly to the RT. A 1 µL droplet was immediately added to the center
of the substrate, and the contact angle was measured when the droplet was stable. The
average of three contact angle values measured from each substrate was adopted.

3. Results

Figure 1 shows the contact angle of [EMIM][NTf2] and [EMIM][BF4] on the +Z and
−Z surfaces of the LiNbO3 and glass substrates before and after the heating pretreatment.
It can be seen that the contact angles of both the ILs on the +Z and −Z surfaces of the
LiNbO3 substrate are obviously different before and after the heating pretreatment, while
the difference of both the ILs on the glass substrate is limited. The contact angles of
[EMIM][BF4] with higher surface tensions are larger than those of [EMIM][NTf2] on all
the substrates before and after the heating pretreatment. In addition, after the heating
pretreatment, the contact angles of the ILs on both the +Z and −Z surfaces of the LiNbO3
substrate are reduced, and the contact angles of the ILs on the +Z surface are reduced to a
greater extent than those on the −Z surface.

Figure 1. Contact angle of the ionic liquids (ILs) on the LiNbO3 and glass substrates before and after
the heating pretreatment. (a) [EMIM][NTf2], (b) [EMIM][BF4].

Figure 2 illustrates the effect of the polarization orientation, the heating pretreatment,
and the anions on the contact angle of the ILs with the LiNbO3 substrate. After the
heating pretreatment of the LiNbO3 substrate, the contact angle of both [EMIM][NTf2] and
[EMIM][BF4] decreased with either the +Z surface or the −Z surface. Compared with the
different polarization orientation of the LiNbO3 substrate after the heating pretreatment,
the contact angles of both the ILs on the +Z surface are smaller than those on the −Z surface.
Overall, [EMIM][BF4] presents larger contact angles than [EMIM][NTf2].
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Figure 2. Contact angle of [EMIM][NTf2] and [EMIM][BF4] on the LiNbO3 substrate (b,f) before the
heating pretreatment with the +Z surface and after the heating pretreatment with (c,g) the +Z surface
and (d,h) −Z surface. (a,e) Chemical structure of [EMIM][NTf2] and [EMIM][BF4].

The surface charge characteristics of the LiNbO3 substrates before and right after the
heating pretreatment were investigated by KPFM. As shown in Figure 3, the LiNbO3
substrates exhibit a larger average surface potential before the heating pretreatment
(Figure 3a,b) than after the heating pretreatment (Figure 3c,d), with either the +Z sur-
face or −Z surface.

Figure 3. KPFM surface potential images of the LiNbO3 substrates (a,b) before the heating pretreat-
ment and (c,d) right after the heating pretreatment.

In order to exclude the influence of the surface microstructure on the wettability of
ILs, An ac-AFM was used to characterize the surface morphology of the LiNbO3 and glass
substrates. Figure 4 is a representative AFM topography image and corresponding 3D
surface plot of the LiNbO3 substrate, demonstrating that the surface average roughness
is about 0.2 nm. Our AFM results found no significant difference in surface morphology
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between the LiNbO3 and glass substrates before and after the heating pretreatment. Since
the main factors affecting surface wettability are surface chemistry and surface structure,
we believe that differences in the IL wettability on different substrates used in this work
are mainly attributable to surface charge characteristics.

Figure 4. (a) Representative AFM topography image and (b) corresponding 3D surface plot of the
LiNbO3 substrate.

4. Discussion

The LiNbO3 single crystal possesses a large spontaneous polarization (75 µC/cm2)
that generates a large number of polarization bound charges (σpol). At RT in air, the
bound charges are always screened by oppositely charged particles absorbing from the
environment. Screening charges (σs) are considered to be composed of accumulating
charges located in tightly adsorbed layers adjacent to the surface and loosely packed
layers upon them. Partial screening charges can be removed by heating the substrate
to a temperature above 100 ◦C [31,33]. Our KPFM measurement results (Figure 3) also
support this assumption. Both the +Z and −Z surfaces of the LiNbO3 substrate exhibit a
larger average surface potential before the heating pretreatment (Figure 3a,b) than after
the heating pretreatment because some screening charges were removed by heating the
substrate up to 110 ◦C and a re-screening process cannot be fully completed in a short
period of time.

Figure 5 shows the wetting mechanism of the ILs on the +Z and −Z surfaces of the
LiNbO3 and glass substrates after the heating pretreatment, respectively. In the case of the
LiNbO3 substrates, some screening charges can be removed after the heating pretreatment.
When dropping an IL droplet immediately after the heating pretreatment onto the substrate,
the anions and cations of the ILs interact with the screening charges in the tightly adsorbed
layers on the LiNbO3 substrate by an electrostatic Coulomb force (F), resulting in a larger
wetting tension. In general, the actual contact angle can be expressed as below [13]:

cos θ =
γSV − γSL + Wel

γLV

where θ is the actual contact angle, Wel is the wetting tension, and γSV , γSL and γLV refer
to the interfacial tensions of solid-gas, solid-liquid and gas-liquid interfaces, respectively.
After the heating pretreatment, the ILs on the LiNbO3 substrates have larger wetting
tensions, and thus smaller contact angles (Figure 1).
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Figure 5. Wetting mechanisms of the IL on the LiNbO3 and glass substrates after the heating pretreatment.
(a) LiNbO3 substrate with +Z surface, (b) LiNbO3 substrate with −Z surface, (c) glass substrate.

Furthermore, the ILs exhibited different contact angles on the +Z and −Z surfaces of
the LiNbO3 substrates after the heating pretreatment, i.e., θ(+Z) < θ(−Z). Since the volume of
cations is larger than that of anions, the electrostatic Coulomb forces between anions/+Z
surface and cations/−Z surface are different, i.e., F(+Z) > F(−Z). Therefore, after the heating
pretreatment, the wetting tensions of the ILs on the +Z surface are larger than those of the
ILs on the −Z surface, leading to a smaller contact angle and better wettability on the +Z
surface of the LiNbO3 substrate. In addition, when comparing the different ILs used in this
work, the overall wettability of [EMIM][NTf2] (Figure 1a) is better than that of [EMIM][BF4]
(Figure 1b). [EMIM][NTf2] has a smaller surface tension [17], resulting in a smaller contact
angle and thus a better wettability.

Glass does not have spontaneous polarization properties. The surface charge distribu-
tion of glass is not significantly affected by temperature due to a random arrangement of
dipoles in glass, resulting in slight differences in the ILs’ wettability on the glass substrate
before and after the heating pretreatment (Figure 1).

5. Conclusions

In summary, this work reports the effect of the surface charge characteristics of fer-
roelectric LiNbO3 on IL wettability at the solid-liquid interfaces. The surface charge
neutralization of LiNbO3 was destructed by the heating pretreatment. The wettability of
[EMIM][BF4] and [EMIM][NTf2] on LiNbO3 substrates with both the +Z and −Z surfaces
increased after the heating pretreatment due to the interaction between anions/cations of
the ILs and surface charges of the LiNbO3 substrates. The difference in wettability observed
between [EMIM][BF4] and [EMIM][NTf2] is attributed to their different surface tensions. This
finding can be used to facilitate fluid transport in ferroelectric-based microfluidic applications.
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