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ABSTRACT: PDHA1 was associated with metabolic reprogramming in tumor progression.
However, the clinical value of PDHA1, especially for prediction of drug sensitivity in
hepatocellular carcinoma (HCC), has not been fully investigated. In this study, we found that
PDHA1 expression was higher in HCC tissues compared to normal tissues and was correlated
with poor prognosis in HCC patients. PDHA1 expression was mainly positively associated with
immune cell infiltration using the TIMER, XCell, MCPCOUNTER, CIBERSORT, EPIC, and
QUANTISEQ algorithms, which was validated by single-cell RNA-sequencing analysis. We also
discovered that PDHA1 expression was correlated with six immune checkpoint-related genes.
Univariate and multivariate Cox regression analyses revealed that PDHA1 expression was an
independent prognostic indicator for HCC patients, and the nomogram incorporating PDHA1
expression exhibited excellent predictive capacity. Furthermore, PDHA1 expression was
positively linked to the sensitivity of 5-fluorouracil, gemcitabine, paclitaxel, and sorafenib, and
the molecular docking analysis demonstrated their excellent binding affinity.

1. INTRODUCTION
Primary liver cancer is one of the most prevalent malignant
tumors with a significant mortality rate globally, which
seriously threatens people’s lives and health.1,2 Primary liver
cancer mainly consists of three pathological types: hepatocel-
lular carcinoma (HCC), intrahepatic cholangiocarcinoma
(ICC), and mixed hepatocellular carcinoma-cholangiocarcino-
ma (cHCC-CCA), with HCC accounting for about 90% of the
cases.1,2 HCC is characterized by insidious onset, rapid growth,
and high recurrence and metastasis rate, leading to poor overall
treatment outcomes and extremely poor prognosis.3 Hence,
finding a reliable biomarker for the early diagnosis and
prognostic assessment of HCC is significant.

The pathogenesis of HCC involves viral infection,4

oncogene activation and inactivation of oncogenes,5 alteration
of tumor microenvironment,6 metabolic reprogramming,7 etc.
Among them, metabolic reprogramming has received much
attention in the proliferation and migration of HCC and its
microenvironmental alterations.8 Previous studies have con-
firmed that HCC cell metabolism is significantly reprog-
rammed, which is mainly manifested by the abnormal activity
of glycolysis,9 fatty acid synthesis,10 and glutamine metabo-
lism.11 Several studies have shown that targeting the abnormal
metabolic enzymes and pathways in HCC can significantly
inhibit tumor growth and metastasis, thus presenting a good
prospect for clinical application.12−14 However, the diagnosis
and treatment of HCC marked by metabolic enzymes or
pathways were less than optimal, and the biological features of

HCC have not been fully elucidated due to the complexity of
cellular metabolic networks.

Pyruvate dehydrogenase E1 component subunit α (PDHA1)
is a rate-limiting enzyme that initiates the tricarboxylic acid
(TCA) cycle by transforming pyruvate into acetyl coenzyme A
in mitochondria. The TCA cycle is the last metabolic pathway
for glucose, lipids, and amino acids and the hub of the
metabolic link between these three components. In recent
years, some bioinformatic analyses and experimental evidence
have demonstrated that PDHA1 participated in the regulation
of metabolic reprogramming in tumor progression, such as in
melanoma,15 prostate cancer,16 and cervical cancer,17 and
correlated with the prognosis of tumor patients. Moreover, it
was reported that PDHA1 overexpression inhibited the
Warburg effect and induced cell apoptosis via mitochondria-
mediated pathways in HCC.18 Another study found that
insulin stimulated the growth of HCC cells by increasing
PDHA1 phosphorylation.19 However, the clinical value of
PDHA1 especially for prediction of drug sensitivity has not yet
been thoroughly clarified.

In the current study, we validated PDHA1 overexpression in
our HCC tissue samples by using immunohistochemistry
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(IHC). We also explored the association between PDHA1
expression and immune cell infiltration, immune checkpoint
expression, prognosis, and clinicopathological features in HCC
patients. Moreover, we predicted the relationship between
PDHA1 expression and sensitivity of four chemotherapy
agents in HCC and measured their binding energy by using
molecular simulation. Our study revealed the clinical value of
PDHA1 expression, especially for prediction of chemotherapy
drug sensitivity in HCC patients.

2. MATERIALS AND METHODS
2.1. Data Acquisition and Processing. The clinical data

and RNA-sequencing expression profiles of 50 normal samples
and 374 HCC patients were provided by the TCGA database.
The raw counts were converted into TPM format. Table S1
illustrates the baseline characteristics of patients from the
TCGA cohort.

Digestive system pan-cancer refers to digestive system
cancers, including esophageal carcinoma (ESCA), stomach
adenocarcinoma (STAD), colon adenocarcinoma (COAD),
rectum adenocarcinoma (READ), liver hepatocellular carcino-
ma (LIHC), cholangiocarcinoma (COAD), and pancreatic
adenocarcinoma (PAAD). For digestive system pan-cancer
analysis of PDHA1, RNA-sequencing expression profiles and
the corresponding clinical information on ESCA, STAD,
COAD, READ, COAD, and PAAD were also downloaded
from the TCGA database.
2.2. HCC Tissue Samples Collection. Wax blocks of

tumor tissue from 30 HCC patients who underwent surgical
resection at Wenzhou Medical University Affiliated Zhoushan
Hospital from September 2021 to June 2023 were collected.
Wax blocks are produced by the Department of Pathology in
the hospital and are requested in accordance with the
requirements and procedures. Besides, clinical information
and laboratory data of the patients were acquired from hospital
electronic medical records. All specimens were collected with
the informed consent of the patients and Ethics Committee
approval of the hospital, and the following inclusion and
exclusion criteria were applied:

Inclusion criteria: (1) the postoperative pathological
diagnosis was HCC; (2) the case information was intact.

Exclusion criteria: (1) age <18 years; (2) combined with
other malignancies or significant diseases.
2.3. Differential Expression and Survival Analysis.

The differential expression analysis was carried out between
digestive system tumor tissues and normal tissues. The overall
survival (OS) analysis was performed using the Cox regression
and log-rank test by the “survival” R package. The hazard ratio
(HR) was calculated by using the Cox proportional hazards
model. Besides, the Kaplan−Meier curve was drawn by the
“survminer” package, using the median as the cutoff value.
2.4. Immune Infiltration Score and Immune Check-

point Correlation Analysis. To measure the immune
infiltration level reliably, we used the “immuneeconv” R
package, which integrated the six latest algorithms, including
TIMER, XCell, MCPCOUNTER, CIBERSORT, EPIC, and
QUANTISEQ. Each of these methods had a distinct advantage
and had been benchmarked. The visualizations were performed
with the “ggClusterNet” R package.

CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2,
TIGIT, and SIGLEC15 were immune checkpoint (ICK)-
related genes, which could influence the immunotherapy effect
of immune checkpoint blockades.20 The relationships between

PDHA1 expression and ICK-related gene expression in HCC
were explored by using Spearman correlation analysis.
2.5. Gene Set Enrichment Analysis (GSEA) and

Relevance Network Visualization. After the ID conversion
of genes in the input data, GSEA analysis21 was performed
using the “clusterProfiler” R package.22 Predefined gene sets
were obtained from the MSigDB database23 and gene
sequencing was based on log|FC| value. The outcome of the
GSEA analysis was visualized by the “ggplot2” R package.
Spearman correlation analysis was applied to find the genes
associated with PDHA1 expression with the limits of adjusted
P value <0.05 (adjusted by the Benjamini−Hochberg method).
The outcome was visualized in different ways using the
“ggplot2″, “circlize”, and “linkET” R package.
2.6. Single-Cell RNA-Sequencing (scRNA-seq) Anal-

ysis. The scRNA-seq data set (accession number:
GSE11227124) was obtained from the Gene Expression
Omnibus (GEO) database. A total of 17856 cells from the
tumor sample of one HCC patient were included in the study.
The “seurat” R package was used to preprocess before
dimensionality reduction. For each cell, three quality control
measures were applied. Cells meeting any of the following
criteria were excluded: (1) RNA counts <200, (2) RNA counts
>2500, and (3) mitochondrial RNA >10%. The harmony
method was utilized to eliminate the batch effects based on
characteristic subsets of highly variable genes (HVGs). Then,
the top 20 principal components (PCs) were screened based
on the top 2000 HVGs using principal component analysis
(PCA). Cluster visualization was implemented by uniform
manifold approximation and projection (UMAP) reduction,
and the marker genes were selected by the FindAllMarkers
function with the adjusted P value <0.01 and log2|FC|>1. At
last, each cluster was annotated based on the corresponding
canonical marker genes.

For metabolism analysis, the mean expression levels of the
cells contained in various clusters were initially determined by
the AverageExpression function. For every cluster, the scores of
the relevant pathways were determined using the “GSVA” R
package,25 which were finally visualized by “pheatmap” R
package.
2.7. Immunohistochemistry (IHC). The procedure was

carried out according to the manual of the automatic
immunohistochemical stainer (BOND-MAX platform): All
specimens were paraffin-embedded tissues, and the thickness
of the tissue sections was 4 μm, which were baked at 120 °C in
a 70 °C thermostat and put into the automatic immunohis-
tochemical stainer for pretreatment of the tissue samples. After
deparaffinization, the tissue was fixed at 100 °C for 20 min
using a repair solution with pH = 9.0. The slices were
immersed in 3% H2O2 for 20 min and rinsed with PBS three
times, each for 5 min. Then, the primary antibody and
horseradish peroxidase-labeled secondary antibody were
incubated at room temperature for 25 and 8 min, respectively.
DAB color development was done for 10 min and hematoxylin
restaining for 8 min. Finally, the slices were dehydrated, sealed
with neutral gum after reversing blue, and observed under the
microscope.
2.8. Immunohistochemical Score. Each tissue section

was shot under the same shooting environment and software
parameters. The following criteria were used.

Staining intensity: brown was defined as strong positive with
a score of 3; yellowish-brown was defined as medium positive
with a score of 2; faint yellow was defined as weakly positive
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with a score of 1; colorless was defined as negative and scored
as 0.

Percentage of stained cells: The proportion of stained cells
to the total number of cells in the field of view ≥61% was
scored as 3; the proportion of 31−60% was scored as 2; the
proportion of 11−30% was scored as 1; the proportion of
≤10% was scored as 0.

Immunohistochemical score = staining intensity score+
percentage of stained cells score; 4−6 was considered high
expression, 1−3 was considered low expression, and 0 was
considered negative expression.
2.9. Drug Sensitivity and Molecular Docking Analysis.

Since few biomarkers could reliably predict the susceptibility to
chemotherapy drugs of HCC patients, we used the GDSC
database26 to predict the chemotherapeutic response for every
sample in the TCGA-LIHC cohort. The “pRRophetic” R
package27 was utilized to perform the prediction process. Ridge
regression was used to calculate the sample’s half-maximal
inhibitory concentration (IC50).

We further performed molecular docking analysis to validate
the efficacy of targeting relationships between chemother-
apeutic agents and the PDHA1 protein. We obtained the

protein crystal structure of PDHA1 (PDB: 2OZL) from the
RCSB PDB database, dehydrated, and eliminated the ligands
from the active center using PyMOL 2.5.4 software. The 3D
structures of four chemotherapeutic drugs (5-fluorouracil,
gemcitabine, paclitaxel, and sorafenib) were downloaded from
the PubChem database. AutoDockTools 1.5.7 was used to
carry out processes such as inserting polar hydrogens and
charge calculations. The active pocket was included after the
parameters of the receptor protein docking site. The grid box
was centered at (8.958, 2.096, 74.21) Å; the grid lengths in
XYZ directions were 100, 100, and 100 Å, respectively.
Ultimately, Autodock Vina 1.1.228 was used to dock the
receptor protein with the small molecule ligand and PyMOL
2.5.4 presented the docking data.
2.10. Statistical Analysis. All statistical analyses and

visualization were implemented by R software (version 4.0.3).
Student’s t test or Mann−Whitney U test was used to identify
the significant differences between two independent groups
with numerical variables. χ2 test or Fisher exact test was used to
analyze the significant differences between two independent
groups with categorical variables. P or adjusted P < 0.05 was

Figure 1. Digestive system pan-cancer analysis of PDHA1. (A) Differential expression analysis. (B) Univariate Cox regression analysis. Immune cell
infiltration analysis using (C) CIBERSORT algorithm, (D) MCPcounter algorithm, (E) QUANTISEQ algorithm, (F) XCELL algorithm, (G)
EPIC algorithm, and (H) TIMER algorithm. (I) Association between PDHA1 expression and the expression of eight ICK-related genes in digestive
system tumors (CHOL: cholangiocarcinoma; COAD: colon adenocarcinoma; ESCA: esophageal carcinoma; LIHC: liver hepatocellular carcinoma;
PAAD: pancreatic adenocarcinoma; STAD: stomach adenocarcinoma).
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considered as statistical significance (*P < 0.05; **P < 0.01;
***P < 0.001).

Figure 2. Bioinformatic analysis of PDHA1 in HCC. (A) Differential expression of PDHA1 in HCC visualized by the violin plot. (B) Survival
analysis displayed by the Kaplan−Meier curves. (C) Association between PDHA1 expression and clinical stage in HCC exhibited by the Sanky
diagram. (D−H) Top 5 terms enriched in the GSEA analysis for all DEGs between the PDHA1 high expression group and low expression group in
HCC. (I) GSEA analysis outcome summarized by the mountains map. (J) Top 10 genes that were most associated with PDHA1 expression in
HCC. Relationships between the 10 genes visualized by the chord diagram (K) and the relevance network (L).
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3. RESULTS
3.1. Digestive System Pan-Cancer Analysis of PDHA1.

Given that the anatomical location, function, and metabolism
are tightly associated, there may be commonalities in the
growth and evolution of digestive system malignancies. To
understand the circumstance of PDHA1 generally, we first
explored the role of PDHA1 in the digestive system pan-
cancer. As shown in Figure 1A, PDHA1 had a significant
differential expression only in CHOL, COAD, LIHC, READ,
and STAD. Moreover, univariate Cox regression analysis
(Figure 1B) suggested that PDHA1 overexpression was
significantly linked to poor prognosis in LIHC (P = 0.02,

HR = 1.50), while PDHA1 expression had no correlation with
prognosis in other digestive system malignancies (ESCA: P =
0.23, HR = 1.35; PAAD: P = 0.71, HR = 0.93; STAD: P =
0.93, HR = 0.99; READ: P = 0.67, HR = 0.84; COAD: P =
0.97, HR = 0.99; CHOL: P = 0.06, HR = 2.62). Using the six
latest algorithms (Figure 1C−H), immune cell infiltration
analysis showed that PDHA1 expression almost had no
correlation with the immune cells in CHOL and was mainly
correlated with T cells, B cells, macrophages, neutrophils, and
dendritic cells in COAD, T cells in ESCA, T cells,
macrophages, and dendritic cells in LIHC, neutrophils in
PAAD, and T cells, B cells, macrophages in READ. Besides,

Figure 3. Immune infiltration score and immune checkpoint correlation results. (A) Association between PDHA1 expression and the expression of
important ICK-related genes. (B) Coexpression heatmap of PDHA1 and eight ICK-related genes. The association between PDHA1 expression and
immune cell infiltration in HCC using the (C) CIBERSORT algorithm, (D) MCPcounter algorithm, (E) QUANTISEQ algorithm, (F) XCELL
algorithm, (G) EPIC algorithm, and (H) TIMER algorithm. (I) Correlation between PDHA1 expression and immune cell infiltration in the cancer
immune cycle using the TIP method.
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PDHA1 expression was associated with at least one ICK-
related gene expression in all digestive system malignancies
(Figure 1I). Interestingly, PDHA1 expression was associated
with the expression of all eight ICK-related genes in COAD.
3.2. Difference Expression, Survival, GSEA Analysis,

and Relevance Network of PDHA1 in HCC. Since PDHA1
expression was significantly correlated with survival prognosis
only in HCC, we further performed bioinformatic analysis of
PDHA1 in HCC. The violin plot (Figure 2A) showed that

PDHA1 expression was higher in HCC tissues than in normal
tissues, and the Kaplan−Meier curve (Figure 2B) suggested
that PHDA1’s high expression had a poor prognosis in HCC
patients (log-rank P = 0.017). The Sankey diagram (Figure
2C) suggested that PDHA1’s high expression was linked to
more advanced TNM stage and grade classification. We then
identified all differentially expressed genes (DEGs) (P < 0.05,
log2|FC|>1) between PDHA1 expression high and low groups
and incorporated them for GSEA. The top 5 enriched terms

Figure 4. Single-cell analysis for PDHA1 in GSE112271. (A) Quality control of cells. (B) HVGs for cell clustering. (C) Top 20 PCs identified
based on P value <0.05. (D) Different cell clusters visualized by UMAP reduction. (E) Corresponding annotation of the cell clusters. (F) PDHA1
expression in different cell clusters. (G) Pathways highly enriched in different immune cell clusters.
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were “biological oxidation”, “cellular response to stimuli”,
“nervous system development”, “neuronal system”, and
“extracellular matrix organization” (Figure 2D−H and Table
S2), and the mountains map (Figure 2I) summarized all
outcomes. Besides, we screened the top 10 genes that were
most associated with PDHA1 expression in HCC, namely,
APOO, HCCS, ATP5F1B, RBBP7, UBA1, FUNDC1, IMMT,
ATP6AP2, ATP5F1A, and PGK1 (Figure 2J and Table S3).
The chord diagram (Figure 2K) and the relevance network
(Figure 2L) display their relationship.
3.3. Immune Cell Infiltration Score and Immune

Checkpoint Correlation Analysis of PDHA in HCC. We
next analyzed the relationship between PDHA1 expression and
the expression of ICK-related genes and immune cell
infiltration in HCC in detail. As shown in Figure 3A,
PDHA1 expression was positively linked to the expression of
CD274, HAVCR2, and PDCD1LG2. Figure 3B exhibits the
trends in the expression levels of eight ICK-related genes in
response to changes in PDHA1 expression levels. Furthermore,
we utilized relevance networks to present the correlation of
PDHA1 expression with immune cell infiltration levels and
between different immune cell infiltrations in HCC. The
CIBERSORT algorithm (Figure 3C) showed that PDHA1
expression was positively associated with M2 macrophage and
negatively linked to CD8+ T cells. The MCPcounter algorithm
(Figure 3D) revealed that PDHA1 expression was positively
related to monocytes, macrophages, and dendrite cells. The
QUANTISEQ algorithm (Figure 3E) exhibited that PDHA1
expression had a positive correlation with T cells, monocytes,
and macrophages. The XCELL algorithm (Figure 3F) reflected
that PDHA1 expression was positively linked to mast cells and

lymphoid progenitors and negatively associated with naive
CD8+ T cells and central memory CD4+ T cells. The EPIC
algorithm (Figure 3G) manifested that PDHA1 expression was
negatively connected with the macrophage. The TIMER
algorithm (Figure 3H) indicated that PDHA1 expression was
positively associated with CD4+ T cells, B cells, neutrophils,
dendrite cells, and macrophages.

The anticancer immune responses refer to a run of gradual
events called the cancer immune cycle. Tumor immunophe-
notype (TIP) systematically integrates two existing methods,
ssGSEA and CIBERSORT, for tracking and analyzing the
proportion of tumor-infiltrating immune cells in the cancer
immune cycle. As shown in Figure 3I, PDHA1 expression was
negatively correlated with step2, step3, step 4, step5, and step7,
and positively associated with step 1 and step 6. This suggested
that PDHA1’s high expression mainly hindered the anticancer
immune responses, which led to poor prognosis in patients
with HCC.
3.4. Single-Cell RNA-Sequencing Analysis Recon-

firmed that PDHA1 Was Connected with Immune Cell
Infiltration in HCC. One scRNA-seq data set (GSE112271)
was collected to further detect PDHA1 expression in the cells
from HCC tissue samples. As shown in Figure 4A, we first filter
away poor-quality cells according to the number of genes
detected in each cell (nFeature_RNA), the total amount of
mRNA found in the cell (nCount_RNA), and the percentage
of mitochondrial gene expression in the cell (percent_mt).
After the top 2000 HVGs were screened for cell clustering
(Figure 4B), we utilized PCA to identify 20 PCs with
significant differences (Figure 4C). Thirteen clusters (each
cluster having similar gene expression patterns) were identified

Figure 5. Four representative HCC tissue samples with high PDHA1 expression and the corresponding normal tissue samples.
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Figure 6. Prognostic and risk stratification values of PDHA1 in HCC. Screening of independent prognostic factors using univariate Cox regression
analysis (A) and multivariate Cox regression analysis (B). (C) Nomogram construction based on the multivariate Cox regression model. (D)
Calibration curve of the nomogram. (E) Hazard proportion curve of PDHA1. (F) Correlation heatmap exhibiting the relevance of prognostic
variables in Table 1.
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(Figure 4D). We then annotated the 13 clusters into
hepatocytes (clusters 0, 3, and 10), macrophages (cluster 1),
T cells (clusters 2, 4), mesenchymal cells (cluster 5), dendrite
cells (clusters 6, 7), B cells (cluster 8), smooth muscle cells
(cluster 9), NK cells (cluster 11), and endothelial cells (cluster
12), according to the expression of the corresponding
canonical marker genes (Figure 4E). Notably, almost only
hepatocytes, macrophages, and B cells expressed PDHA1
(Figure 4F), which agreed with the positive correlation
between PDHA1 expression and the infiltration levels of
macrophages and B cells. Interestingly, we found that the top 3
enriched pathways were “tumor proliferation signature”, “DNA
repair”, and “G2M checkpoint” in macrophages and “EMT
markers”, “G2M checkpoint”, and “tumor proliferation
signature” (Figure 4G), which were all associated with tumor
proliferation and metastasis.
3.5. IHC Validation for Differential Expression of

PDHA1 between HCC Tissues and Normal Tissues. To
verify PDHA1 overexpression in HCC tissues from the protein
level, we used the ICH technique to stain the pathological
sections of clinical HCC patients. The IHC results indicated
that the PDHA1 protein was mainly present in the cytoplasm
and cell membrane. In 30 normal tissue samples, 18 cases
showed negative PDHA1 expression and 12 cases had low
PDHA1 expression. In 30 HCC tissue samples, 22 cases
displayed high PDHA1 expression and 8 cases had low
PDHA1 expression. Figure 5 presents four representative HCC
tissue samples with high PDHA1 expression and the
corresponding normal tissue samples.
3.6. Prognostic and Risk Stratification Value of

PDHA1 in HCC. To determine the independent risk indicators
affecting the prognosis of HCC patients, PDHA1 expression
and clinical features were incorporated in univariate and
multivariate Cox regression analyses. The univariate Cox
regression analysis (Figure 6A) revealed that PDHA1
expression, tumor diameter, and distant metastasis were
significantly associated with the prognosis of HCC patients.
The multivariate Cox regression analysis (Figure 6B) indicated
that only tumor diameter remained significantly correlated to
the prognosis of HCC patients. To enhance the clinical
application value of the model, all indicators in the multivariate
Cox regression model were incorporated to create the
nomogram (Figure 6C). The calibration curve (Figure 6D)
demonstrated that the nomogram displayed an excellent
predictive capacity at 1 year, 3 years, and 5 years. In addition,
Figure 6E shows the Cox regression coefficients of PDHA1 at
different survival times, and the coefficient values are clustered.
They did not change remarkably over time, indicating that the
variable satisfied the proportional risk assumption.

Furthermore, we explored the association between the
PDHA1 expression detected by IHC and clinicopathological
features in HCC patients from our hospital. When it comes to
prognostic factors in patients with HCC (Table 1), high
PDHA1 expression was significantly associated with a higher
AFP level (20.25 [5.35,99.73] ng/mL, P = 0.0270), higher
creatinine level (89.60 [77.03, 108.85] μmol/L, P = 0.0160),
bigger tumor diameter (3.51 ± 1.57 cm, P = 0.0401), and
higher p53 mutant rate (28.57%, P = 0.0288). Besides, high
PDHA1 expression was linked to a lower Hb level (7133.96 ±
15.24 g/L, P = 0.1040) and higher Ki-67 positive incidence (P
= 0.1650), even though these correlations did not achieve
statistical significance. In addition, the correlation heatmap
(Figure 6F) showed the relevance of the prognostic variables

mentioned above (including PDHA1 expression). Taken
together, high PDHA1 expression was strongly associated
with poor prognostic factors in HCC patients, which can be
used for risk stratification.
3.7. Drug Sensitivity and Molecular Docking Analysis

of PDHA1. To investigate the potential function of PDHA1 in
the chemotherapy of HCC patients, we evaluated the IC50 of
four chemotherapeutic agents using drug sensitivity and gene
expression profiling data. The Spearman correlation analysis
indicated that PDHA1 expression had a negative correlation
with IC50 values of 5-fluorouracil (P = 3.36 × 10−8, ρSpearman =

Table 1. Associations between PDHA1 Expression and
Clinicopathological Characteristics in HCC Patientsa

variables PDHA1 low PDHA1 high P value

gender, n (%) 0.2868
female 0 (0%) 5 (22.73%)
male 8 (100%) 17 (77.27%)

age (years) 64.50 ± 10.39 65.68 ± 8.47 0.7525
BMI (kg/m2) 24.95 ± 1.96 23.93 ± 3.18 0.4056
hypertension, n

(%)
0.1040

yes 5 (62.50%) 6 (27.27%)
no 3 (37.50%) 16 (72.73%)

diabetes, n (%) >0.9999
yes 2 (33.33%) 5 (22.73%)
no 6 (66.67%) 17 (77.27%)

AFP (ng/mL) 3.20 (1.53, 23.83) 20.25 (5.35, 99.73) 0.0270
WBC (×109/L) 4.78 ± 1.20 4.82 ± 1.63 0.9460
Hb (g/L) 145.63 ± 17.60 133.96 ± 15.24 0.0856
PLT (×109/L) 166.75 ± 58.08 148.23 ± 57.31 0.4418
ALT (U/L) 29.63 ± 24.37 30.55 ± 28.08 0.9353
TBil (μmol/L) 13.16 ± 5.11 13.16 ± 5.91 0.9989
creatinine

(μmol/L)
74.70 (67.68, 87.20) 89.60 (77.03,

108.85)
0.0160

albumin (g/L) 40.59 ± 4.03 40.65 ± 2.90 0.9629
K+ (mmol/L) 3.91 ± 0.32 3.84 ± 0.45 0.6848
Na+ (mmol/L) 142.00 (140.45,

143.70)
141.10 (139.85,

142.13)
0.3032

PT (s) 12.05 ± 0.91 12.28 ± 0.89 0.5434
APTT (s) 26.75 (25.68, 32.23) 26.80 (25.88, 28.25) 0.7042
FIB (g/L) 2.81 ± 0.67 2.60 ± 0.92 0.5622
D-dmier (mg/L) 0.38 (0.17, 2.20) 0.30 (0.19, 0.41) 0.5111
tumor diameter

(cm)
2.24 ± 0.94 3.51 ± 1.57 0.0401

grade, n (%) >0.9999
1 and 2 5 (62.50%) 12 (54.55%)
3 and 4 3 (37.50%) 10 (45.45%)

MVI, n (%) 0.8266
M0 6 (75%) 16 (72.73%)
M1 2 (25%) 5 (22.72%)
M2 0 (0%) 1 (0.05%)

p53, n (%) 0.0288
wild-type 8 (100%) 12 (54.55%)
mutant 0 (0%) 10 (45.45%)

Ki-67(+), n (%) 0.1650
<15% 4 (50%) 4 (18.18%)
15−30% 2 (25%) 13 (59.09%)
>30% 2 (25%) 5 (22.73%)

aBMI, body mass index; AFP, α-fetoprotein;WBC, white blood cell;
Hb, hemoglobin; PLT, platelet; ALT, alanine aminotransferase; TBil,
total bilirubin; PT, prothrombin time; APTT, activated partial
thromboplastin time; FIB, fibrinogen; MVI, microvascular invasion.
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−0.28; Figure 7A), gemcitabine (P = 4.75 × 10−5, ρSpearman =
−0.21; Figure 7B), paclitaxel (P = 0.005, ρSpearman = −0.14;
Figure 7C), sorafenib (P = 2.35 × 10−7, ρSpearman = −0.26;
Figure 7D).

Given the strong link observed between PDHA1 expression
and drug sensitivity of the four agents, we further performed
molecular docking analysis to measure the binding energy and
binding favorability. The outcomes manifested that the binding
free energy of PDHA1-5-fluorouracil complex (Figure 7E),
PDHA1-gemcitabine complex (Figure 7F), PDHA1-paclitaxel
complex (Figure 7G), and PDHA1-sorafenib complex (Figure
7H) were −5.8, −6.4, −7.4, and −8.7 kcal/mol, respectively.

4. DISCUSSION
HCC is a high-grade malignant tumor exhibiting metabolic
heterogeneity.3 Despite the joint multidisciplinary diagnosis
and treatment methods, including surgery, radical hepatec-
tomy, targeted therapy, and immunotherapy, the OS of
advanced HCC remains relatively low.29,30 Hence, an
innovative biomarker for prognosis prediction, risk stratifica-
tion, and therapeutic targets for HCC patients is urgently
needed. PDHA1 is a nuclear-encoded mitochondrial enzyme
that primarily links glycolysis and the TCA cycle. Previous
evidence demonstrated that PDHA1 was involved in diverse

metabolism-related signaling pathways in human diseases
including cancer.31−33 However, the clinical significance and
specific roles of PDHA1 in tumorigenesis and progression in
HCC have yet to be fully illuminated. Therefore, our research
evaluated PDHA1’s value in prognosis prediction, immune
infiltration, and drug sensitivity in HCC using independent
multiple clinical cohorts.

We first performed digestive system pan-cancer analysis of
PDHA1. PDHA1 had a significant differential expression in
most digestive system cancers, including CHOL, COAD,
LIHC, READ, and STAD, but was only correlated with
prognosis in LIHC. Indeed, many prognostic gene signatures
containing PDHA1 for HCC have been constructed. For
example, Zhou et al.34 established a cuproptosis-related genes
signature consisting of CDKN2A, DLAT, DLST, GLS, and
PDHA1 that forecasted the OS of HCC patients with
moderate to high accuracy. Furthermore, we investigated the
immune landscape of PDHA1 in the digestive system pan-
cancer. We found that PDHA1 expression was mainly
associated with B cells and T cells in most digestive system
cancers and was correlated with at least one ICK-related gene
expression in all digestive system malignancies. These findings
suggested that PDHA1 might take part in the regulation of the
tumor’s immunological microenvironment and had the

Figure 7. Drug sensitivity and molecular simulation results. Association between PDHA1 expression and IC50 values of 5-fluorouracil (A),
gemcitabine (B), paclitaxel (C), and sorafenib (D), respectively. Molecular docking simulation outcomes of PDHA1-5-fluorouracil complex (E),
PDHA1-gemcitabine complex (F), PDHA1-paclitaxel complex (G), and PDHA1-sorafenib complex (H).
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potential as a biomarker for predicting response to
immunotherapy in digestive pan-cancer.

Next, we carried out a bioinformatic analysis of PDHA1 in
HCC in detail. DEGs between PDHA1 high and low
expression groups were mainly enriched in “biological
oxidation”, “cellular response to stimuli”, “nervous system
development”, “neuronal system”, and ″extracellular matrix
organization” according to GSEA analysis. We found that
PDHA1 expression was positively linked to the expression of
CD274, CTLA4, LAG3, PDCD1, PDCD1LG2, and SI-
GLEC15 and might be associated with diverse immune cell
infiltration including CD4+ T cells, CD8+ T cells, B cells,
neutrophils, monocytes, macrophages, and dendrite cells
according to six latest algorithms. In addition, PDHA1
expression was negatively linked to steps 2, 3, 4, 5, and 7 in
anticancer immune responses based on TIP analysis,
suggesting that PDHA1’s high expression mainly hindered
the anticancer immune responses, which led to HCC patients’
poor prognosis. Prior research has also demonstrated that
PDHA1 expression negatively correlated with cancer-associ-
ated fibroblasts, dendritic cells, B cells, and T cells in diverse
cancers.35 Furthermore, single-cell analysis reconfirmed that
PDHA1 expression was associated with the infiltration levels of
macrophages and B cells. The highly enriched pathways in
macrophages and B cells were “tumor proliferation signature”,
“DNA repair”, “G2M checkpoint”, and “EMT markers”, which
were all correlated with cell proliferation. These findings were
consistent with the results of previous experiments. For
instance, Tian et al.36 discovered that PDHA1 silencing
remarkably inhibited the proliferation, migration, and invasion,
which in turn enhanced cell cycle arrest at the S phase and
apoptosis of neuroblastoma cells. Another study also
demonstrated that the circRBM33-FMR1 complex could
stimulate mitochondrial metabolism by stabilizing PDHA1
mRNA, facilitating the growth and invasion of prostate
cancer.16 Taken together, these data suggest that PDHA1
could be an immune-associated biomarker in many human
cancers. However, the underlying mechanism of PDHA1 in
shaping the tumor microenvironment needs further research.

To further explore the clinical value of PDHA1 in HCC, we
collected 30 HCC tissue samples from our hospital. PDHA1
overexpression in HCC tissues was validated by IHC. We
discovered that PDHA1 was an independent prognostic
indicator in HCC based on TCGA cohort data. We also
constructed a nomogram with a relatively excellent predictive
efficacy for clinical application. In addition, we ascertained that
PDHA1’s high expression was significantly linked to many
poor prognostic indicators, including higher AFP level, higher
creatinine level, bigger tumor diameter, and higher p53 mutant
rate in HCC. It is worth noting that p53 is a tumor suppressor
gene that controls cell cycle initiation, and its mutation
indicates that cancer cells are highly proliferative and
malignant.37 We also discovered that PDHA1 expression was
negatively associated with the IC50 of four chemotherapeutic
agents, namely, 5-fluorouracil, gemcitabine, paclitaxel, and
sorafenib. The molecular docking outcomes suggested that the
four drugs probably bound tightly to PDHA1 protein. These
data indicated that PDHA1 was a promising therapeutic target
for HCC.

PDHA1 may play different roles in different types of cancers.
Several studies revealed that PDHA1 promoted the tumori-
genesis and progression of cholangiocarcinoma,38 lymphoma,39

and renal cell carcinoma,40 whereas it presented an opposite

function in esophageal squamous cancer,41 cervical cancer,16

and nonsmall cell lung cancer.42 Recent research has indicated
that cell metabolism regulated by PDHA1 is crucial for cancer
advancement and metastasis.43 PDHA1 was recognized as a
regulator of the reactive oxygen species (ROS)-driven
adipogenic program in pancreatic cancer.44 Islam et al.45

proposed that insulin-mediated phosphorylation of PDHA1
controlled the growth of HepG2 cells. PDHA1 was also the
crucial gene of cuproptosis (copper-induced cell death),46 a
novel cell death involved in the progression of tumors by
regulating copper metabolism. However, the detailed role of
PDHA1 in HCC metabolism and the corresponding
mechanisms are still largely dismal. The pathway enrichment
outcomes in our research may provide some hints for future
research on the role and mechanism of PDHA1 in HCC
metabolism.

Nevertheless, this study still has some limitations. Data from
the TCGA database and our hospital were collected
retrospectively and the number of clinical samples from our
hospital was insufficient. Furthermore, complementary in vivo
and in vitro experiments are necessary to illuminate the
molecular mechanisms behind PDHA1’s function in the
development of HCC.

5. CONCLUSIONS
Our study detected the RNA and protein levels of PDHA1 in
HCC patients, revealed its associations with the clinicopatho-
logical characteristics of HCC patients, and identified PDHA1
as an independent prognostic indicator for HCC patients. The
bulk and single-cell RNA sequencing manifested that PDHA1
expression was mainly positively linked to the expression of
ICK-related genes and immune cell infiltrations in HCC using
the six latest algorithms. We also evaluated the potential of
PDHA1 as a chemotherapeutic target. Our multi-omics
analyses integrating genomics, bulk RNA sequencing, and
single-cell RNA sequencing revealed the value of PDHA1 for
predicting prognosis, immune cell infiltration, immunotherapy
efficacy, and drug sensitivity in HCC, which facilitated clinical
decision-making and a therapeutic strategy of HCC.
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