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Abstract

Background: Obesity is a global public health concern and increases the risk of metabolic syndrome and 
other diseases. The anti-obesity effects of various plant-derived bioactive compounds, such as tea extracts, 
are well-established. The mechanisms underlying the anti-obesity activity of Jinxuan green tea (JXGT) from 
different storage years are still unclear.
Objective: The aim of this study was to evaluate the effects of JXGTs from three different years on the high fat 
diet (HFD)-fed mouse model.
Design: The mice were divided into six groups, the control group received normal diet and the obese model 
group received HFD. We analyzed the effects of JXGTs from 2005, 2008, and 2016 on HFD-fed obese mice 
over a period of 7 weeks.
Results: The JXGTs reduced the body weight of the obese mice, and also alleviated fat accumulation and 
hepatic steatosis. Mechanistically, JXGTs increased the phosphorylation of AMP-activated protein ki-
nase  (p-AMPK)/AMP-activated protein kinase (AMPK) ratio, up-regulated carnitine acyl transferase 1A 
(CPT-1A), and down-regulated fatty acid synthase (FAS), Glycogen synthase kinase-3beta (GSK-3β), Peroxi-
some proliferator-activated receptor-gamma co-activator-1alpha (PGC-1α), Interleukin 6 (IL-6), and Tumour 
necrosis factor alpha (TNFα). Thus, JXGTs can alleviate HFD-induced obesity by inhibiting lipid biosynthe-
sis and inflammation, thereby promoting fatty acid oxidation via the AMPK pathway.
Discussion: The anti-obesity effect of three aged JXGTs were similar. However, JXGT2016 exhibited a more 
potent activation of AMPK, and JXGT2005 and JXGT2008 exhibited a more potent inhibiting glycogen 
synthase and inflammation effect. Furthermore, the polyphenol (–)-epicatechin (EC) showed the strongest 
positive correlation with the anti-obesity effect of JXGT.
Conclusions: These findings demonstrate that JXGT treatment has a potential protection on HFD-induced 
obesity mice via activating the AMPK/CPT-1A and down-regulating FAS/GSK-3β/PGC-1α and IL-6/TNFα. 
Our study results also revealed that different storage time would not affect the anti-obesity and anti-inflam-
mation effect of JXGT.

Popular scientific summary
•  This research study employed the water extracts of aged Jinxuan green tea on anti-obesity and 

anti-inflammation effects.
•  The treatment of Jinxuan green tea significantly reduced body weight and fat accumulation in high-

fat diet fed obese mice, and the different storage time would not affect the effect.
•  The mechanism of Jinxuan green tea appears to be mediated by activating the AMPK/CPT-1A and 

down-regulating FAS/GSK-3β/PGC-1α and IL-6/TNFα.
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Obesity results from the imbalance between 
high-energy intake and low-energy expenditure, 
and is currently a global health concern (1). It is a 

major risk factor of hypertension, type 2 diabetes, cancer, 
rheumatoid arthritis and cardiovascular diseases (2–5). 
Studies show that several plant-derived bioactive com-
pounds can alleviate obesity without the side effects of 
conventional weight loss drugs (6–9).

Tea brewed from the fresh leaves of Camellia sinen-
sis contains a variety of bioactive compounds including 
polysaccharides, polyphenols, and so on (10, 11). Sev-
eral studies have demonstrated the anti-obesity effects of 
green tea, Fubrick tea, and black tea (12–14). The com-
position of the bioactive compounds in the different types 
of tea depends on the processing and fermentation. Green 
tea is a non-fermented tea, although its prolonged storage 
induces a slight natural fermentation that may alter its ac-
tive components.

AMP-activated protein kinase (AMPK) controls lipid 
metabolism by modulating the CPT-1A and FAS path-
ways (15, 16). The AMPK activation also correlates 
with GSK-3β downregulation (17) and mitochondrial 
biogenesis via PGC-1α (18). In our previous studies, we 
found that different types of tea can alleviate obesity via 

AMPK activation. Furthermore, the weight-loss effect of 
green tea is associated with the AMPK/CPT-1A/FAS and 
GSK-3β/ PGC-1α pathways.

The aim of this study was to evaluate the effects of 
Jinxuan Green teas (JXGTs) from three different years on 
the high-fat diet (HFD)-fed mouse model for determin-
ing the effect of its prolonged storage on the anti-obesity 
components of green tea. We found that JXGTs alleviated 
HFD-induced weight gain by elevating the p-AMPK/
AMPK ratio, and the activated AMPK mitigated lipid 
synthesis and balanced energy metabolism through the 
CPT-1A/FAS and GSK-3β/PGC-1α pathways, respec-
tively. Furthermore, JXGTs inhibited obesity-induced in-
flammation by downregulating pro-inflammatory factors, 
such as IL-6 and TNFα. Taken together, JXGT mediates 
anti-obesity and anti-inflammatory effects that warrant 
further investigation.

Materials and methods

Preparation and characterization of lyophilized JXGT extract
Dried JXGT leaves from the years 2005, 2008, and 2016 
were obtained from the Tea Research Institute, Guang-
dong Academy of Agricultural Sciences in China. As 
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reported previously (19), the JXGT leaves were pulverized 
and extracted by boiling in water for 30 min (tea/water = 
1:20 w/v). The tea extracts were concentrated by rotary 
evaporation to one-fifth of the original volume and dried 
by a vacuum freeze dryer. The content of free amino acids, 
total soluble sugar, polyphenols, caffeine, and catechin 
were measured by the ninhydrin method, anthrone-sul-
furic acid colorimetric assay, Folin-phenol method, and 
high-performance liquid chromatography (HPLC), re-
spectively, as previously reported (20–22).

Establishment of obesity model in mice and treatment regimen
Male C57BL/6J mice (7 weeks old) were purchased from 
Beijing Huafukang Bioscience Co. Ltd. (Beijing, China) 
All experimental procedures were approved by the Ethics 
Committee of the institute, and performed according to 
the institutional guidelines for the care and use of labo-
ratory animals. The protocols were approved by the Eth-
ical Committee of Tea Research Institute. The mice were 
individually housed at 23 ± 2°C and 60 ± 15% humidity 
on a 12-h light/dark cycle, with free access to deionized 
water and basic feed. After a week of adaptation, the mice 
were randomly divided into the following six groups (n = 8 
each): control (basic diet), model (HFD), positive control 
(HFD + 10 mg/kg/day atorvastatin), JXGT 2005 (HFD + 
1000 mg/kg/day JXGT 2005), JXGT 2008 (HFD + 1000 
mg/kg/day JXGT 2008), and JXGT 2016 (HFD + 1000 
mg/kg/day JXGT 2016). The mice were given intragastric 
administration once a day for 7 weeks. The normal diet 
consisted of 18% proteins, 4% fats, 62% carbohydrates, 5% 
fiber, 8% minerals, and 3% vitamins for the control group. 
The calorific contribution of fats, proteins, and carbohy-
drates in the HFD were 45, 20, and 35% respectively for 
HFD-induced groups. Both feeds were prepared by the 
Guangdong Medical Laboratory Animal Center. Each 
group was provided with distilled water, and the body 
weight, food and water intake were recorded once a week.

Tissue processing
After 7 weeks of  treatment, the mice were anesthetized 
with 40 mg/kg pentobarbital following overnight fast-
ing and euthanized by cervical dislocation. The whole 
blood was collected into heparinized tubes, and the 
sera were separated by centrifuging at 3,000 rpm for 
10 min. The adipose tissues (including abdominal fat, 
intestinal fat, and perirenal fat) and liver were removed, 
washed with PBS, weighed, and frozen at –80°C for fur-
ther analysis.

Biochemical analysis
The serum levels of triglycerides (TGs), total cholesterol 
(TC), high-density lipoprotein cholesterol (HDL-C), 
and low-density lipoprotein cholesterol (LDL-C) were 
measured using commercially available kits (Nanjing 

Jiancheng Bioengineering Institute, China) according to 
the instructions.

Protein extraction and Western blotting
Total protein was extracted from the liver using a protein 
extraction kit (Jiancheng Bioengineering Institute, Nan-
jing, China). Equal amounts of protein per sample were 
resolved by 10% SDS-PAGE and transferred to Polyvi-
nylidene fluoride (PVDF) membranes. After blocking with 
5% skimmed milk in Tris Buffered Saline with Tween-20 
(TBST) for 1 h at room temperature, the proteins were in-
cubated overnight with primary antibodies against AMPK 
(#2532S, Cell Signaling Technology, Danvers, MA, USA), 
p-AMPK (#2535S, CST), CPT-1A (15184-1-AP, Protein-
tech Group, Rosemont, USA), FAS (Abp51334, Abbkine, 
CA, USA), GSK-3β (#9315, CST), PGC-1α (2178S, CST), 
IL-6 (bs-0379R, Bioss, Beijing, China), TNFα (ab6671, 
Abcam, Cambridge, UK), and β-actin (Sigma-Aldrich, 
St Louis, MO, USA) at 4°C. The membranes were then 
probed with anti-rabbit secondary antibody IgG (HRP) 
(ab6721, Abcam) or anti-mouse secondary antibody IgG 
(HRP) (ab197767, Abcam) for 1 h at room temperature. 
After washing thrice with TBST, the blots were developed 
using a chemiluminescence reagent (P0018A, Shanghai 
Beyotime Biotechnology Co., Ltd, China), and the pos-
itive bands were visualized with a Gel Imaging System 
(General Electric, Fairfield, CT, USA). The band intensi-
ties were measured using the ImageJ software.

Statistical analysis
All statistical analyses were performed using SPSS 16.0 
(IBM, USA), and GraphPad Prism 7.0 (USA) was used to 
plot graphs. Multiple groups were compared by one-way 
analysis of variance (ANOVA) followed by Dunnett’s test. 
Independent Student’s t-test (two-tailed) was used for pair-
wise comparison. The correlation between factors was eval-
uated by Pearson correlation analysis. All data are presented 
as the means ± SD of at least three independent experi-
ments, P < 0.05 was considered to be statistically significant.

Results

Prolonged storage affects the composition of JXGTs
As shown in Table 1, JXGT2005 and JXGT2008 had 
a higher water content compared with JXGT2016. 
Due to time-dependent degradation and oxygenation 
during storage, the content of  free amino acids, solu-
ble sugars, and tea polyphenols was significantly lower 
in the aged JXGT, as reported in our previous studies 
(23, 24).

JXGTs reduced body weight in HFD-fed obese mice
As shown in Fig. 1A, HFD feeding for 7 weeks signifi-
cantly increased the body weight of  the mice compared 
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Fig. 1. Effect of JXGTs on the body weight (A), weight gain (B), diet consumption (C), and water consumption (D) of HFD-fed 
obese mice. Data are presented as means ± SD (n = 8). **P < 0.01 and *P < 0.05.

Table 1. The components of Jinxuan Green teas from three different storage years

Constituent JXGT2005 JXGT2008 JXGT2016

Free amino acid (%) 1.62 ± 0.03a 1.65 ± 0.06a 2.30 ± 0.04b

Soluble sugar (%) 6.61 ± 0.02a 6.25 ± 0.11a 7.80 ± 0.03b

Tea polyphenols (%) 30.77 ± 2.79a 30.54 ± 2.52a 32.65 ± 1.52a

GA 13.16 ± 1.23a 11.25 ± 1.88a 55.98 ± 3.04b

GC 5.87 ± 0.03a 5.86 ± 0.04a 9.04 ± 0.21b

EGC 1.11 ± 0.00a 1.11 ± 0.00a 1.06 ± 0.00b

C 1.54 ± 0.01a 1.64 ± 0.05a 2.31 ± 0.05b

CAFF 19.73 ± 0.29a 20.38 ± 0.14a 17.59 ± 0.32b

EC 3.53 ± 0.10a 4.15 ± 0.16a 4.72 ± 0.25b

EGCG 31.23 ± 0.41a 32.07 ± 0.13a 28.32 ± 0.26b

GCG 8.31 ± 0.14a 7.48 ± 0.20b 8.68 ± 0.30a

ECG 1.21 ± 0.02a 1.14 ± 0.04a 0.87 ± 0.04a

CG 5.89 ± 0.05a 5.87 ± 0.21a 5.88 ± 0.17a

Water (%) 9.50 ± 0.02a 9.20 ± 0.02b 4.64 ± 0.01c

The value is mean ± SD (n = 3). Values marked with different lower case letters in superscript format indicate significant difference, values marked 
with the same lower case letters in superscript format indicate no significant difference.

Note: (−)-epicatechin (EC), (−)-epigallocatechin (EGC), (−)-epicatechin gallate (ECG), (−)-epigallocatechin gallate (EGCG), (+)-catechin (C) and 
(+)-gallocatechin (GC), (−)-catechin gallate (CG) and (−)-gallocatechin gallate (GCG). a,b,c The value of ingredients contents is mean ± SD (n = 3). 
Means followed by the same letter are not significantly different at P < 0.05.
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with the normal diet-fed controls. In contrast, intragas-
tric administration of  JXGTs during the 7-week regimen 
significantly inhibited the HFD-induced weight gain (P 
< 0.01; Fig. 1B). The daily food and water intake did 
not show any marked differences among all groups (Fig. 
1C and D). Taken together, JXGTs can prevent HFD-in-
duced obesity without suppressing calorific intake.

JXGTs attenuated fatty liver and adiposity in the HFD-fed obese 
mice
The effects of JXGTs on fat accumulation were evaluated 
in terms of anatomical and biochemical indices. JXGTs 
markedly reduced the accumulation of white fat in the 
HFD-fed obese mice compared with the untreated mice 
(Fig. 2A). As shown in Fig. 2B, yellowish-brown fatty liv-
ers characterized by uneven surface were observed in mice 
fed with the HFD for 7 weeks compared with the healthy 
controls. JXGTs treatment protected the liver of the 
HFD-fed mice from steatosis. Furthermore, JXGTs also 
significantly decreased the size of the abdominal (Fig. 
2C) and perirenal (Fig. 2D) fat tissue masses, especially 
in the JXGT2008 group. Consistent with this, JXGTs also 
reduced the total amount of white fat, and that of epidid-
ymal, intestinal and pararenal fat in the HFD-fed mice 
to near-baseline levels, and the effect was similar for the 
JXGTs from different storage years (P < 0.01; Fig. 2E–H). 
Thus, JXGT treatment can effectively attenuate HFD-in-
duced fatty liver and adiposity. Furthermore, HFD mark-
edly increased the serum levels of TGs, TC, high-density 
lipoprotein (HDL), and low-density lipoprotein (LDL). 
The supplementation of JXGT reversed the HFD-in-
duced increment in TG (Supplementary Fig. 1A) but did 
not affect the other indices (Supplementary Fig. 1B–D).

JXGTs activate AMPK-driven metabolic pathways
AMPK plays an important role in energy metabolism 
by stimulating fatty acid oxidation. The HFD-fed obese 
mice had significantly a lower level of  p-AMPK in the 
liver, which was reversed by JXGT treatment (Fig. 3A). 
Consistent with this, HFD decreased the p-AMPK/
AMPK ratio by 44% compared with that in healthy con-
trols, and was restored by JXGTs from the different stor-
age years (Fig. 3B). CPT-1 is the rate-limiting enzyme of 
fatty acid oxidation, and FAS is a key enzyme involved 
in fatty acid synthesis. As shown in Fig. 4A, CPT-1 and 
FAS were, respectively, downregulated and upregulated 
in the liver of  obese mice, and their expression levels 
were significantly reversed by JXGT treatment (Fig. 
4B). GSK-3β and PGC1-α are the key protein kinases 
involved in energy metabolism. As shown in Fig. 5A, 
GSK-3β was up-regulated in the HFD-fed mice and de-
creased by JXGT treatment. In addition, PGC1-α was 
down-regulated in the JXGT-treated groups (Fig. 5B 
and C).

JXGTs inhibit IL-6 and TNF-α expression
Obesity is usually associated with an increase in inflamma-
tion, and high in situ levels of IL-6 and TNFα, which can 
aggravate liver injury and weaken the hepatic glucolipid 
and lipid metabolism (25). As shown in Fig. 6, IL-6 and 
TNFα levels were significantly higher in the liver tissues 
of obese mice. Treatment with the different JXGTs signifi-
cantly decreased the levels of both factors compared with 
that in the untreated obese mice (P < 0.01).

Correlation analysis
To further evaluate the role of tea-derived phytochemicals 
against obesity, we analyzed the Pearson correlation be-
tween the phytochemical composition of JXGTs and vari-
ous parameters of obesity and inflammation (Fig. 7). The 
content of tea polyphenols, amino acids and soluble sugar 
was positively correlated with AMPK pathway activation, 
as well as most anti-inflammatory parameters. Further-
more, GCG (GCG) and catechin gallate (CG) were posi-
tively correlated with the loss of body weight.

Discussion
Obesity is primarily a result of increased consumption 
of sugars and fats, and lack of physical exercise, along 
with aberrant fatty acid biosynthesis and degradation 
(26). It is a major health problem worldwide (27), and is 
accompanied by several hormonal and inflammatory dis-
turbances that increase the risk of diabetes (28), hyper-
tension (3), dyslipidemia and metabolic syndrome (29). 
The commonly prescribed weight-loss drugs like orlistat, 
sibutramine, and rimonabant cause side effects, such as 
oily stools and flatulence (30). Several studies have iden-
tified plant-derived bioactive compounds with significant 
anti-obesity and weight-loss effects (31–34). For instance, 
tea brewed from fresh leaves of C. sinensis has several ben-
eficial effects. Depending on the extent and method of fer-
mentation, tea is classified into the non-fermented green 
tea, lightly fermented yellow tea and white tea, partially 
fermented oolong tea, completely fermented black tea, 
and post-fermented dark tea (35). Green tea, in particular, 
has exhibited protective effects against skin photoaging, 
stress, neurodegeneration, hypertrophy, hypolipidemia, 
inflammation, and obesity (36–39).

Atorvastatin is one of the most widely prescribed drugs 
and the most widely prescribed statin in the world (40), 
which is widely used as a positive control to lower elevated 
lipid levels and anti-obesity by difference dosages (1–80 
mg/kg/day) treatment in the HFD induced model (19, 41, 
42). Therefore, positive control group is treated with a rel-
atively low-dose atorvastatin (10 mg/kg/day) in this study. 
In this study, we compared the potential anti-obesity ef-
fects of JXGTs from different storage years on HFD-fed 
mice. Although the JXGTs had little effect on the calo-
rific intake of the mice, they significantly reduced body 
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Fig. 2. JXGTs attenuate fatty liver and adiposity in HFD-induced obese mice. Representative images of whole body (A), fatty 
liver (B), abdominal (C), and perirenal (D) white fat in all groups. The indices of total (E), abdominal (F), intestinal (G), and 
perirenal (H) white fat relative to body weight. Data are presented as the means ± SD (n = 8). **P < 0.01 and *P < 0.05.
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weight and fat accumulation at multiple anatomical sites, 
and the duration of storage had no significant effect on 
the anti-obesity effects of JXGT (23).

The liver is the central organ of  lipid storage and me-
tabolism. The consumption of  high amount of  dietary 
fat leads to liver steatosis (43). AMPK is the main sen-
sor of  energy status in eukaryotic cells, and thus, coordi-
nates the growth and metabolism of  specific tissues. The 
AMPK/p-AMPK is highly sensitive to energetic stress, 
and the liver-specific AMPK activation reprograms lipid 
metabolism and mitigates diet-induced obesity in mice 
(44). Studies show that the green tea extract and specific 
bioactive compounds like maslinic acid and EGCG can 
reduce obesity in mouse and zebrafish obesity models, 

respectively, through AMPK activation (45–47). In our 
previous studies, we found that aged oolong tea and 
Hakka stir-fried tea protected mice against obesity by 
activating the AMPK signaling pathway (19, 23, 24). As 
the JXGTs also markedly induced AMPK phosphory-
lation and the p-AMPK/AMPK ratio in liver tissues, 
their anti-obesity effects are also likely mediated via the 
AMPK signaling pathway.

The limiting factor of lipogenesis is malonyl-CoA, 
which is also an important precursor of the lipid bio-
synthetic pathway. AMPK activation decreases cellular 
malonyl-CoA levels, which, in turn, upregulates CPT1 
(48). And FAS is a major regulator of lipogenic protein, 
and its activity is also regulated by AMPK. Then we 

Fig. 3. JXGTs activate AMPK phosphorylation. (A) Immunoblot showing AMPK protein levels in the liver of differentially 
treated mice and (B) densitometric quantification. Data are presented as means ± SD (n = 3). **P < 0.01 and *P < 0.05.

Fig. 4. JXGTs upregulate CPT-1 and inhibit FAS expression. (A) Immunoblot showing expression levels of CPT-1 and FAS 
protein in mouse liver and densitometric quantification of (B) CPT-1 and (C) FAS. Data are presented as the means ± SD (n = 3). 
**P < 0.01, and *P < 0.05.
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Fig. 6. JXGTs inhibit IL-6 and TNF-α expression. (A) Immunoblot showing IL-6 and TNF-α protein levels in mouse liver and 
densitometric quantification of (B) IL-6 and (C) TNF-α. Data are presented as means ± SD (n = 3). **P < 0.01 and *P < 0.05.

Fig. 5. JXGTs upregulate PGC-1α and inhibit GSK-3β expression. (A) Immunoblot showing expression levels of GSK-3β and 
PGC-1α protein in mouse liver and densitometric quantification of (B) GSK-3β and (C) PGC-1α. Data are presented as means 
± SD (n = 3). **P < 0.01 and *P < 0.05.
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demonstrated that aged JXGT significantly increased the 
expression of CPT1A (Fig. 4A and B) and inhibited the 
protein level of FAS (Fig. 4A and C). Our data established 
that the activation of AMPK/CPT-1A pathway and the 
inhibition of FAS pathways might be potential targets for 
JXGT treatment to prevent hepatic lipid accumulation.

The activation of AMPK not only inhibits the lipid 
synthesis and increases lipid oxidation but also the glu-
cose synthesis in liver (49). GSK3β is a key enzyme of 
glycogen synthesis, and is elevated in both human subjects 
and animal models with diabetes. AMPK activation is as-
sociated with inhibition of GSK3β (50), and JXGT-me-
diated activation of AMPK in our HFD-fed model also 
decreased the obesity-induced overexpression of GSK3β. 
Another downstream target of AMPK is the transcription 
factor PGC-1α, which increases the expression of genes 
involved in mitochondrial biogenesis (51). Studies show 
that the activation of AMPK can up-regulate PGC-1α 
and ultimately promote mitochondrial biogenesis (52, 
53). In this study, the aged JXGTs decreased the levels of 
IL-6 and TNFα, which is indicative of their potent an-
ti-inflammatory effect. The effects of these three JXGTs 
on body weight were similar (Figs. 1 and 2). However, the 

ratio of p-AMPK/AMPK in the JXGT2016 group was 
higher than that in the JXGT2005 and JXGT2008 groups 
(Fig. 3). And JXGT2005 and JXGT2008 groups decreased 
the levels of GSK-3β (Fig. 5B), IL-6, and TNFα (Fig. 6) 
much lower than the JXGT2016 group, which is indicative 
of their potent inhibited glycogen synthesis and anti-in-
flammatory effect. Our study results showed that different 
storage years of JXGT can significantly attenuate body 
weight gain by HFD through its increased lipid metabo-
lism, inhibited glycogen synthesis, and anti-inflammatory 
functions related to p-AMPK activation.

The major bioactive component in green tea are the 
polyphenol compounds that constitute 24−36% of the 
dry weight, followed by protein (15%), lignin (7%), amino 
acids (3−4%), caffeine (2−4%), organic acids (2%) and 
chlorophyll (0.5%) (54). Most of the beneficial effects of 
green tea are attributed to the high polyphenol content 
(55). We found that the content of free amino acids, sol-
uble sugar, and tea polyphenols was positively correlated 
with p-AMPK levels and negatively correlated with the 
serum levels of TG, HDL-C, and LDL-C, whereas no 
significant correlation was observed with fat accumula-
tion (Fig. 7). The major polyphenols of green tea include 

Fig. 7. The correlation between the phytochemicals and obesity parameters and inflammation indices in the different experi-
mental groups. (−)-epicatechin (EC), (−)-epigallocatechin (EGC), (−)-epicatechin gallate (ECG), (−)-epigallocatechin gallate 
(EGCG), (+)-catechin (C) and (+)-gallocatechin (GC), (−)-catechin gallate (CG) and (−)-gallocatechin gallate (GCG). Signifi-
cant correlations are annotated by **P < 0.01 and *P < 0.05. 
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EC, (−)-epigallocatechin (EGC), (−)-epicatechin 3-gallate 
(ECG), (−)-epigallocatechin 3-gallate (EGCG), (+)-cate-
chin (C), and (+)-gallocatechin (GC), along with smaller 
amounts of (−)-catechin gallate (CG) and (−)-c (GCG) 
(12). Daily consumption of green tea extracts, especially 
EGCG, has been shown to increase fat oxidation and en-
ergy expenditure (55, 56). In addition, CG, EGC, ECG, 
and EGCG can suppress intracellular lipid accumula-
tion in 3T3-L1 cells (57). Gallic acid (GA) inhibits lipid 
accumulation via the activation of AMPK in HepG2 
cells (58). In this study, we analyzed the levels of specific 
polyphenols in the JXGTs by HPLC-MS (Table 1), and 
then revealed that GA, GC, C, EC and GCG were pos-
itively correlated with the AMPK pathway (Fig. 7). The 
correlation between the phytochemicals and obesity and 
inflammation indices in the different treatment groups 
was in agreement with the previous study. Whereas EGC, 
EGCG, ECG, and caffeine (CAFF) had a negative cor-
relation, EC showed the strongest correlation with weight 
gain, and GCG and CG were positively correlated with 
fat accumulation (Fig. 7). Our data revealed that EGCG, 
as a portion of phytochemicals of JXGT, might have a op-
posite dose-dependent effect of AMPK activation in our 
used dose range. However, it does not mean that EGCG 
inhibits the activation of AMPK. However, the exact an-
ti-obesity and anti-inflammatory effects of the different 
polyphenols need to be explored further. Furthermore, the 
possible synergistic effects of the different bioactive com-
pounds of JXGTs need to be investigated. For instance, 
the consumption of caffeine and EGCG synergistically 
increased fat oxidation and energy expenditure (59).

Conclusion
JXGTs reduced white fat accumulation, increased lipid me-
tabolism, and inhibited glycogen synthesis in the HFD-fed 
obese mice by targeting FAS, GSK-3β, and the AMPK/
CPT1A pathway. In addition, JXGT reduced inflammation 
by downregulating IL-6 and TNFα. The storage duration 
had no significant effect on the activity of JXGT. Finally, 
the polyphenol EC showed a significant positive correlation 
with AMPK activation and weight gain Taken together, 
JXGT is a promising therapeutic agent against obesity and 
metabolic disorders, and different storage time would not af-
fect the anti-obesity and anti-inflammation effects of JXGT.
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