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Abstract: The two β-arrestins (β-arrestin-1 and -2; alternative names: arrestin-2 and -3, respectively)
are well known for their ability to inhibit signaling via G protein-coupled receptors. However,
β-arrestins can also act as signaling molecules in their own right. Although the two proteins share a
high degree of sequence and structural homology, early studies with cultured cells indicated that
β-arrestin-1 and -2 are not functionally redundant. Recently, the in vivo metabolic roles of the two
β-arrestins have been studied using mutant mice selectively lacking either β-arrestin-1 or -2 in cell
types that are of particular relevance for regulating glucose and energy homeostasis. These studies
demonstrated that the β-arrestin-1 and -2 mutant mice displayed distinct metabolic phenotypes
in vivo, providing further evidence for the functional heterogeneity of these two highly versatile
signaling proteins.
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1. Introduction

The two β-arrestins, β-arrestin-1 and -2 (alternative nomenclature: arrestin-2 and -3,
respectively), are intracellular proteins that are best known for their ability to regulate
the activity of G protein-coupled receptors (GPCRs) [1,2]. In contrast to rod and cone
arrestin (arrestin-1 and -4, respectively), which are mainly found in the eye, β-arrestin-1
(βarr1) and β-arrestin-2 (βarr2) are found in virtually every cell type [1,2]. Following GPCR
occupation by agonist ligands, including hormones, neurotransmitters, metabolites, or
sensory stimuli, most GPCRs are subject to phosphorylation by GPCR kinases (GRKs).
This structural modification enables the two β-arrestins to bind to the intracellular surface
of the receptors, thus interfering with productive receptor/G protein coupling via steric
hindrance [1,2]. Moreover, due to the ability of receptor-associated β-arrestins to bind to
clathrin and adaptor protein 2 (AP-2), β-arrestins play a key role in GPCR internalization
via clathrin-coated pits [2,3].

Beyond these “traditional roles” of β-arrestins, a large body of evidence indicates that
β-arrestins can act as signaling molecules in their own right, often by serving as scaffolding
proteins for various intracellular signal transduction cascades [4–6]. The best-known
example is the ability of β-arrestins to stimulate signaling via different mitogen-activated
protein kinase (MAPK) signaling pathways [4–6]. While many of these non-canonical
β-arrestin activities are predicted to require the prior recruitment of β-arrestins by GPCRs,
GPCR-independent β-arrestin functions have also been reported [4–6]. In addition, recent
studies suggest that at least some of the cellular functions of β-arrestins require the presence
of functional G proteins [7–9].

βarr1 and βarr2 are found in all mammals, suggesting that the existence of the two
β-arrestin isoforms is advantageous from an evolutionary point of view [10]. The two β-
arrestins share more than 70% identity at the amino acid level and have very similar
three-dimensional structures [11]. For this reason, it is not surprising that the two proteins
share many similar functions. However, early studies with cultured cells clearly indicated

Int. J. Mol. Sci. 2022, 23, 495. https://doi.org/10.3390/ijms23010495 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23010495
https://doi.org/10.3390/ijms23010495
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms23010495
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23010495?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 495 2 of 6

that βarr1 and βarr2 are not functionally redundant [1,11]. For example, βarr2 has higher
affinity for many GPCRs than βarr1, although some GPCRs preferentially recruit βarr1 [10].
Another striking example highlighting this functional heterogeneity is the observation that
βarr2, but not βarr1, can promote the activation of c-jun N-terminal kinase 3 (JNK3) [10].
In agreement with these findings, an early global proteomics study using cultured HEK293
cells showed that the two β-arrestins are endowed with distinct protein interaction pro-
files, both under basal conditions and after stimulation of angiotensin II type 1a receptor
signaling [12].

One possibility is that minor local conformational differences between βarr1 and βarr2
contribute to the ability of the two proteins to affect cellular functions in an isoform-specific
fashion. In agreement with this notion, subtle structural differences have been observed in
the inter-domain hinge region of activated βarr1 and βarr2 [11].

While the two β-arrestins are primarily found in the cytoplasm, both βarr1 and βarr2
contain a nuclear localization sequence [13]. However, since βarr2 also harbors a nuclear
export signal domain, βarr2, but not βarr1, is predicted to be rapidly exported back to
the cytoplasm [11]. In agreement with this concept, accumulating evidence indicates that
nuclear βarr1 can regulate several important transcriptional processes [13]. These findings
suggest that differences in subcellular localization can also contribute to the functional
divergence of the two β-arrestins [11].

2. Studies with Whole-Body β-Arrestin Knockout (KO) Mice

In agreement with published in vitro data, studies with whole-body β-arrestin KO
mice confirmed that βarr1 and βarr2 differ in the physiological processes they regulate
in vivo [14]. For example, nicotinic acid (niacin), an FDA-approved drug, lowers the
plasma lipid levels by activation of the Gi-coupled hydrocarboxylic acid 2 (HCA2) receptors
(alternative name: GPR109A) expressed by adipocytes [15]. A major side effect caused by
nicotinic acid is the “niacin flush”, a flush of red on the skin that is frequently accompanied
by an itching or burning sensation. This response is greatly reduced in βarr1 KO but not
βarr2 KO mice [16]. Another striking example highlighting the different in vivo functions
of the two β-arrestins are the different metabolic phenotypes displayed by whole-body
βarr1 and βarr2 KO mice [17].

3. Analysis of Cell-Type Specific β-Arrestin KO Mice

The recent availability of floxed βarr1 and βarr2 mice has made it possible to delete
either of the two β-arrestin isoforms in a cell type-specific fashion [18,19]. As a result,
it is now possible to compare the in vivo physiological importance of βarr1 and βarr2
expressed by a particular cell type. Specifically, recent work has targeted cell types that
play critical roles in regulating glucose and energy homeostasis [20]. In the following, I will
briefly summarize the outcome of studies carried out with cell type-specific β-arrestin KO
mice that provide additional in vivo evidence for the functional heterogeneity of the two
β-arrestin isoforms.

3.1. Hepatocytes

Mice that selectively lack βarr1 in hepatocytes do not show any impairments in glu-
cose homeostasis [21]. In contrast, hepatocyte-specific βarr2 KO mice display striking
metabolic deficits, primarily due to increased hepatic glucagon receptor (GCGR) signal-
ing [21] (Figure 1a). While glucagon-induced GCGR internalization remains intact in
hepatocytes lacking βarr1, this process is severely disrupted in βarr2-deficient hepatocytes.
Since receptor internalization contributes to GPCR desensitization, the most likely scenario
is that the lack of GCGR internalization caused by βarr2 deficiency plays a key role in
promoting GCGR signaling in βarr2-deficient hepatocytes [21].



Int. J. Mol. Sci. 2022, 23, 495 3 of 6Int. J. Mol. Sci. 2022, 23, x  3 of 6 
 

 

 
Figure 1. The two β-arrestins regulate different functions in metabolically important cell types in 
vivo. (a–d) Summary of the outcome of metabolic studies with mutant mice lacking βarr1 or βarr2 
selectively in mouse hepatocytes (a), pancreatic β-cells (b), adipocytes (c), and AgRP neurons of the 
arcuate nucleus of the hypothalamus (d) (for a review, see [20]). See text for details. HFD, high-fat 
diet; CAMKII, calcium/calmodulin-dependent protein kinase II; BAT, brown adipose tissue; AgRP, 
agouti-related peptide; NPY, neuropeptide Y; POMC, proopiomelanocortin; ARC, arcuate nucleus; 
PVN, paraventricular nucleus; LH, lateral hypothalamus. 

3.2. Pancreatic β-Cells 
The selective inactivation of βarr1 or βarr2 in pancreatic β-cells also results in well-

defined metabolic phenotypes [22–24] (Figure 1b). Mice that selectively lack β-cell βarr2 
show significantly impaired insulin release when the mutant mice are maintained on a 
calorie-rich diet [23]. Studies with isolated islets showed that glucose-induced insulin se-
cretion is greatly reduced in βarr2-deficient β-cells, most likely due to impaired function 
of calcium/calmodulin-dependent protein kinase type II (CAMKII), a multi-functional 
Ser/Thr protein kinase that plays an important role in promoting insulin exocytosis [23]. 
Biochemical studies indicated that βarr2 can interact with CAMKII in a protein complex 
that is critical for the proper function of CAMKII [23]. It remains unknown at present 
whether this βarr2 function is regulated by the activity of β-cell GPCRs. 

Like the β-cell βarr2 KO mice, β-cell βarr1 KO mice display significant impairments 
in glucose tolerance and glucose-dependent insulin secretion when maintained on an obe-
sogenic diet [24]. Interestingly, Barella et al. [24] reported that obese β-cell βarr1 KO mice 
exhibit a striking decrease in β-cell mass and rate of β-cell proliferation (Figure 1b). Addi-
tional studies showed that β-cell βarr1 is required for the proper expression of the tran-
scription factor Pdx1, the master regulator of β-cell function and β-cell mass expansion 
[25]. Barella et al. [24] concluded that the lack of nuclear βarr1 leads to reduced Pdx1 ex-
pression and that this deficit underlies the metabolic impairments displayed by obese β-
cell βarr1 KO mice [24].  

Somewhat surprisingly, a related study [22] showed that the presence of β-cell βarr1 
is required for most antidiabetic drugs of the sulfonylurea (SU) family to simulate insulin 
release with high efficacy (Figure 1b). Mechanistic studies revealed that βarr1 enhances 

Figure 1. The two β-arrestins regulate different functions in metabolically important cell types
in vivo. (a–d) Summary of the outcome of metabolic studies with mutant mice lacking βarr1 or βarr2
selectively in mouse hepatocytes (a), pancreatic β-cells (b), adipocytes (c), and AgRP neurons of the
arcuate nucleus of the hypothalamus (d) (for a review, see [20]). See text for details. HFD, high-fat
diet; CAMKII, calcium/calmodulin-dependent protein kinase II; BAT, brown adipose tissue; AgRP,
agouti-related peptide; NPY, neuropeptide Y; POMC, proopiomelanocortin; ARC, arcuate nucleus;
PVN, paraventricular nucleus; LH, lateral hypothalamus.

3.2. Pancreatic β-Cells

The selective inactivation of βarr1 or βarr2 in pancreatic β-cells also results in well-
defined metabolic phenotypes [22–24] (Figure 1b). Mice that selectively lack β-cell βarr2
show significantly impaired insulin release when the mutant mice are maintained on a
calorie-rich diet [23]. Studies with isolated islets showed that glucose-induced insulin
secretion is greatly reduced in βarr2-deficient β-cells, most likely due to impaired function
of calcium/calmodulin-dependent protein kinase type II (CAMKII), a multi-functional
Ser/Thr protein kinase that plays an important role in promoting insulin exocytosis [23].
Biochemical studies indicated that βarr2 can interact with CAMKII in a protein complex
that is critical for the proper function of CAMKII [23]. It remains unknown at present
whether this βarr2 function is regulated by the activity of β-cell GPCRs.

Like the β-cell βarr2 KO mice, β-cell βarr1 KO mice display significant impairments
in glucose tolerance and glucose-dependent insulin secretion when maintained on an
obesogenic diet [24]. Interestingly, Barella et al. [24] reported that obese β-cell βarr1 KO
mice exhibit a striking decrease in β-cell mass and rate of β-cell proliferation (Figure 1b).
Additional studies showed that β-cell βarr1 is required for the proper expression of the
transcription factor Pdx1, the master regulator of β-cell function and β-cell mass expan-
sion [25]. Barella et al. [24] concluded that the lack of nuclear βarr1 leads to reduced Pdx1
expression and that this deficit underlies the metabolic impairments displayed by obese
β-cell βarr1 KO mice [24].

Somewhat surprisingly, a related study [22] showed that the presence of β-cell βarr1
is required for most antidiabetic drugs of the sulfonylurea (SU) family to simulate insulin
release with high efficacy (Figure 1b). Mechanistic studies revealed that βarr1 enhances
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SU-induced insulin release by promoting SU-dependent activation of Epac2 via formation
of a βarr1/Epac2 complex that triggers Rap1 activation and insulin secretion [22].

3.3. Adipocytes

Mice that selectively lack βarr2 in adipocytes are protected against high-fat diet-
induced weight gain and the associated metabolic deficits, including impaired glucose
tolerance and insulin resistance [26]. Pydi et al. [26] showed that the metabolic improve-
ments caused by adipocyte βarr2 deficiency are mediated by the browning/beiging of white
adipose tissue. At the cellular level, βarr2 acts as a strong negative regulator of adipocyte
β3-adrenergic receptor (β3-AR) signaling by promoting the internalization of this receptor
subtype [26] (Figure 1c). In mice, β3-ARs are known to mediate the browning/beiging of
white adipose tissue caused by activation of the sympathetic nervous system [27].

Strikingly, mutant mice that selectively lack βarr1 in adipocytes exhibit metabolic
phenotypes that are opposite to those caused by adipocyte βarr2 deficiency [28]. The
absence of βarr1 in adipocytes results in greatly impaired glucose tolerance and insulin
resistance when mice are maintained on an obesogenic diet. Pydi et al. [28] demonstrated
that βarr1 deficiency promotes the expression of myostatin in brown adipose tissue, result-
ing in elevated plasma myostatin levels that eventually trigger peripheral insulin resistance.
These and other findings indicate that βarr1-mediated suppression of myostatin expression
by brown adipose tissue is required for maintaining proper insulin responsiveness and
blood glucose homeostasis [28] (Figure 1c).

3.4. Agouti-Related Protein (AgRP) Neurons

AgRP neurons, located in the arcuate nucleus of the hypothalamus, play a key role
in the central regulation of food intake, energy expenditure, and glucose homeostasis [29].
Interestingly, mutant mice selectively lacking βarr1 in AgRP neurons mice show significant
impairments in glucose tolerance and insulin sensitivity when consuming an obesogenic
diet [30] (Figure 1d). This phenotype was not observed with mice in which βarr2 was
selectively inactivated in AgRP neurons [30]. Electrophysiological studies indicated that
βarr1 is required for the ability of insulin to ‘silence’ AgRP neurons, resulting in multiple
beneficial metabolic effects. One possible mechanism underlying this finding is the ability
of βarr1 to stabilize insulin receptor substrate 1 (IRS-1), a key transducer of insulin receptor
signaling, via complex formation [30].

3.5. Concluding Remarks

In summary, studies with cell type-specific βarr1 and βarr2 mutant mice strongly
support the concept that the two β-arrestins regulate distinct physiological processes.
While some of these effects can be explained by the traditional roles of β-arrestins as
inhibitors of GPCR signaling, many of the phenotypes observed with the newly developed
β-arrestin mutant mice are consistent with alternative β-arrestin functions. It remains to
be determined to which extent these novel β-arrestin functions are regulated by GPCR
signaling and/or GPCR/β-arrestin interactions. The outcome of the phenotyping studies
summarized in this short article may guide the development of novel drugs capable of
modulating the βarr1 or βarr2 activity or expression levels for the treatment of various
pathophysiological conditions, including type 2 diabetes and related metabolic disorders
(for a detailed review of potential therapeutic opportunities, see [20]).
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