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BACKGROUND: Aberrant mitogen/extracellular signal-regulated kinase 5 (MEK5)–extracellular signal-regulated protein kinase 5 (ERK5)-
mediated signalling has been implicated in a number of tumour types including prostate cancer (PCa). The molecular basis of ERK5-
driven carcinogenesis and its clinical relevance remain to be fully characterised.
METHODS: Modulation of ERK5 expression or function in human PCa PC3 and PC3–ERK5 (stably transfected with ERK5) cells was
performed using siRNA-mediated knockdown or the MEK inhibitor PD18435 respectively. In vitro significance of ERK5 signalling was
assessed by assays for proliferation, motility, invasion and invadopodia. Expression of matrix metalloproteinases/tissue inhibitors of
metalloproteases was determined by Q-RT–PCR. Extracellular signal-regulated protein kinase 5 expression in primary and metastatic
PCa was examined using immunohistochemistry.
RESULTS: Reduction of ERK5 expression or signalling significantly inhibited the motility and invasive capability of PC3 cells. Extracellular
signal-regulated protein kinase 5-mediated signalling significantly promoted formation of in vivo metastasis in an orthotopic PCa model
(Po0.05). Invadopodia formation was also enhanced by forced ERK5 expression in PC3 cells. Furthermore, in metastatic PCa, nuclear
ERK5 immunoreactivity was significantly upregulated when compared with benign prostatic hyperplasia and primary PCa (P¼ 0.013
and Po0.0001, respectively).
CONCLUSION: Our in vitro, in vivo and clinical data support an important role for the MEK5–ERK5 signalling pathway in invasive PCa,
which represents a potential target for therapy in primary and metastatic PCa.
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Prostate cancer (PCa) is a significant contributor to morbidity and
mortality in the Western World. In 2009, there were an estimated
192 280 new cases of PCa diagnosed with an estimated 27 360 PCa
deaths in the United States (Altekruse et al, 2010). Over the last
three decades, its incidence has trebled, mostly attributed to
improved detection through widespread prostate-specific antigen
(PSA) testing. In addition, as life expectancy improves, the rise in
incidence is anticipated to continue, worsening its health burden.
Currently, treatment selection depends on the prognostic factors
of Gleason grade, TNM stage and serum PSA levels, as well as the
patient’s age, health and own preference. Patients deemed at low
risk are recommended active surveillance, but most organ-
confined disease is treated with curative intent, with surgery or
radiation. For locally advanced and metastatic PCa, androgen
ablation therapy remains one of the commonest treatment,

showing an 80–90% response rate (Ramsay and Leung, 2009).
However, within 12– 33 months, the disease almost invariably
progresses to an androgen-independent or castrate-resistant state.
After this, treatment is limited and death occurs within a few years
(Ramsay and Leung, 2009). Alternative treatment is therefore
required for advanced PCa.

Advances in molecular biology have increased our under-
standing of the numerous molecular pathways that may contribute
to prostate carcinogenesis. Careful analysis of these signalling
pathways may facilitate the development of targeted therapies.
Recently, our laboratory showed the importance of the MEK5/
ERK5 (mitogen/extracellular signal-regulated kinase 5/extra-
cellular signal-regulated protein kinase 5) cascade in PCa (Mehta
et al, 2003; McCracken et al, 2008). Extracellular signal-regulated
protein kinase 5 belongs to the family of mitogen-activated protein
kinases (MAPKs). The other main subfamilies are ERK1/2, c-Jun
NH2-terminal protein kinases and p38 MAPKs (Chang and Karin,
2001). All are activated by extracellular stimuli such as growth
factors and environmental stresses, and are recognised to control
cell proliferation, migration and differentiation. Extracellular
signal-regulated protein kinase 5 is the specific substrate of
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MEK5, and is regulated by mitogens (EGF and G-CSF), cytokines
(LIF and CT-1) and stress (H2O2 and sorbitol) (Ranganathan et al,
2006). Downstream effectors of the ERK5 cascade are not fully
defined, but include myocyte enhancement factor (MEF) 2, Sap1
and c-Myc (Wang and Tournier, 2006). Our laboratory recently
proposed ERK5 to be clinically significant in PCa, its cytoplasmic
expression in the primary tumour correlating with Gleason sum
score (Po0.0001). Interestingly, significant nuclear localisation of
ERK5 was strongly associated with both unfavourable patient
survival outcome and the development of castrate-resistant disease
(Po0.0001) (McCracken et al, 2008).

This study aimed to define the importance of ERK5 signalling
in prostate carcinogenesis, by examining ERK5-mediated function
by manipulation of its expression/function as well as evaluating
nuclear ERK5 expression in primary and metastatic clinical PCa
specimens.

MATERIALS AND METHODS

Cell culture, siRNA transfection experiments and western
blotting

Cells are maintained and used as described previously: PC3, PC3-
derived ERK5 overexpressing (PC3-ERK5) cells and inducible
HEK293 cells expressing MEK5D (a constitutively active mutant of
MEK5) (Mehta et al, 2003; McCracken et al, 2008). Extracellular
signal-regulated protein kinase 5 knockdown was carried out as
reported by Sharma and Goalstone (2005). Extracellular signal-
regulated protein kinase 5-specific siRNA (50-GGTGTTGGCTTTG
ACCTGGAGGAAT-30) was used (Eurogentec, Southampton, UK),
and all experiments were performed at 10 nM siRNA concentration.
Non-silencing (or scrambled) siRNA was included as controls.

Western blot analysis was performed as described previously
(Mehta et al, 2003; McCracken et al, 2008). Antibodies were used at
the following dilutions: anti-ERK5 1 : 500, anti-phospho ERK5
1 : 500, p44/42 MAP kinase 1 : 1000, anti-phospho p44/42 MAP
kinase (Cell Signalling Technology, Hertfordshire, UK) and anti-
alpha tubulin 1 : 8000 (Santa Cruz Biotechnology, Santa Cruz, CA,
USA). Horseradish peroxidase-conjugated secondary antibodies
(Cell Signalling Technology) were applied at 1 : 3000 and detected
using the enhanced chemiluminescence detection kit (Amersham,
Piscataway, NJ, USA).

Cell proliferation

In all, 1.5� 105 cells were seeded in six-well plates. siRNA
transfection was performed and serial cell counts were taken at
24, 48, 72 and 96 h using a Casey cell counter. Each experiment was
repeated at least three times, and at least three wells were used per
condition each time. Where appropriate, MEK inhibitor was used
in place of siRNA transfection.

Cell tracking, chemotaxis migration and chemo-invasion
assays

Cell tracking motility assays were performed 48 h post-transfection
with ERK5 siRNA. PC3–ERK5 or PC3 cells were studied using a
Nikon (Melville, NY, USA) TE2000 time lapse microscope (� 20
magnification). Images were taken every 15 min over an 18 h period.
Image J software (Bethesda, MD, USA) was used to track random
cellular motility; accumulated and euclidean (direct) distance were
measured. At least eight cells were tracked per field and three fields
were viewed in each experiment which was repeated twice.

In addition, the migrative potential of PC3 cells, ±ERK5 and
±PD184352 was assessed using the chemotaxis-based BD-Falcon
Transwell system (San Jose, CA, USA). Cells (8� 104) were
resuspended in 500 ml basal medium ±PD184352 and placed in
the upper Transwell compartment. In all, 750 ml of BM±EGF

(100 ng ml – 1) was placed in the lower compartment to act as a
potential attractant. After 24 h incubation at 37 1C and 5% CO2,
cells that had not migrated were removed from the upper face of
the membranes with cotton buds. The filters were fixed in
methanol for 30 min at �20 1C, stained with Haematoxylin Harris’
(VWR International Ltd, Leicestershire, UK) for 1 h at room
temperature and then washed carefully in dH2O. After air dried,
the membranes were mounted in DPX. The average number
of cells per field of view (eight random fields per membrane)
was counted under a light microscope at � 20 magnification. For
chemo-invasion assays, the same protocol was employed with
Biocoat Matrigel invasion chambers in duplicate (Becton Dick-
inson Labware, San Jose, CA, USA; cat. no.: 354480). Each
experiment was repeated at least three times and each time the
mean numbers of migrated or invading cells were taken from three
chambers. Similarly, invasion assay with siRNA-transfected PC3 or
PC3–ERK5 cells were studied as above.

MMP promoter studies

At 48 h before transfection, 3� 104 PC3 cells were seeded per well
in a 48-well plate. Matrix metalloproteinase (MMP)9 (�670),
MMP2 (�1659) and MMP1 (�512) constructs containing
50-flanking fragments upstream to the transcription initiation
start site linked to a luciferase reporter gene (MMP-luc) were
co-transfected with ERK5 or empty plasmid (pcDNA3.1) using
Superfect reagent, according to the manufacturer’s recommenda-
tion. After 24 h, cells were serum starved and left for another
16–24 h before luciferase activities were determined. Cells were
co-transfected with a b-gal-CMV plasmid to allow normalisation of
transfection efficiency. A total of 300 ng of DNA were transfected,
containing 100 ng MMP-luc, 150 ng MEK5D and 50 ng b-galacto-
sidase reporter. The MMP1/MMP2 and MMP9 promotor con-
structs were obtained as kind gifts from Dr Y Sun (Parke Davies
Pharmaceutical Research, UK) and Dr D Boyd (MD Anderson
Cancer Centre, USA), respectively.

Quantitative real-time RT– PCR to profile MMP and TIMP
expression

Design of specific primers for human MMP and tissue inhibitors of
metalloprotease (TIMP) genes and respective PCR reactions were
performed as described (Altschul et al, 1990; Nuttall et al, 2003),
with each PCR reaction containing 5 ng of reverse transcribed RNA
in 25 ml. The identity of PCR products was confirmed by direct
sequencing of the amplicon. The 18S ribosomal RNA gene was
used as an endogenous control to normalise for differences in the
amount of total RNA in each sample, using previously validated
procedures (Wall and Edwards, 2002; Nuttall et al, 2003). To
determine the relative RNA levels within the samples, standard
curves for the PCR reaction were prepared by using the cDNA
from one sample and making two-fold serial dilutions covering
the range equivalent to 20 –0.625 ng of RNA (for 18S analyses, the
range was 4–0.125 ng).

Invadopodia assay

In vivo assessment of invadopodia was performed as described
(Ayala et al, 2008). In brief, A375MM or PC3 cells were seeded onto
gelatin-coated coverslips at a density of 1� 104 or 2� 104,
respectively. Drug treatment groups were as follows: controls
(no treatment or DMSO, 7.5 ml ml – 1), 5 mM PD18435 and 15mM

PD18435. For ERK5 knockdown experiments, A375 cells were
transfected with either ERK5-specific or scrambled siRNA before
plating onto gelatin-coated coverlips. PC3 cells were transfected
with ERK5 as described previously (McCracken et al, 2008). After
24 h, cells were fixed for 20 min in 4% paraformaldehyde, washed
three times in PBS and blocked for 10 min in NH4Cl. Cells were
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permeablised in 0.1%Triton/PBS for 4 min and then stained with
594-Phalloidin (1 : 100) for 30 min. Cells were given three final
washes in PBS followed by two washes in dH2O and then mounted
onto labelled glass slides.

A Zeiss (Thornwood, NY, USA) Axiopskop was used to capture
images of at least 20 cells per test condition. For each cell, the red
and green channels were used to capture the actin cytoskeleton
and the gelatin layer under the cell showing any degradation,
respectively. Image J and a plugin were used to evaluate these
images and return a measure of degradation in terms of pixels.
Two-tailed Student’s t-test was performed on the data to establish
levels of statistical significance in any differences observed.

In vivo orthotopic prostate tumourigenesis study

For orthotopic tumour growth, dorso-lateral prostates of male
CD-1 nude mice were injected with either PC3–ERK5 cells (stably
transfected with transfected pEGFP-C1-ERK5) or the control cells
(stably transfected with the empty plasmid pEGFP-C1 vector)
at 2.4� 106 cells per 25 ml serum free RPMI as previously described
(Somers et al, 2003). Tumours were grown over a period of
12 weeks. The prostates were excised, weighted and fixed overnight
in formalin before embedded in paraffin. All prostates were
processed and cut in the same manner by a single histology
technician to aid standardisation. All experiments were carried out
in accordance with UK animal regulations.

Immunohistochemical analysis

Prostate cancer tissue microarray (TMA) was supplied by the
University of Michigan Prostate Specialised Programme of
Research Excellence. Tissues were obtained through either
prostatectomy or rapid autopsy program with appropriate Internal
Review Board approval as previously described (Rubin et al, 2000).
Tissue microarray contained benign (normal) prostate samples
(n¼ 30), benign prostatic hypertrophy (BPH) samples (n¼ 27),
prostatic intraepithelial neoplasia (PIN) (n¼ 24), 80 cases of
prostatic cancer as well as 32 metastatic lesions (lymph node
(n¼ 10), liver samples (n¼ 17), lung (n¼ 2) and soft tissue
(n¼ 3)). Full tissue sections of benign and tumour human prostate
were also used for optimisation of immunohistochemistry and
in situ hybridisation. All tissue samples were radical prostatectomy
samples, collected and used according to the ethical guidelines and
procedures approved by the institutional supervisory committee.
Immunohistochemistry for ERK5 expression was performed based
on previously described protocol (Gnanapragasam et al, 2003).
Immunoreactivity signals were assessed by independent observers
(Maria Soofi and Morag Seywright) blinded to the clinical details.
Nuclear ERK5 immunoreactivity was measured on histoscore scale
from 0 (no staining) to 300 (very strong staining). In situ
hybridisation for mir143 was performed as previously reported
(Clape et al, 2009).

Statistical analysis

Data are shown as the mean±s.d. where possible and statistical
analysis was obtained using SPSS version 15.0, computer software
(SPSS Inc., Chicago, IL, USA). A P-value of o0.05 was taken to
indicate statistical significance. Mann–Whitney test was used to
test for differences of ERK5 immunoreactivity in different
histological groups of prostate pathology. Chi-square test was
used to assess data on metastasis in the orthotopic prostate model.

RESULTS

Suppression of ERK5 function impaired the invasive
capacity of PCa cells

Successful knockdown of endogenous and exogenous ERK5
was achieved in PC3 and PC3 cells stably transfected with ERK5

(PC3-ERK5) respectively (Figure 1A). Expression of both endo-
genous and transfected ERK5 was significantly reduced, with
evidence of suppressed pERK5 level following reduced ERK5
expression. Following transfection with siRNA targeting ERK5,
suppression of ERK5 expression was sustained for at least up to
72 h, with around 70% reduction in ERK5 expression. Extracellular
signal-regulated protein kinase 5 targeting siRNA was shown to be
specific: throughout the duration of the experiment, ERK1/2
expression was not affected by siRNA targeting ERK5.

As ERK5 overexpression has been shown to be associated
with increased proliferation in vitro (McCracken et al, 2008;
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Figure 1 (A) Extracellular signal-regulated protein kinase 5 expression in
PC3–ERK5 stable clone (left-hand panel) and parental PC3 cells (right-
hand panel) following siRNA-mediated ERK5 directed knockdown (KD),
compared with non-silencing control (NS) and sham transfection (Nil).
(B) Proliferation assay following ERK5 KD in PC3–ERK5 cells. (C) Effects of
a range of doses of PD184352 (MEK inhibitor) on proliferation of PC3 cells.
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Zen et al, 2009), we tested the effects of siRNA-mediated ERK5
knockdown on proliferation as well as motility and invasion. In
PC3–ERK5 cells, a significant reduction in the rate of proliferation
was observed on ERK5 knockdown, when compared with the
controls (non-silencing siRNA and sham transfection controls
respectively) at 96-h post-transfection (Po0.005; Figure 1B).

To further assess the potential mitogenic effects of ERK5
signalling in prostate carcinogenesis, the effects of suppressed
endogenous ERK5 expression by siRNA or function by the MEK
inhibitor PD184352 were investigated in a proliferation assay
using PC3 parental cells. Contrast to the data on PC3 –ERK5 cells,
no convincing anti-proliferative activities was observed neither
with ERK5-targeted siRNA knockdown nor with MEK inhibitor
PD184352 (Figure 1C and unpublished data). Even at relatively
high dose of PD184352 (up to 20 mM), the reduction of proli-
feration has yet to reach 50%; at these high doses, off-target
effects are likely to contribute to the observed anti-proliferative
effects. It should be noted that, in PC3 cells, PD184352
blocked phosphorylation of ERK1 at 0.3 mM and ERK5 at 3 mM,

respectively (Supplementary Figures 1A and B), similar dose-
related effects were observed in HEK293 cells (Supplementary
Figure 1C).

We therefore hypothesised that ERK5 signalling may contribute
to prostate carcinogenesis by driving cellular motility and/or
invasion rather than proliferation. Random cellular motility
was studied using real time cell tracking. Targeted knockdown of
ERK5 expression by siRNA significantly decreased cell motility
when compared with the non-silencing siRNA and untransfected
cells. Untransfected and control transfected PC3– ERK5 cells
display high levels of random motility. Both accumulated and
euclidean distances following ERK5 knockdown were significantly
reduced when compared with the controls (Po0.005; Figure 2A).
Similarly, siRNA-mediated knockdown of ERK5 expression in PC3
cells reduced its motility (euclidean distance, Supplementary
Figure 2). In keeping with our previous observation (McCracken
et al, 2008), using an in vitro chemo-invasion matrigel assay,
PC3–ERK5 cells have an enhanced invasive capability when
compared with PC3 cells, with 25 (27±15) and 10 (10±4) cells per
field, respectively. On transfection with ERK5-targeted siRNA,
the invasive capability of PC3 cells was significantly inhibited by
2.1- and 1.97-fold when compared with control siRNA-transfected
and -untransfected PC3 cells, respectively (Po0.005; Figure 2B).
As expected, PC3– ERK5 cells are more dependent on ERK5
signalling, and showed a more dramatic suppression of
cellular invasion on ERK5 knockdown, when compared with the
parental PC3 cells, with a 3.5- and 3.4-fold suppression in invasion
(Po0.005; Figure 2B).

To confirm the data from ERK5 knockdown experiments, MEK1
inhibitor PD184352 was used to suppress ERK1/2 activation alone
at 0.3 mM and ERK-1, -2 and -5 activities at a higher concentration
of 3 mM before stimulation with EGF (100 ng ml – 1) (Mody et al,
2001). Assays for chemotaxis and chemo-invasion were performed.
In PC3 cells, 0.3 and 3 mM PD184352 significantly suppressed
ERK1/2 alone and ERK-1, -2 and -5 functions, respectively
(Supplementary Figures 1A and B). Inhibition of ERK1/2 alone
(PD184352 at 0.3 mM) did not affect EGF-mediated cellular
migration and invasion in PC3 cells, but at pan ERK1/2/5
inhibiting dose of PD184352 (0.3 mM), EGF-induced migration
and invasion were significantly decreased (Po0.001, respectively;
Figure 2C).

ERK5-mediated invasive phenotype in vitro and in vivo

MMP promoter luciferase constructs for MMP1, MMP2 and
MMP9 were studied in the presence of transiently transfected
ERK5 expression in PC3 cells. Matrix metalloproteinase-1, -2 and
-9 were selected as they have been previously implicated in
MEK5 signalling (Mehta et al, 2003). On ERK5 transfection,

transcriptional activities of the MMP-1, -2 and -9 promoters
(corrected for b-galactosidase and empty vector contsrol) were
induced by 3.89-, 5.61- and 4.04-fold, respectively (Po0.001 for all
three experiments, Figure 3A). In addition, a PCR-based expres-
sion analysis for a panel of proteases was then performed using
HEK293 cells stably expressing an inducible constitutively active
MEK5 mutant (MEK5D-HA) with negligible background MEK5
expression (Mehta et al, 2003). Triplicate samples of uninduced
and induced cells were analysed. Consistent with the promoter
luciferase data, on activation of MEK5/ERK5 signalling, MMP2
and MMP9 mRNA expression were upregulated by 1.8- and
2.1-fold, respectively, although no increase was seen in MMP1
mRNA expression (Supplementary Table). In addition, MMP12
and TIMP2 expression were upregulated by 2.7- and 2.2-fold,
respectively, with MMP16 expression reduced by 1.7-fold. We
therefore confirmed MMP2 and MMP9 as target MMPs in MEK5/
ERK5 signalling, and identified MMP12, MMP16 and TIMP2 as
novel potential proteases and regulator downstream of the MEK5/
ERK5 pathway. Their role in the ERK5-driven invasive phenotype
warrants further investigation.

Invadopodia are proteolytically active protrusions formed by
invasive tumour cells when grown on an extracellular matrix
(ECM) substratum ((Ayala et al, 2008) and reference within). On
the basis of our data on ERK5-mediated invasion and MMP
expression, we hypothesised that suppression of ERK5 function by
PD18435 at an ERK5 inhibitory dose will significantly suppress
invadopodia formation. This is particularly relevant as ERK1/2 has
been implicated to have a key regulatory input in invadopodia
formation and ECM degradation (Ayala et al, 2008). The human
malignant melanoma A375 cancer cells are well established for
invadopodia assay (see Supplementary Figure 3) and were plated
on gelatin and cultured for 24 h in the presence of either PD18435
(at 5 or 15 mM) or the corresponding concentration of DMSO
(control). A375 cells treated with 15 mM PD18435 (an inhibitory
dose for pan ERK1/2/5) showed significantly less gelatin degrada-
tion when compared with the vehicle control (P¼ 0.0014) and
ERK1/2 suppressing dose of PD18435 (5 mM; Po0.001) (Figure 3B).
Furthermore, siRNA-mediated knockdown of ERK5 in A375 cells
also significantly suppressed their ability to form invadopodia
(Figure 3D). PC3 cells form invadopodia much less efficiently than
A375 cells, generally producing a low level of diffuse signal
(Supplementary Figure 3). Hence, ERK5 was transfected into PC3
cells to test if ERK5 overexpression will promote invadopodia
formation. Transfected ERK5 expression in PC3 cells significantly
enhanced invadopodia formation (Po0.005, Figure 3C).

The in vivo impact of ERK5 on the invasiveness of prostate
tumourigenesis was further investigated in an orthotopic prostate
tumour model. PC3–ERK5 cells or the empty vector control cells
were injected into the dorso-lateral prostate of nude mice (n¼ 8
per group). As expected, after 12 weeks, tumour incidence in both
cohorts was 100% (16 out of 16) with a statistically insignificant
difference in their respective increase in tumour burden (as
assessed by prostate weight) (Figure 3E). In keeping with ERK50s
role in promoting an invasive phenotype, a statistically significant
increase in metastases to lymph nodes (4 out of 8 vs 0 out of 8) and
lung (3 out of 8 vs 0 out of 8) was observed in the PC3– ERK5 cells
when compared with control cells.

ERK5 expression in clinical PCa

Recent studies have implicated ERK5 signalling in invasive PCa.
However, ERK5 expression has not been formally tested in
metastatic PCa. Our in vitro data would suggest that upregulated
ERK5 signalling may contribute to an aggressive cancer phenotype
including metastatic disease. Therefore, 32 cases of metastatic
prostate tumours were examined for ERK5 immunoreactivity,
along with normal prostate, BPH, precursor lesion (PIN) and
primary PCa. Both BPH and normal prostate samples expressed
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ERK5 at similar levels. Consistent with previous data, there was a
trend for high levels of cytoplasmic ERK5 expression in tumours
with high Gleason sum score (47) and high serum PSA levels
(410) (data not shown). Importantly, nuclear ERK5 immuno-
reactivity in metastatic PCa was significantly stronger than that
observed in BPH and primary PCa (P¼ 0.013 and Po0.0001,
respectively, Mann– Whitney test; Figures 4A–D, G and H).
Pre-malignant PIN lesions also showed significant upregulation
of ERK5 expression, when compared with BPH control (P¼ 0.015,
Mann– Whitney test; Figure 4E). This would suggest involvement
of ERK5 to be an early event in prostate carcinogenesis.

The mechanism for ERK5 activation in PCa remains to be fully
examined. MicroRNA mir143 expression has recently been
implicated to regulate ERK5 expression (Clape et al, 2009).
Qualitative analysis of mir143 mRNA and ERK5 protein expression
was performed on sequential sections from selected cases of PCa
(n¼ 3). In keeping with published data, an inverse relationship
between mir143 and ERK5 expression was noted, namely reduced
mir143 and enhanced ERK5 expression in the malignant
epithelium (and vice versa for benign tissue; Figures 4I and J).
In addition, mir143 expression was seen in benign prostatic
glands, endothelium (Figure 4K) and stromal smooth muscle cells.
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distance travelled (accumulated and euclidean distances). (B) Suppression of cellular invasion in PC3 and PC3–ERK5 cells following siRNA-mediated
ERK5 KD. (C) PD184352 at ERK5 suppressing dose of 3 mM inhibited EGF-driven cellular migration and invasion in PC3 cells.
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Taking together, our data on ERK5 function in vitro and in vivo
as well as expression in clinical PCa support its role in an invasive
phenotype.

DISCUSSION

In this report, we showed the first evidence for upregulated ERK5
expression in metastatic PCa. Upregulated ERK5 expression in PIN
lesions would suggest an early involvement of ERK5-mediated
signalling in prostate carcinogenesis. Amplification or mutation of
the MEK5 and ERK5 genes is infrequent; within the data available
at catalogue of somatic mutations in cancer (COSMIC, Sanger
Institute, UK; www.sanger.ac.uk/genetics/CGP/cosmic), they are
relatively uncommon events seen in skin, liver and breast cancer.
Our finding of reduced mir143 expression with corresponding
enhanced ERK5 expression in sequential tissue sections strongly
argue for a role of mir143 at least partly contributing to abnormal

ERK5 expression in PCa. Future studies are warranted to validate
and define the mechanism for loss of mir143 expression.

Recent data have been accumulating to support a key role of
MEK5/ERK5 signalling in carcinogenesis. Although MEK5/ERK5
signalling clearly promotes cell cycle promotion in certain context
(Kato et al, 1997, 1998), there are situations where ERK5 function
does not contribute to proliferation (Squires et al, 2002; Wang
et al, 2005). Abnormal signalling by MEK5/ERK5 has been
implicated in a number of tumour types. Amplification of the
ERK5 gene locus has been reported in hepatocellular carcinoma
where ERK5 function appears to be a key mitogenic factor (Zen
et al, 2009). In contrast, our data in PCa did not suggest signi-
ficant mitotic advantage as a result of ERK5 function. Instead,
ERK5-mediated signalling appears to critically regulate cellular
motility and invasion in PCa, which is in keeping with our
observed association between aberrant ERK5 expression in the
primary prostate tumours and a less favourable survival outcome
(McCracken et al, 2008).
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Figure 3 (A) Extracellular signal-regulated protein kinase 5-induced MMP promoter activity – (left panel) ERK5 DNA was transiently transfected into PC3
cells where a band (*) corresponding to phospo-ERK5 was seen on stimulation with EGF. (right panel) PC3 cells were co-transfected with MMP1, MMP2 or
MMP9 promoter luciferase constructs along with ERK5 or empty plasmid. Transfection efficiency was assessed and normalised to b-galactosidase activity.
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Degradation of the ECM is integral to tumourigenesis and is
mediated by the activity of ECM proteases, including the MMPs
and the serine proteases (Sternlicht and Werb, 2001). There are at
least 25 members of the MMP family; their functions include a role
in ECM degradation in the context of tumour establishment:
growth and migration, avoidance of apoptosis, angiogenesis and
interaction with the immune system (Overall and Lopez-Otin,
2002). These effects are achieved in part by the cleavage of growth
factors, their receptors, or other growth factor-associated proteins
(Egeblad and Werb, 2002). An important means of their inhibition
is achieved by the binding of the TIMPs, of which there are four
members (Jiang et al, 2002).

There is considerable evidence supporting the involvement of
MMPs and TIMPs in PCa (Pajouh et al, 1991; Trudel et al, 2003;
Udayakumar et al, 2003). Of the known MMPs studied in the
prostate, MMP9 overexpression correlates with metastatic disease.
Levels of MMP9 mRNA and mature protein have both been shown
to be elevated in malignant prostatic tissue, particularly in
aggressive and metastatic tumours (Hamdy et al, 1994; Wood
et al, 1997; Dong et al, 2001). For the first time, our data implicated

expression of MMP12, 16 and TIMP2 to be regulated by
ERK5-mediated signalling (Clark et al, 2008).

Taking our previous data on MEK5 (Mehta et al, 2003) and the
current report on ERK5, activation of expression for members of
the MMP family, particularly MMP9, by MEK5/ERK5 appear to be
an important signalling events. The elements controlling the
expression of MMP9 have been well characterised and include
AP-1, NF-kB, Ets and Sp1 sites, mainly within �670-bp region
upstream to the transcription start site (Sato and Seiki, 1993). In
particular, both the AP-1 and NF-kB-binding sites have been
shown to be important regulatory elements of the MMP9 promoter
(Ricca et al, 2000; Troussard et al, 2000). Serum-induced activation
of ERK5 results in MEF2C dependent transcriptional activation of
c-jun to increase AP-1 levels (Kato et al, 1997).

In this report, we showed that upregulated ERK5 expression
promoted MMP expression: (1) enhanced MMP-1, -2 and
-9 promoter luciferase reporter activities in PC3 cells (Po0.001
for three constructs); (2) MMP and TIMP expression profiling
by Q-RT–PCR in HEK293 cells (Supplementary Table 1) (Riddick
et al, 2005) confirmed increased MMP2 and MMP9 expression

Figure 4 Extracellular signal-regulated protein kinase 5 protein and mir143 transcript expression in clinical prostate cancer (PCa) by
immunohistochemistry (IHC) and in situ hybridisation (ISH) respectively. Extracellular signal-regulated protein kinase 5 immunoreactivity in (A) Gleason
7 PCa, (B) Gleason 9 PCa, (C) BPH, (D) normal prostate, (E) PIN, (F) Castrate-resistant PCa (CRPC), (G) liver metastasis, (H) lymph node metastasis;
(I and J) mir143 mRNA and ERK5 protein expression analysis in sequential slides from two cases of PCa (solid and open arrows signify ERK5 protein and
mir143 transcript expression, respectively), (K) mir143 expression in endothelium; b-actin expression in (L) BPH and (M) PCa (scale bar represents
100 mm).
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(1.8- and 2.1-fold, respectively), although MMP1 mRNA expression
was not affected. This apparent difference in MMP1 expression
between the promoter reporter assay and the quantitative real time
data may be due to the different cell lines used in the two
experiments, namely PC3 and 293 cells. Evidence of in vivo ECM
degradation at the site of invadopodia is interesting. Degradation of
gelatin at these sites is consistent with ERK5-mediated upregulated
expression of MMP-2 and -9, also referred to as the gelatinase
group of MMPs. As MMP12 was significantly upregulated by ERK5
signalling, it is worth noting that MMP12 (or human macrophage
elastase) is able to activate MMP2 to exaggerate the cascade of
proteolytic processes (Chen, 2004). As our data have suggested
effects at the transcription level, future studies to examine the
impact of ERK5 signalling on protein expression and functional
status of the key MMPs such as MMP9 are required.

Taken together, our in vitro, in vivo and clinical data support an
important role for the MEK5–ERK5 signalling pathway in invasive
PCa and may represent a potential target for therapy, including
primary and metastatic PCa. In addition, the recent discovery of

specific ERK5 inhibitor will provide the molecular probe to further
evaluate the molecular basis of ERK5-driven carcinogenesis (Yang
et al, 2010).
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