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Background: Esophageal squamous cell carcinoma (ESCC) as the main subtype of esophageal cancer 
(EC) is a leading cause of cancer-related death worldwide. Despite advances in early diagnosis and 
clinical management, the long-term survival of ESCC patients remains disappointing, due to a lack of full 
understanding of the molecular mechanisms. 
Methods: In order to identify the differentially expressed genes (DEGs) in ESCC, the microarray datasets 
GSE20347 and GSE26886 from Gene Expression Omnibus (GEO) database were analyzed. The enrichment 
analyses of gene ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and 
Gene Set Enrichment Analysis (GSEA) were performed for the DEGs. The protein-protein interaction 
(PPI) network of these DEGs was constructed using the Cytoscape software based on the STRING database 
to select as hub genes for weighted co-expression network analysis (WGCNA) with ESCC samples from 
TCGA database. 
Results: A total of 746 DEGs were commonly shared in the two datasets including 286 upregulated 
genes and 460 downregulated genes in ESCC. The DEGs were enriched in biological processes such 
as extracellular matrix organization, proliferation and keratinocyte differentiation, and were enriched in 
biological pathways such as ECM-receptor interaction and cell cycle. GSEA analysis also indicated the 
enrichment of upregulated DEGs in cell cycle. The 40 DEGs were selected as hub genes. The MEblack 
module was found to be enriched in the cell cycle, Spliceosome, DNA replication and Oocyte meiosis. 
Among the hub genes correlated with MEblack module, GSEA analysis indicated that DEGs of TCGA 
samples with DLGAP5 upregulation was enriched in cell cycle. Moreover, the highly endogenous expression 
of DLGAP5 was confirmed in ESCC cells. DLGAP5 knockdown significantly inhibited the proliferation of 
ESCC cells. 
Conclusions: DEGs and hub genes such as DLGAP5 from independent datasets in the current study will 
provide clues to elucidate the molecular mechanisms involved in development and progression of ESCC.
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Introduction 

As one of the most common malignant cancer types, 
esophageal cancer (EC) ranks the sixth leading cause 
of cancer-related mortality all over the world, with an 
estimated 400,000 deaths annually (1,2). EC contains 
two major histologic subtypes: esophageal squamous cell 
carcinoma (ESCC) and esophageal adenocarcinoma, which 
are classified based on geographic location and genetic 
alterations (3). ESCC is the predominant histological 
classification worldwide, accounting for about 80% of EC 
cancer (4). To be specific, ESCC accounts for about 90% of 
EC cancer and is the fourth leading cause of cancer-related 
death in China (5). Current treatments for ESCC include 
chemotherapy, radiation therapy and surgery. Despite 
advances in early diagnosis and clinical management, the 
overall 5-year survival rate of ESCC patients remains less 
than 25% due to delayed diagnosis at an advanced stage and 
lack of effective targeted therapy (6). Development of ESCC 
is a multistep process containing a series of genetic and 
epigenetic alterations associated with life and environment 
factors (7). Thus, it is important to fully understand the 
molecular mechanisms of carcinogenesis process to identify 
critical targets and develop novel and effective treatments 
for ESCC. 

Various genes, such as mRNAs and non-coding RNAs 
including miRNAs and lncRNAs have been reported to 
form complex networks regulating the tumorigenesis and 
progression of human cancers. Recently, in order to screen 
differentially expressed genes (DEGs) associated with 
carcinogenesis and progression of human cancer, and to 
identify biomarkers and potential therapeutic targets, more 
and more microarray and high throughput sequencing 
technologies combined with bioinformatics analysis have 
been widely used (8,9). However, despite numerous of 
studies have been performed using high throughput 
technologies, only very few biomarkers and drug targets 
have been translated into clinical practice, mainly due to 
false-positive rates in independent microarray analysis, 
different technological platforms or small sample size 
(10,11). In the present study, two original datasets were 
downloaded from Gene Expression Omnibus (GEO) 
database and analyzed to obtain DEGs in ESCC. A total 
of 746 DEGs commonly shared by both data sets were 
selected for further bioinformatics analysis, including gene 
ontology (GO)/Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis, Gene Set Enrichment Analysis (GSEA) 
pathway analysis and construction of protein-protein 

interaction (PPI) networks. Additionally, the correlation 
between the hub genes and ESCC dataset from the Cancer 
Genome Atlas (TCGA) was analyzed using weighted gene 
co-expression network analysis (WGCNA). DLGAP5 was 
selected for function confirmation in ESCC cells. DLAGP1 
positively regulated ESCC cells proliferation.

Methods

Microarray data collection

The original microarray data were downloaded from the 
GEO database (12). The GSE20347 based on GPL571 
platform (Affymetrix Human Genome U133A 2.0 Array) 
contains 17 paired ESCC samples and normal adjacent 
esophageal tissues. The GSE26886 based on GPL570 
platform (Affymetrix Human Genome U133 Plus 2.0 Array) 
contains 9 ESCC samples and 19 normal esophageal tissues. 
We used R, affy package and gcrma package (GC Robust 
Multi-array Average method) for data processing (13).

 

GO and pathway enrichment analysis of DEGs

The online tool database for annotation, visualization, 
integrated discovery (DAVID; https://david.ncifcrf.gov/) 
containing GO and KEGG pathway analysis was used 
to analyze the biological characteristics and function 
annotation of candidate DEGs (14). GO is a useful 
tool for analyzing characteristic biological information 
including biological process in the present study (15). 
Here, KEGG pathway analysis was also performed to 
analyze the signaling pathways mediated by the DEGs (16). 
Additionally, GSEA was selected to determine whether 
DEGs was involved in one phenotype or signaling pathway 
using GSEA software (http://software.broadinstitute.org/
gsea/ index.jsp) (17).

PPI network construction and hub genes screening

The Search Tool for Retrieval of Interacting Genes 
database (STRINGdb: https://string-db.org/) was used to 
get the PPI network information (18). Here, the DEGs 
were mapped into PPIs using Cytoscape software 3.4.0 
(http://www.cytoscape.org) and a combined score of >0.4 
was used as the cut-off value that was considered statistically 
significant. Then the 40 nodes with edge of >20 were 
selected as hub genes for further analysis.

https://string-db.org/
http://www.cytoscape.org
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WGCNA network construction and key modules 
identification

To further confirm the DEGs with a critical role in ESCC, 
ESCC data from TCGA database was downloaded. The 
“WGCNA” R package was used to put the DEGs of ESCC 
samples from TCGA database into modules by average 
linkage clustering (19,20). Here, the power of β=5 (scale free 
R2=0.8) was set as the soft thresholding to ensure a scale-
free network. The average linkage clustering tree based on 
the topological overlapping distance of the gene expression 
spectrum is constructed. The hierarchical clustering tree 
displays the gene classification module, and the final module 
group is obtained after fusion. The gene tree is visually 
inspected by different module colors. Then, the relevance 
between each module and the 40 hub genes selected from 
GEO data was analyzed. The KEGG and GSEA analysis 
for selecting module was performed.

Cell culture and transfection

ESCC cell lines including TE-1, KYSE30 and KYSE410, 
KYSE180 and KYSE520 were cultured in RPMI-
1640 or  DMEM medium (Gibco,  Car l sbad,  CA, 
USA) supplemented with 10% fetal bovine serum. To 
establish transfectants with DLGAP5 knockdown, TE-1 
and KYSE410 were transfected with psi-LVRU6GP 
vectors with DLGAP5 shRNAs (target sequence for  
sh-1#: 5'-GGATATAAGTACTGAAATGAT-3', sh-2#: 
5'- GGTATTTCTTGTAAAGTCGAT-3', sh-3#: 5'- 
CCATATTTCAGAAATATCCTC-3'). The transfection 
was performed using Lipofectamine 3000 (Invitrogen, 
Carlsbad, CA, USA) referring to recommendations.

Western blot

Cells were harvested and washed with PBS. Total protein 
was collected with RIPA Lysis Buffer with Protease and 
Phosphatase inhibitor. The protein concentration was 
measured by BCA Protein Assay Kit. 30 μg of protein 
was used for separation by 10% SDS-PAGE gels and 
transferred onto 0.2 μm PVDF membranes. The membrane 
was blocked with 5% non-fat milk in TBS-Tween (TBS-T, 
0.1% Tween) at 37 ℃ for 2 h and incubated overnight 
at 4 ℃ with the primary antibodies. The membrane was 
incubated with horseradish peroxidase (HRP)-conjugated 
secondary antibodies (Sigma-Aldrich) at room temperature 
for 2 h. Finally, the membranes were washed and the 

immunoreactive bands were visualized using an ECL 
western blotting system (Beyotime, Shanghai, China). The 
monoclonal mouse anti-β-actin antibody was from Sigma 
and the polyclonal rabbit anti-DLGAP5 antibody was from 
abcam.

Proliferation assay

Cells were seeded into 24-well plates at 10,000 cells/well. 
The cell number was counted every 2 days and the time-
cell number curves were plotted. Alternatively, cells were 
seeded into 6-well plates at 1,000 cells/well in triplicates 
and incubated to allow colony formation for 7 days. The 
colonies were stained with crystal violet and then counted.

Statistical analysis

All data were presented as the mean ± SD. The student’s t 
test was used to compare the differences among different 
groups. Statistical analyses were performed using GraphPad 
Prism 6. P value <0.05 was considered statistically significant.

Results

Identification of DEGs in ESCC

To identify the DEGs those maybe play critical roles in the 
development and progression of ESCC, two microarray 
datasets were collected from the GEO database. In the 
GSE20347 dataset concluding ESCC samples and paired 
normal adjacent esophageal tissues from 17 patients, 465 
upregulated and 559 downregulated DEGs were identified 
using fold change >2 and P<0.05 (Figure 1A). In the other 
dataset GSE26886 concluding 9 ESCC samples and 
19 normal esophageal tissues, 838 upregulated and 947 
downregulated DEGs were identified using fold change 
>2 and P<0.05 (Figure 1A). Among these candidate DEGs, 
a total of 746 DEGs were commonly shared in the two 
datasets, including 286 commonly upregulated DEGs 
and 460 commonly downregulated DEGs shown in the 
Venn diagrams (Figure 1A). Meanwhile, the volcano plots  
(Figure 1B) and heatmaps (Figure 1C) were used to represent 
the differentially expressed profiles of DEGs within the 
datasets. 

Enrichment analysis of the candidate DEGs in ESCC

To further gain insights into the function of DEGs, the 
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Figure 1 Identification of DEGs in ESCC samples. (A) Venn diagram showed the DEGs commonly shared by GSE20347 and GSE26886 
datasets. Left panel represented the upregulated DEGs and right panel represented the downregulated DEGs; (B) the volcano plot indicated 
the DEGs in GSE20347 and GSE26886 datasets; (C) the samples were hierarchically clustered and the heatmap represented the DEGs in 
GSE20347 and GSE26886 datasets. DEGs, differentially expressed genes; ESCC, esophageal squamous cell carcinoma. 
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candidate DEGs between ESCC and normal esophageal 
t issues were analyzed using DAVID software for 
enrichment. The GO analysis showed that the biological 
process enrichment terms of upregulated DEGs were 
mainly associated with extracellular matrix organization, 
collagen biosynthetic and catabolic processes, cell cycle and 
proliferation (Figure 2A) and the downregulated DEGs were 
mainly associated with epidermis development, keratinocyte 
differentiation, oxidation-reduction process and Hippo 
signaling (Figure 2B). Then, KEGG analysis of the DEGs 
was performed and the biological pathway analysis indicated 
that the upregulated DEGs were mainly enriched in ECM-
receptor interaction, focal adhesion, PI3K-Akt signaling 
pathway and cell cycle (Figure 3A) and the downregulated 
DEGs were mainly enriched in metabolic pathways and 
chemical carcinogenesis (Figure 3B). Furthermore, stratified 
GSEA analysis also indicated the enrichment of upregulated 
DEGs in the cell cycle (Figure 3C). 

PPI network construction and hub genes screening

The PPI network of the DEGs was constructed with 
Cytoscape software based on the STRING database. The 
interaction with a combined score of >0.4 were selected to 
construct the PPI network. The PPI network contains 465 
nodes and 3,384 edges (Figure 4A). To identify the critical 
genes involved in ESCC development and progression, 
40 nodes with edge of >20 were selected as hub genes for 
further analysis, among which ESPL1, VAMP8, TIMP2 
and RHOA were downregulated genes and others were 
upregulated genes (Figure 4B). 

Weighted co-expression network construction and key 
modules identification

To further investigate the precise expression of DEGs in 
ESCC, we analyzed the expression pattern of the selected 
40 hub genes in 80 ESCC samples from the TCGA 
database. After excluding the abnormal samples, under the 
screening conditions of FDR <0.05 and ∣log2FC∣>2, 
the 40 DEGs were well clustered and were selected for 
follow-up analysis (Figure S1). Then, we used “WGCNA” 
R package to put the DEGs of ESCC samples from TCGA 
database into modules by average linkage clustering. In 
the present study, the power of β=5 (scale free R2=0.8) was 
set as the soft thresholding to ensure a scale-free network 
(Figure S2A). The average linkage clustering tree based on 
the topological overlapping distance of the gene expression 

spectrum is constructed. The hierarchical clustering tree 
displays the gene classification module, and the final module 
group is obtained after fusion. The gene tree is visually 
inspected by different module colors (Figure S2B). Then, 
the relevance between each module and the 40 hub genes 
selected from GEO data was analyzed (Figure 5A). After 
filtering of modules with low quality and relevance lower 
than 0.5, the MEyellowgreen and MEblack modules met 
the requirement (Figure 5A). The MEblack module was 
selected for further analysis. The biological pathway analysis 
indicated that the MEblack module was mainly enriched 
in cell cycle, Spliceosome, DNA replication and Oocyte 
meiosis (Figure 5B). Among the hub genes correlated with 
MEblack module, GSEA analysis indicated that DEGs of 
TCGA samples with DLGAP5 upregulation was enriched in 
cell cycle (Figure 5C).

DLGAP5 promotes ESCC cells proliferation

To investigate the biological function of DLGAP5 in ESCC 
cells, firstly DLGAP5 expression was analyzed between 
ESCC samples from different clinical stages, but DLGAP5 
was not significantly correlated with cancer stage (data not 
shown). Then, the DLGPA5 protein level was detected 
in a series of ESCC cell lines including TE-1, KYSE30, 
KYSE180, KYSE410 and KYS E520. As indicated DLGAP5 
protein was endogenously highly expressed in ESCC 
cells lines (Figure 6A). Then, DLGAP5 expression was 
knocked down using specific shRNAs and sh-1# and sh-2#  
were selected for further studies because of their high 
efficiency in DLGAP5 knockdown (Figure 6B). MTS assay 
was performed to examine ESCC cells proliferation, which 
indicated that DLGAP5 knockdown significantly inhibited 
the proliferation of TE-1 and KYSE410 cells (Figure 6C). 
The colony formation assay also indicated that DLGAP5 
knockdown markedly inhibited colony formation capacity 
of TE-1 and KYSE410 cells (Figure 6D). These results 
suggested that DLGAP5 expression was correlated with 
ESCC cells proliferation. 

Discussion

ESCC as the predominant histological subtype of EC, is a 
highly aggressive malignancy. Although great attention has 
been paid to ESCC, the response to treatments is poor and 
the clinical outcomes of ESCC are still seriously unfavorable 
(4,6). It has been reported that ESCC is associated with 
multiple environmental factors including smoking, alcohol 
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Figure 2 The biological process enrichment terms of DEGs. The GO analysis with the online tool DAVID was used to analyze the 
biological characteristics and function annotation of upregulated DEGs (A) and downregulated DEGs (B). DEGs, differentially expressed 
genes; GO, gene ontology; DAVID, database for annotation, visualization, integrated discovery. 
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Figure 3 KEGG and GSEA analysis of candidate DEGs. (A,B) KEGG pathway analysis of upregulated DEGs (A) and downregulated 
DEGs (B) was performed using DAVID database; (C) GSEA enrichment analysis of DEGs was applied using GSEA software. KEGG, 
kyoto encyclopedia of genes and genomes; GSEA, gene set enrichment analysis; DEGs, differentially expressed genes; DAVID, database for 
annotation, visualization, integrated discovery. 
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consumption, diet with pickled vegetables, and exposure 
to chemical factors such as N-nitroso compounds (21). 
Recent genomic studies have suggested the mutational 
genes in ESCCs, including genes involved in tumorigenesis, 
cell cycle, apoptosis and epigenetic modification. Some 
of those mutational genes are well-known cancer-
associated genes such as TP53, RB1, CDKN2A, PIK3CA 
and NOTCH1, and histone regulator genes such as MLL2, 
SETD1B and EP300, suggesting the important roles of gene 
mutation and amplification in ESCCs development and 
progression (5,22). Despite intensive studies in molecular 
mechanisms and advances in early diagnosis and clinical 
management, the outcomes of patients with ESCCs are 
still very unsatisfactory. Thus, it is important and urgent 
to fully understand the molecular mechanisms for ESCCs 
development and progress, and then to identify effective 
targets and develop novel therapeutic strategies for ESCCs.

Recently, high-throughput technologies such as 
microarray and RNA sequencing, and bioinformatics 
analysis have been used to identify the DEGs and signaling 
pathways involved in the development and progression of 
ESCCs. However, only very few functional DEGs have 
been confirmed and translated into clinical practice, mainly 
due to false-positive or negative rates in independent 

analysis (10,11). In the present study, to gain reliable results, 
we first used to two independent datasets to screen DEGs 
for ESCCs. After series bioinformatics analysis including 
GO, KEGG, GSEA and PPI network construction, 40 
DEGs were selected as hub genes for WGCNA with 
ESCCs data from TCGA. Then, MEyellowgreen and 
MEblack modules were identified. Among the hub genes 
correlated with MEblack module, GSEA analysis indicated 
that DEGs of TCGA samples with DLGAP5 upregulation 
was enriched in cell cycle.

DLGAP5 (also known as HURP) belongs to the DLGAP 
(discs large-associated protein) family that includes five 
members, termed as DLGAP1-5 (23), which share three 
key domains: a dynein light chain domain, a 14-amino-
acid repeat domain and a guanylate kinase-associated 
protein homology domain (24). DLGAP5 as a microtubule-
associated protein has a critical role in spindle assembly, 
kinetochore fibers stabilization and chromosomal 
segregation during mitosis (25,26). The activity of DLGAP5 
(HURP) is regulated by Aurora A via phosphorylating 
the C-terminal domain and then releasing the inhibition 
on its N-terminal domain binding with microtubule, 
thus regulating centrosome formation, chromosome 
segregation and spindle apparatus formation (27). Previous 

Figure 4 PPI network construction and hub genes screening. (A) PPI network of DEGs was constructed using Cytoscape software based 
on STRING database; (B) 40 nodes with edge of >20 in PPI network were selected as hub genes. PPI, protein-protein interaction; DEGs, 
differentially expressed genes.
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Figure 5 Weighted co-expression network construction and key modules identification. (A) Heatmap of the correlation between module 
eigengenes resulted from analysis of ESCC samples from TCGA database and selected hub genes from GSE20347 and GSE26886 datasets; 
(B) KEGG pathway analysis of DEGs involved in MEblack module; (C) GSEA enrichment analysis of gene sets was applied for ESCC 
samples from TCGA database with different DLGAP5 expression. ESCC, esophageal squamous cell carcinoma; TCGA, the cancer genome 
atlas; KEGG, kyoto encyclopedia of genes and genomes; GSEA, gene set enrichment analysis.
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Figure 6 DLGAP5 promotes ESCC cells proliferation. (A) The DLGAP5 protein levels in ESCC cell lines was detected by western blot 
assay; (B) the efficiency of shRNAs on DLGAP5 knockdown was measured by western blot assay after transfection; (C,D) the effects of 
DLGAP5 knockdown on proliferation and colony-forming ability were measured in ESCC cells (crystal violet stain). Student’s t-test, *, 
P<0.01; **, P<0.01; ***, P<0.001; ****, P<0.0001. ESCC, esophageal squamous cell carcinoma. 

study reported that DLGAP5 is highly expressed in the 
bone marrow precursor cells but not expressed in the 
peripheral blood monocytes, and that DLGAP5 express 
decreased during the stem cell differentiation process (28).  
These data implied that DLGAP5 might be involved 

in some cancer types originating from multipotent 
cancer stem cells. Factually, DLGAP5 overexpression 
has been reported in variety of cancer types such as  
hepatocellular carcinoma (29), urinary bladder transitional 
cell carcinoma (30), meningioma (31), adrenocortical 
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carcinoma (32,33) and prostate cancer (34). Recently, 
Wang et al. showed that DLGAP5 was highly expressed 
in aggressive non-small cell lung cancer (NSCLC) and 
negatively correlated with survival. DLGAP5 silence 
resulted into inhibition of NSCLC cell proliferation and 
invasion (35). Here, we confirmed the endogenously high 
expression of DLGAP5 protein in ESCC cells. Although 
based on DLGAP5 expression we did not get information 
for prognosis mainly due to small sample size, our 
experimental results indicated that DLGAP5 knockdown 
significantly suppressed ESCC cell proliferation. Of course, 
we will analyze the role of DLGAP5 in prognosis using 
a larger ESCC patients cohort, investigate its function 
in ESCC using in vitro and in vivo models, and explore 
the detailed mechanisms in our further studies. In regard 
to the therapeutic point of view, recent study reported a 
strong synergistic effect between DLGAP5 knockdown 
and docetaxel in the androgen-sensitive prostate cancer 
cells (36). Here, our findings also provided strong support 
for rational design of novel treatment strategies based on 
DLGAP5 function inhibition using gene therapy mediated 
known or inhibitor, combined with chemotherapy or 
radiation. The potent implication also needs further studies.

In summary, here, we screened DEGs that may be 
involved in the development or progression of ESCC using 
two independent GEO database. After bioinformatics 
analysis, potential hub genes from DEGs were correlated 
with ESCCs from TCGA database using weighted co-
expression analysis and DLGAP5 was identified. Preliminary 
experiments suggested DLGAP5 promoted ESCC cells 
proliferation. However, further studies are required to 
elucidate the roles and mechanisms of DLGAP5 in ESCCs.
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Figure S1 Clustering dendrogram of hub genes and ESCC samples from TCGA database. The expression pattern of the selected 40 hub 
genes in 80 ESCC samples from the TCGA database was analyzed. After excluding the abnormal samples, under the screening conditions 
of FDR <0.05 and |log2FC| >2, the 40 DEGs were well clustered. ESCC, esophageal squamous cell carcinoma; TCGA, the cancer genome 
atlas; DEGs, differentially expressed genes.

Supplementary



Figure S2 Determination of soft-thresholding power in the weighted gene co-expression network analysis (WGCNA). (A) Analysis of the 
scale-free fit index for various soft-thresholding powers; (B) dendrogram of the selected hub genes clustered based on a dissimilarity measure 
with ESCC samples from TCGA database. ESCC, esophageal squamous cell carcinoma; TCGA, the cancer genome atlas.
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