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Comprehensive germline genomic profiles of
children, adolescents and young adults with
solid tumors
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Compared to adult carcinomas, there is a paucity of targeted treatments for solid tumors in

children, adolescents, and young adults (C-AYA). The impact of germline genomic signatures

has implications for heritability, but its impact on targeted therapies has not been fully

appreciated. Performing variant-prioritization analysis on germline DNA of 1,507 C-AYA

patients with solid tumors, we show 12% of these patients carrying germline pathogenic and/

or likely pathogenic variants (P/LP) in known cancer-predisposing genes (KCPG). An addi-

tional 61% have germline pathogenic variants in non-KCPG genes, including PRKN, SMAR-

CAL1, SMAD7, which we refer to as candidate genes. Despite germline variants in a broad

gene spectrum, pathway analysis leads to top networks centering around p53. Our drug-

target analysis shows 1/3 of patients with germline P/LP variants have at least one druggable

alteration, while more than half of them are from our candidate gene group, which would

otherwise go unidentified in routine clinical care.
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Solid tumors account for half of the malignancies in children,
adolescents, and young adults (C-AYA), with a lower bur-
den of somatic variants, and are assumed to have higher

frequencies of germline alterations, compared to adults with solid
tumors1,2. Although there has been substantial advancement in
understanding somatic variants in cancers, our knowledge
regarding the spectrum, frequency, and implications of germline
variants in C-AYA with solid tumors is limited. Recent pan-
cancer studies showed that 7–8% of patients with these malig-
nancies diagnosed <20 years of age have pathogenic or likely
pathogenic (P/LP) germline variants in known cancer-
predisposing genes, with adrenocortical carcinoma (50%) and
high-grade glioma (25%) having the highest percentage of var-
iants among all solid tumors. However, these percentages could
be biased for the following reasons: a high proportion of patients
with those specific tumor types and the absence of a few other
subtypes of pediatric cancers in those studies. In contrast, 1.1% of
the control group studied by Zhang et al.1–4, comprised of healthy
adult individuals from the 1000 Genomes Project, carry such
variants.

The cancer-predisposing genes mainly encode tumor sup-
pressors, which are related to DNA damage to ensure DNA
repair processes or oncogenes, which promote growth. In
general, pathogenic loss-of-function variants in oncogenes can
disrupt normal cellular processes, and predispose to cancer
development5; moreover, multiple genes can have both types of
variants with different functional and phenotypic effects. It is
well established that there is an overlap between germline
cancer-predisposing genes and somatic tumor-driver
genes: there are many examples showing identical genes hav-
ing roles in somatic oncogenesis and susceptibility to cancer,
respectively6.

In pediatric and AYA clinics, family history is essentially the
primary means used to recognize patients with possible heritable
cancer7. This is despite prior studies showing that a family his-
tory of cancer could only be obtained in about 40% of patients
with P/LP mutations due to multiple limitations2. It is now
confirmed, as well, that there is a remarkably elevated risk of
secondary primary neoplasms in C-AYA cancer survivors who
carry a germline P/LP mutation in cancer-predisposing genes
compared to those who do not8. In addition to implications for
heritability and second primary neoplasms, germline (in every
single cell of the body) variants can also provide novel ther-
apeutic targets. The clonal nature of germline variants compared
to the heterogeneous somatic pattern of tumors make them
potentially a suitable biomarker and therapeutic target, both of
which are lacking for C-AYA malignancies, compared to adult
malignancies9. Here, we address this gap by investigating
germline genomic signatures of 1507 patients with solid tumors
diagnosed under 29 years of age.

Results
Germline alterations in Cleveland Clinic patient series. We
evaluated 50 prospectively enrolled C-AYA patients at the Cle-
veland Clinic (CCF), with a broad range of solid tumors diagnosed
under 29 years of age. The series had a median age of 12 ± 7.1
years (range 0.5–29) and consisted of 31 children (52% females,
median age of 8 ± 4.2 years), 12 adolescents (66.7% males, median
age of 18 ± 1.2 years), and 7 young adults (all males, median age of
22 ± 3.6 years). Collectively, these patients had 14 different tumor
types, with bone and soft tissue sarcomas being the predominant
cancer types (Supplementary Table 1; Supplementary Data 1).

First, we analyzed 204 known cancer-predisposing genes
(KCPG), curated using previously established cancer-predisposing
genes in addition to the newly proposed genes from recent
publications (Supplementary Data 2; Supplementary Fig. 1). We
found three pathogenic germline variants (Methods), one nonsense
mutation in TP53, and two frameshift indels in BRCA2 and GJB2
genes in two patients with osteosarcoma, which were further
confirmed by Sanger sequencing (Table 1; Fig. 1a, b; Supplementary
Data 3; Supplementary Fig. 2). The average mean depth was 258×
(range 45×–444×) for the CCF P/LP KCPG variants. Assessing
germline copy number variations (CNVs), using exome coverage
data, we found five genes with germline duplications, including
DDX10 and SUZ12 (Supplementary Fig. 3; Supplementary Data 4).
There were no known CNVs in the identified regions in the
database of genomic variants (DGV). In a rare circumstance, a 27-
year-old male with multiple primary sarcomas was found to have
two pathogenic KCPG variants, one in BRCA2 (paternally
inherited) and the other in TP53 (maternally inherited), the latter
confirming a Li–Fraumeni syndrome diagnosis (Table 1). Both
parents are in their 50s with no history of cancer. Our second
representative case was a female patient with osteosarcoma,
diagnosed at 10, who carried a pathogenic variant in GJB2 in
addition to a germline duplication of DDX10, the latter, a known
marker somatically associated with poor prognosis for osteosar-
coma (Table 1; Fig. 1c; Supplementary Fig. 3a). Overall, 2 out of 50
C-AYA CCF patients with solid tumors carried a germline
pathogenic KCPG variant, and 3 other C-AYA CCF patients
harbored a germline CNV.

Evaluation of pedigrees to obtain family histories revealed the
existence of a positive family history of cancer in about 40% of the
remaining 42 (84%) patients. This suggests the existence of yet-to-
be-identified predisposing genes in KCPG mutation-negative
patients. Hence, we extended our analyses to explore other P/LP
variants from non-KCPG, which we will refer to as candidate genes.
Our variant classification based on the ACMG guidelines identified
59 predicted pathogenic and 37 predicted likely pathogenic variants
in 89 candidate genes (Fig. 1a, b; Supplementary Data 3). The
average mean depth was 163× (range 20×−454×) for all the CCF
P/LP candidate variants. Overall, 34 out of the remaining 45 patients

Table 1 CCF patients with germline alterations in known cancer-predisposing genes.

Case# Sex, age C-AYA tumors Syndrome Gene Germline alterations

CCF12237 M, 27 years Chondroblastic osteosarcoma of the left
maxilla, 22 years

Li–Fraumeni
syndrome

TP53 NM_000546.5; c.916C>T (p.Arg306*)

Odontoameloblastoma of the left mandible,
24 years

BRCA2 NM_000059.3; c.4284dupT
(p.Gln1429Serfs*9)

Leiomyosarcoma of the right scrotum,
25 years

CCF11829 F, 17 years Osteosarcoma, 10 years None GJB2 NM_004004; c.35delG (p.G12fs*2)
DDX10 NM_004398; duplication

(Chr11:108535752-108811657)

C-AYA children, adolescents, and young adults.
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(75.5%) had at least one variant in a candidate gene (Fig. 1d). C-
AYA patients with germline alterations trended towards a poor
outcome which we operationally defined as any relapse, metastasis,
second primary malignant neoplasm (SMN), or death, compared to
the group without germline alterations (Fig. 1e) (P= 0.31, odds ratio
(OR)= 2.14, 95% confidence interval (CI)= 0.6–8.0).

To validate our findings with a larger independent series, we
then analyzed germline exome data from 1457 C-AYA patients
with solid tumors from the St. Jude (StJ) dataset. Because we

roughly saw similar mutation patterns in the StJ dataset as our
CCF series, we combined the CCF and StJ series for further
analyses. The combined dataset included 1507 patients with a
median age of 6.41 ± 5.8 years consisting of 1182 children (50.7%
females, median of 5.2 ± 4.5 years), 164 adolescents (59.1% males,
median age of 16.8 ± 1.3 years), 20 young adults (75% males,
median age of 21 ± 2.4 years), and 141 unknown age group who
were diagnosed with solid tumors under 29 years of age. The most
common tumor types included CNS tumors in 323 patients

a
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Fig. 1 Germline alterations and clinical outcomes in the Cleveland Clinic series. a Genes with germline pathogenic/likely pathogenic (P/LP) variants in
known cancer-predisposing genes (KCPG) and candidate genes and their type of alterations in children, adolescents, and young adult (C-AYA) patients
with solid tumors. b Oncoplots of top mutated genes with P/LP variants in KCPG and candidate genes based on the age group. Each column represents one
patient and its affected genes. c Two examples of copy number variations (CNVs) found in C-AYA patients with solid tumors. d The number of patients
with germline alterations, both single-nucleotide variations (SNVs) and CNVs, in each tumor type. e Clinical outcome comparison between two groups of
C-AYA patients with solid tumors, with and without germline alterations. Gray color represents the number of patients with the specified clinical outcome
in each group. Two-sided Fisher's exact test was implemented, P= 0.31, OR= 2.14, 95% CI= 0.6–8.0. ACT adrenocortical carcinoma, CNS central
nervous system, EWS Ewing sarcoma, GCT germ cell tumor, HGG high-grade glioma, LGG low-grade glioma, LMPRT low malignancy potential renal tumor,
NBL neuroblastoma, NM non-malignant tumor, OS osteosarcoma, RCC renal cell carcinoma, RHB rhabdomyosarcoma, STS soft tissue sarcoma, WLM
Wilms tumor, Del deletion, Ins insertion.
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(21.4%), followed by Wilms tumors in 207 patients (13.7%),
neuroblastomatas in 190 patients (12.6%), and rhabdomyosarco-
mas in 134 patients (8.9%). Compared to the predicted
frequencies of solid tumors in the Surveillance, Epidemiology,
and End Results (SEER) program (http://seer.cancer.gov/iccc),
our study had overrepresented numbers of cases with Wilms
tumor, retinoblastoma, and osteosarcoma (1.8–2.1 times more),
and underrepresented numbers of cases with germ cell tumors
and adrenocortical carcinomas (two times less) (Table 2).

Germline variants in known cancer predisposition genes. In
analyzing 204 KCPG (Methods; Supplementary Data 2), we
found 158 pathogenic and 40 likely pathogenic variants in 182
patients (12%). The average mean depth was 120× (range
21×−410×) for all the P/LP KCPG variants. The average variant
allele fraction in P/LP KCPG variants was 47% (±9.2). The
pathogenic variants included 53 frameshift indels (37 deletions,
16 insertions), 53 nonsense, 25 splice-site, 23 missense, 3 start-
loss mutations, and 1 in-frame deletion (Supplementary Data 5–
6; Supplementary Fig. 4). The majority of the likely pathogenic
variants (37, 92.5%) were missense mutations (Supplementary
Data 5). RB1 (32 patients, 53% with nonsense mutations), NF1
(22 patients, 41% with nonsense mutations), CHEK2 (19 patients,
58% with frameshift deletions), and TP53 (10 patients, 50% with
missense mutations) were the genes with the most frequent P/LP
mutations among the 54 mutated genes in our dataset (Fig. 2a, b).
All of these 198 P/LP variants belong to KCPG genes with
autosomal-dominant (AD), autosomal-recessive/autosomal-
dominant (AR/AD), or X-linked-dominant (XLD) pattern of
inheritance. We excluded all the autosomal-recessive KCPG
variants since we only identified heterozygous alterations (Sup-
plementary Data 7). From 182 patients with P/LP KCPG muta-
tions, 168 (92.3%) individuals had only one P/LP KCPG variant
each. Twelve patients carried two P/LP KCPG variants, with 6 of
those diagnosed with retinoblastoma. We had a 2-year-old male
patient with adrenocortical carcinoma who had three P/LP KCPG

variants in NTRK1, EP300, and HMBS genes. Our second case
with three P/LP KCPG variants was a female diagnosed with CNS
tumor at 6 years of age and carrying variants in NF1, LZTR1, and
RECQL genes; she is a cancer survivor with no SMN after 20 years
of clinical follow-up (Supplementary Data 8)8.

Germline variants in candidate genes. Beyond KCPG variants,
we identified 1825 pathogenic and 896 likely pathogenic variants in
1173 candidate genes (Fig. 2a, b; Supplementary Data 9; Supple-
mentary Fig. 5). This includes an additional 925 (61%) patients with
predicted pathogenic variants and 193 (13%) patients with likely
pathogenic variants. The average mean depth was 99× (range
20×−1040×) for all the P/LP candidate variants. One thousand one
hundred one (40%) of predicted pathogenic and 380 (42%) of
predicted likely pathogenic variants had loss-inferred-activity by
IVA analysis (Supplementary Data 9). The average variant allele
fraction in the candidate P/LP variants was 47% (±9.4). Candidate
P/LP variants included 696 nonsense, 418 splice-site, 377 frameshift
indels (197 deletions, 180 insertions), 1179 missense, and 51 in-
frame indels (44 deletions, 7 insertions) (Supplementary Data 9).
Among 1173 mutated candidate genes in our dataset, PRKN (23
patients), PAH and TYR (each found in 17 patients), and EYS and
TMPRSS3 (each found in 16 patients) had the highest number of P/
LP variants (Fig. 2a, b; Supplementary Data 10–11). As a control, the
same variant analysis was performed on data from 53,105 indivi-
duals from the Exome Aggregation Consortium dataset (ExAC),
excluding individuals belonging to The Cancer Genome Atlas
(TCGA), known as non-TCGA ExAC dataset. Overall, 28% of the
candidate genes with four and more P/LP variants had statistically
significant P/LP variant allele frequencies (OR= 4.3–247 and infi-
nity, Bonferroni-corrected P values= 0.049 to 2.44 × 10−17) in our
C-AYA dataset compared to that in the non-TCGA ExAC dataset
(Supplementary Data 12–13). Interestingly, this percentage was
equal to the one calculated for the KCPG group with four and more
P/LP variants versus non-TCGA ExAC dataset (28%, odds ratio=
7.4–40.7, Bonferroni-corrected P values= 0.039 to 3.16 × 10−31).

Table 2 Demographics and clinical characteristics of patients.

Source CCF/PCGP/SJLIFE

Age group Children Adolescent Young adult Unknown Total

Female/Male 600/582 67/97 5/15 14/13a 686/707
Mean age of onset 6.1 ± 4.5 16.9 ± 1.3 22 ± 2.4 NA 7.6 ± 5.8
All solid tumors (1507) 1182 164 20 141 1507
Central nervous system (323) 266 23 2 32 323
Wilms tumor (207) 189 2 1 15 207
Neuroblastoma (190) 158 2 1 29 190
Rhabdomyosarcoma (134) 114 14 1 5 134
Osteosarcoma (129) 78 42 5 4 129
Retinoblastoma (98) 84 14 98
Ewing’s sarcoma (95) 58 27 5 5 95
Soft tissue sarcoma (93) 69 17 3 4 93
High-grade glioma (80) 63 8 9 80
Germ cell tumor (74) 57 11 1 5 74
Low-grade glioma (24) 8 1 15 24
Adrenocortical carcinoma (22) 20 1 1 22
Carcinoma (14) 7 7 14
Giant cell tumor (3) 0 3 3
Renal cell carcinoma (3) 2 1 3
Low malignant potential renal tumors (2) 2 2
Basal cell carcinoma (1) 1 1
Paraganglioma (1) 1 1
Other solid tumor (10) 3 4 3 10
Non-malignant tumor (4) 3 1 4

CCF Cleveland Clinic Foundation, PCGP Pediatric Cancer Genome Project, SJLIFE, St. Jude Life Cohort. aGender data were not available for all the patients in this group.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16067-1

4 NATURE COMMUNICATIONS |         (2020) 11:2206 | https://doi.org/10.1038/s41467-020-16067-1 | www.nature.com/naturecommunications

http://seer.cancer.gov/iccc
www.nature.com/naturecommunications


Germline genomic signatures across solid tumor types. To find
a germline genomic signature for each tumor type, we classified
our germline data by individual tumor type, for 12 specific types
of solid tumors (samples ranging from 22 to 323 cases per tumor
type). Individuals with adrenocortical carcinoma and high-grade

glioma tumors had the highest number of germline P/LP variants
(combined KCPG and candidate genes) per sample, 3.6 and 2.8,
respectively, compared to the overall 1.9 P/LP variants per sam-
ple. Half of the individuals with ACT and 45% of retinoblastoma
cases carried at least one KCPG P/LP variant per patient. While

a

b

c

Fig. 2 Distribution of germline pathogenic/likely pathogenic (P/LP) mutations in children, adolescents, and young adults (C-AYA) with solid tumors.
a Top mutated genes with germline P/LP variants in KCPG (left panel) and candidate genes (right panel) and their type of alterations. b Oncoplots of top
mutated genes with P/LP variants in known cancer-predisposing genes (KCPG) (top panel) and candidate genes (lower panel) based on the age group.
Each column represents one patient and its affected genes. c Most frequently mutated genes with P/LP variants in KCPG (left panel) and candidate genes
(right panel) based on their affected tumor types. ACT adrenocortical carcinoma, BCC basal cell carcinoma, CA carcinoma, CNS central nervous system,
EWS Ewing sarcoma, GCT germ cell tumor, GICT giant cell tumor, HGG high-grade glioma, LGG low-grade glioma, LMPRT low malignancy potential renal
tumor, NBL, neuroblastoma, NM non-malignant tumor, OS osteosarcoma, OST other solid tumors, PGL paraganglioma, RB retinoblastoma, RCC renal cell
carcinoma, RHB rhabdomyosarcoma, STS soft tissue sarcoma, WLM Wilms tumor, Del deletion, Ins insertion.
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each type of C-AYA solid tumor had its own well-known asso-
ciated germline KCPGs, we reported unexpected KCPGs for
many tumor types (Figs. 2c and 3a; Supplementary Data 14–15).
For example, while TP53, PMS2, and RET are already reported as
genes with germline alterations in individuals with Ewing sar-
coma, we identified germline P/LP variants in ATM (1 patient),
BRCA1 (1), CHEK2 (3), GJB2 (1), LZTR1 (1), and POLE (1) genes
in cases with Ewing sarcoma (Supplementary Fig. 6). Other
examples include germline P/LP variants in MEN1 (1), BRCA2
(1), PALB2 (1), KIT (1), MPL (1), CDC73 (1), and COL7A1 (4) in
patients with Wilms tumor. Although RB1 was mutated in about

one-third of our retinoblastoma cases, RB1 mutation-negative
retinoblastoma patients had germline P/LP variants in other
known cancer predisposition genes like BRCA1 (2), EGFR (1),
and MSH6 (1) (Fig. 3a, b).

Beyond P/LP KCPG variants, we demonstrated an interesting
signature of germline P/LP variants in our candidate gene group
(Fig. 3c, d). For example, we found germline P/LP variants in
TMPRSS3, a member of the serine protease family, in patients
with CNS tumors (5), retinoblastoma (3), and soft tissue sarcoma
(3) (Fig. 3c, d). Another example is the detection of germline
P/LP variants in MCPH1, which encodes a DNA damage

a

b

c
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Fig. 3 Germline genomic signatures of children, adolescents, and young adults (C-AYA) with 12 types of solid tumors. a, b Germline gene cloud
signatures of the C-AYA patients with solid tumors based on their altered known cancer-predisposing genes (KCPG) (a) or candidate genes (b). The size
of the genes is proportional to their pathogenic/likely pathogenic (P/LP) variant frequency in that tumor type, colors do not specify any meaning. c, d Heat
maps of top altered KCPGs (c) or candidate genes (d). Two-sided Fisher´s Exact test implemented in R statistical software. P values were adjusted for
multiple testing with Bonferroni correction considering 593 tests. FDR threshold of 0.05 considered a significant event. Scale refers to log10 (frequency of
P/LP variants in specified genes in each tumor type). Blue rectangles specify significant corrected P values in comparison to non-TCGA ExAC database.
ACT adrenocortical carcinoma, CNS central nervous system, EWS Ewing sarcoma, GCT germ cell tumor, HGG high-grade glioma, LGG low-grade glioma,
NBL neuroblastoma, OS osteosarcoma, RB retinoblastoma, RHB rhabdomyosarcoma, STS soft tissue sarcoma, WLM Wilms tumor.
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response protein in three of our Ewing sarcoma patients.
Germline P/LP variants in SMARCAL1, another gene related to
the DNA damage pathway, was detected in three patients with
osteosarcoma. Germline P/LP variants in SMAD7, a gene
associated with colorectal and breast cancers, were found in six
of our high-grade glioma patients. Germline loss of function of
the PRKN gene was frequently found in our patients with Wilms
(6), CNS (5), neuroblastoma (4), and osteosarcoma (3) tumors
(Fig. 3c, d). Our top proposed candidate genes selected based on
their known connection with cancers, and their predicted
mechanisms of function can be found in Table 3.

Finally, in order to investigate if C-AYA patients with solid
tumors have any germline alteration enrichment in genes related
to other common non-cancerous congenital syndromes, we cross-
matched our data with 185 congenital heart defect (CHD)-related
genes and found 67 (4.4%) of our patients carried at least one P/
LP variant in one autosomal-dominant CHD-related gene (7
KCPG and 19 candidate genes). An additional 72 (4.8%) patients
carried heterozygous variants in autosomal-recessive CHD-
related genes (2 KCPG and 31 candidate genes), which we did
not include in our analysis due to their mode of inheritance. C-
AYA patients with CNS (32 variants), neuroblastoma (21),
rhabdomyosarcoma (15), and Wilms (15) tumors had the highest
number of CHD-related gene variants, and patients with
retinoblastoma (2) and osteosarcoma (2) tumors had the least
number of those variants (Supplementary Fig. 7; Supplementary
Data 16).

Pathway analysis across all solid tumors. Since we noticed a very
broad spectrum of both KCPG and candidate genes involved in
C-AYA solid tumors, we next sought to determine if they con-
verged on any common pathways. The p53 pathway with fraction
affected of 0.5 (3 out of 6 genes) was the most affected, followed
by receptor tyrosine kinases and Ras (RTK–RAS) pathway with
fraction affected of 0.14 (12 out of 85 genes), Hippo pathway
with fraction affected of 0.13 (5 out of 38 genes) (Fig. 4a;

Supplementary Data 17). Candidate genes were remarkably
involved in the affected pathways. For example, in the RTK–RAS
pathway, 3 out of 12 mutated genes were from the candidate gene
group, including SHC1, ERBB3, and FLT3 (Fig. 4b). The Hippo
pathway had four affected candidate genes, CRB1, CRB2,
HMCN1, and LATS1. In the Wnt pathway, we had one recently
recognized KCPG, LZTR1, and the other six affected genes were
from the candidate gene group: AXIN1, WNT10A, CHD8, FZD6,
LRP5, RSPO1. Although only two genes belonged to the Cell
Cycle Pathway, RB1, one of those two, was the gene with the
highest variant frequencies in our dataset with 32 cases (24 var-
iants) (Supplementary Fig. 8).

Other than the direct effect on each pathway, we investigated
the interactions between our mutated genes through Ingenuity
Pathway Analysis (IPA) (Supplementary Data 18). Only genes
with at least four variants in the dataset were used to generate our
networks. The connection between our target genes and
molecules in the IPA knowledge database formed the basis of
this network construction. Our IPA-predicted top network
comprised 26 of our genes (10 KCPG and 16 candidate genes)
centering around p53 (right-tailed Fisher’s exact test P= 1 ×
10−42; Fig. 4c). Top diseases and functions predicted to be
affected by this network were metabolic diseases, organismal
injury and abnormalities, and cancer. Our analysis showed the
top anticipated canonical pathways affected by our target genes
were DNA double-strand break repair by homologous recombi-
nation (28.6% overlap, Benjamini–Hochberg (B–H) corrected
P= 2.08 × 10−3), role of BRCA1 in DNA damage response
(11.2% overlap, B–H corrected P= 5.82 × 10−5), and role of CHK
proteins in cell cycle checkpoint control (8.8% overlap, B–H
corrected P= 2.48 × 10−2). Using our network analysis, we could
predict that Eukaryotic Translation Initiation Factor 4 Gamma 1
(EIF4G1, B–H corrected P= 1.39 × 10−3) and I kappa b kinase
(IκB kinase, B–H corrected P= 1.39 × 10−3) could act as master
upstream regulators for the altered genes and potentially control
the expression of those altered genes (Fig. 4d).

Table 3 Ten examples of candidate genes and their associations with cancer.

Candidate genes OMIM Related cancers Non-cancerous
syndrome/disease

Mechanism of function References

SMAD7 602932 Familial colorectal cancer; pancreatic cancer None Via inhibiting TGF-b signaling 58

PRKN 602544 Hereditary breast and/or ovarian cancer,
lung cancer

Familial Parkinson
disease

Via regulating PI3K/AKT
pathway via inactivation
of PTEN

22,24

TYR 606933 Hereditary melanoma; basal cell carcinoma Oculocutaneous albinism Via dysregulation of melanin
synthesis

59

GHR 600946 Hereditary breast cancer Familial cardiovascular
disease

Via GH/IGF-1 pathway 60

SAMD9 610456 Familial normophosphatemic tumoral
calcinosis; inherited myelodysplastic
syndromes; breast and colon cancers

Hereditary connective
tissue disorder

Via impairing endosomal
function

61,62

TMPRSS3 605511 Breast, ovarian, and pancreatic cancers Hereditary sensorineural
hearing loss

Via regulating ERK1/2 and
PI3K/Akt pathways

16,18

SMARCAL1 606622 Clear-cell renal cell carcinoma;
endometrioid cancer

Hereditary connective
tissue disorder

Via defects in DNA damage
repair/cell cycle checkpoints

63,64

ABCB4 171060 Lung, breast, head and neck, skin and cervix
cancers; cholangiocarcinoma

Progressive familial
intrahepatic cholestasis

Via genome instability and
copy number gains in the
MAPK signaling pathway

65,66

MCPH1 607117 Hereditary breast cancer; ovarian cancer Hereditary connective
tissue disorder

Via causing mitotic errors its
involvement in the spindle
checkpoint and apoptosis

67,68

MERTK 604705 Glioblastoma; rhabdomyosarcoma; breast,
colon, and gastric cancers

Hereditary retinal
degeneration

Via regulating ERK1/2 and
PI3K/Akt pathways

69

GH growth hormone, IGF-1 insulin-like growth factor-1, TGF-b transforming growth factor beta, AKT protein kinase B, PTEN phosphatase and tensin homolog, ERK extracellular signal-regulated kinase,
MAPK mitogen-activated protein kinase, PI3K phosphoinositide 3-kinase.
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Drug–target network analysis in C-AYA solid tumors. To
determine what proportion of P/LP variants detected in our
dataset are harbored within potentially druggable genes, we cross-
matched our gene list with the drug-target network database
generated by our group10,11. This database contains 13,567
drug–target pairs connecting 2248 targets and 1703 US FDA-
approved drugs. From 1507 patients, 511 (34%) had at least one
P/LP variant on a gene that is potentially druggable. One hundred
twenty-seven (8.4%) patients had KCPG P/LP variants, and an
additional 384 (25.5%) individuals had P/LP variants in druggable
candidate genes. About one-third of these patients (161 indivi-
duals), 72 individuals with KCPG P/LP variants, and 89 with
candidate genes P/LP variants had existing FDA-approved anti-
neoplastic and immunomodulating-related compounds. The P/
LP genetic alteration of these patients was located on 73 genes, 19
KCPG, and 54 candidate genes. We had eight individuals with

two druggable genes. C-AYA patients with adrenocortical carci-
noma had the highest number of patients with druggable genes
(45.5%), followed by patients having sarcomas including soft
tissue sarcomas (14%), Ewing sarcomas (12.6%), and osteo-
sarcomas (11.6%). Patients with CNS tumors, retinoblastoma,
Wilms tumor, and neuroblastoma were next, each with 10% of
their cases carrying druggable alterations. Patients with low-grade
glioma, with 4.2%, had the lowest number of individuals with
druggable events (Fig. 5; Supplementary Data 19–20).

Discussion
Despite current advancement in first-line targeted therapies for
adults with solid tumors, there has not been much focus on the
exploration and development of targeted treatment, specifically
considering germline genomic signatures for solid tumors in

a

b

c

d

Fig. 4 Pathway analysis of altered genes with germline pathogenic/likely pathogenic (P/LP) variants in children, adolescents, and young adults
(C-AYA) with solid tumors. a Affected pathways based on altered genes with P/LP germline variants. Top panel: only known cancer-predisposing genes
(KCPG), lower panel: a combination of all KCPGs and candidate genes. Size of the circles increases as the fraction affected increases. b Genes mutated in
TP53 (top panel) and RAS–RTK (lower panel) pathways, and the number of patients affected in our cohort. Red font: tumor suppressor genes; blue font:
oncogenes. c Top network, predicted by Ingenuity Pathway Analysis (IPA), based on all the KCPG (green color) and candidate genes (salmon color) with at
least four P/LP variants in our C-AYA patients with solid tumors (right-tailed Fisher’s exact test P= 1 × 10−42). d Eukaryotic Translation Initiation Factor 4
Gamma 1 (EIF4G1, B–H corrected P= 1.39 × 10−3) and I kappa b kinase (IκB kinase, B–H corrected P= 1.39 × 10−3) predicted to be the top upstream
regulators/causal network based on our IPA analysis. Right-tailed Fisher’s exact test was used, and Benjamini–Hochberg (B–H) P value correction
performed to reduce the false discovery rate (FDR).
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C-AYA patients. Grobner et al. recently published a compre-
hensive study in the field of C-AYA cancers, with the main focus
on somatic mutational signatures. In their germline variant eva-
luation, they examined 162 cancer-predisposing genes in 914 C-
AYA individuals with malignancy, including 798 solid tumors1.
We expanded this evaluation to almost double the number of
individuals with solid tumors (1507 C-AYA) and evaluated 204
known cancer-predisposing genes. Notably, we also expanded our
assessment with an agnostic approach to evaluate new (not pre-
viously known to predispose to cancer) candidate genes, and
affected pathways which added to the germline signatures of

C-AYA solid tumors. To our knowledge, this study provides the
largest evaluation of germline mutations in C-AYA patients with
solid tumors. Here, we performed variant-prioritization analysis
on germline exome data of 1507 C-AYA patients with solid
tumors, while focusing not only on the well-known germline
mutations in KCPGs but also any P/LP germline alterations in
genes previously unknown to be associated with cancer
predisposition.

Starting with our prospectively-recruited CCF series, we
showed that 10% of our cases harbored P/LP germline alterations,
either a truncating mutation in a KCPG and/or a larger CNV in

Fig. 5 Drug–target network analysis in children, adolescents, and young adults (C-AYA) with solid tumors. Known cancer-predisposing genes (KCPG)
and candidate genes with germline pathogenic/likely pathogenic (P/LP) variants in C-AYA patients with solid tumors that have existing FDA-approved
antineoplastic and immunomodulating-related compounds, in regard to their affected tumor types. ACT adrenocortical carcinoma, CNS central nervous
system, EWS Ewing sarcoma, GCT germ cell tumor, HGG high-grade glioma, LGG low-grade glioma, NBL neuroblastoma, NM non-malignant tumor, OS
osteosarcoma, OST other solid tumors, PGL paraganglioma, RB retinoblastoma, RHB rhabdomyosarcoma, STS soft tissue sarcoma, WLM Wilms tumor.
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cancer-related genes, consistent with the previous studies1–3,12.
One of our CCF osteosarcoma cases presented with a germline
truncating mutation in GJB2 and duplication of DDX10. GJB2,
which encodes an epithelial gap junction protein, is mostly
known for being associated with syndromic hearing loss, for
example, keratitis-ichthyosis-deafness (KID). It has been reported
that these KID patients with germline GJB2 mutation have
increased risks of developing epithelial malignancies, for example,
19% occurrence of squamous cell carcinoma of the skin and oral
mucosa compared to the normal population13. In total, combined
with StJ cases, we detected seven GJB2 germline P/LP variants in
C-AYA patients with CNS tumors (3 patients), osteosarcoma (2),
Ewing sarcoma (1), and rhabdomyosarcoma (1). DDX10, the
second altered gene, in this case, is a known cancer-related gene,
and its somatic overexpression has been recently reported to be
associated with a lower survival rate in osteosarcoma patients14.
Shi and Hao14 showed that silencing of DDX10 could potentially
be therapeutic, and inhibit proliferation, invasion, and migration
of the tumor cells, by inhibiting MAPK pathway.

Validating our findings with a larger dataset, focusing on
single-nucleotide variations (SNVs) and small indels, we con-
firmed that 12% of C-AYA patients with solid tumors harbored at
least one germline P/LP variant in the KCPGs, with an additional
61% of our cases carrying pathogenic variants in other candidate
genes. As expected, about one-third of these KCPGs and candi-
date genes, each with four and more P/LP variants, were enriched
and had statistically significant higher P/LP variant allele fre-
quencies in our C-AYA patients with solid tumor dataset com-
pared to the control group from non-TCGA ExAC dataset.
Overrepresentation of germline P/LP variants of those genes in
our dataset compared to the control dataset verified the non-
incidental nature of those findings. Recently, Wang et al.15, with
the same approach, proposed that having a germline hetero-
zygous BRCA2 mutation predisposes to pediatric or adolescent
non–Hodgkin lymphoma, by showing an overrepresentation of
the BRCA2 mutations in the target group compared to a control
population without cancer (odds ratio, 3.3; 95% CI, 1.7–5.8)15.

On the other hand, there are multiple pieces of evidence
connecting a portion of these bioinformatically predicted candi-
date genes to cancer (Table 3). For example, somatic over-
expression of TMPRSS3, a transmembrane serine protease, mostly
known for its association with non-syndromic hearing loss, was
previously reported to be associated with breast, ovarian, and
pancreatic cancers16–18. TMPRSS3 can mediate cancer progres-
sion, using its proteolytic activities, by helping the malignant cells
to proliferate, migrate, and survive, via regulation of the ERK1/2
and PI3K/AKT pathways19. In another example, somatic deple-
tion of PRKN, a component of a multiprotein E3 ubiquitin ligase
complex, and a known gene associated with Parkinson’s disease,
was also reported in ovarian and lung cancers20–23. PRKN can act
as a tumor suppressor gene, and its loss of function can activate
the PI3K/AKT pathway via inactivation of PTEN24. Here, we
reported multiple instances of predicted PRKN loss of function in
patients with Wilms (6), CNS (5), neuroblastoma (4), and
osteosarcoma (3) tumors (Fig. 3c, d). We also reported germline
loss of function of COL7A1 in four C-AYA patients with Wilms
tumor. Interestingly, RNA expression data, comparing tumor and
normal tissue from gene expression profiling interactive analysis
(GEPIA)25, confirmed the lower expression of COL7A1 in adult
kidney-related tumors as well (Supplementary Fig. 9).

There have been several epidemiologic studies associated with
childhood congenital malformations with cancer risk. In a recent
study from the Swedish Patient Register, e.g., Mandalenakis
et al.26 showed that C-AYA patients with any kind of CHD had
increased risk of developing cancer (hazard ratio= 2.24, 95% CI,
2.01–2.48) compared to their matched controls, from Total

Population Register in Sweden, who did not have CHD (2% vs.
0.9%). Here, we also showed that 67 (4.4%) of our C-AYA
patients with solid tumors carried at least one germline P/LP
variant in a CHD-related gene (7 KCPG and 19 candidate genes)
(Supplementary Fig. 7), confirming the importance of evaluating
both KCPGs and candidate genes. As examples, germline NF1
and PTPN11 P/LP variants were found in 24 of our C-AYA
patients with solid tumors (Supplementary Data 5): both of
these KCPGs predispose to CNS-related tumors, are also
strongly correlated with CHDs, via up-regulation of the RAS
pathway27–30. NOTCH1 germline P/LP variants in two of our
cases (Supplementary Data 16) is another example of a candidate
gene associated with both CHD and cancer via varied mechan-
isms, including downregulation of the TGF-beta signaling
pathway affecting epithelial-to-mesenchymal transformation
(EMT)31–33. Together, the data to date re-emphasize the need for
referring all C-AYA cancer patients for genetic consultation and
further clinical evaluation.

C-AYA patients with solid tumors have a lower burden of
somatic mutations while carrying a higher number of germline
alterations, compared to their adult counterparts1,2,34. Thus, our
study here reveals the germline as a therapeutic consideration.
Our pathway analysis showed that not only point mutations, and
deletion of TP53 itself are important in cancer predisposition in
C-AYA patients, but also that P/LP germline mutations of other,
seemingly disparate, genes point to a final common disruption of
the p53 pathway. Thus, the p53 signaling pathway appears to be a
crucial final common pathway in cancer predisposition in C-
AYA. Relatedly, we showed also that DNA damage response
(DDR) and checkpoint control pathways are the top canonical
pathways in this group. While it is routine to target somatic
mutations in solid tumors, these observations suggest that
germline mutations can also be effectively targeted in those with
malignancies. The prime example is using poly (ADP-ribose)
polymerase (PARP) inhibitors for the treatment of adults with
advanced breast, ovarian, and prostate cancers in the context of
germline mutations in DDR genes, such as BRCA1, BRCA2, ATM,
or PALB235–37. Although targeting mutated genes in the germline
setting is challenging owing to possible toxicity to non-cancerous
tissues, we speculate that appropriate drug dose thresholds could
lend a high therapeutic index. Moreover, because cancer cells
often have a complex network of disrupted genes and pathways
(including somatic aberrations absent from normal cells), we
would expect varied sensitivity to therapeutic targeting between
malignant and normal cells. Our drug–target network analysis
opens a new window on potentially druggable genes and possible
repurposable drugs for currently considered undruggable tumor
targets. Thus, further preclinical and clinical studies are war-
ranted before translation to the routine clinical armamentarium.
Acquiring and combining the data for both somatic and germline
alterations, and their subsequent affected pathways, can be crucial
and rudimentary in selecting the treatment strategy with the
highest therapeutic index, and which may even mitigate the late
effects in the C-AYA population. Towards these ends, the latest
efforts by the National Cancer Institute to establish the childhood
cancer data initiative (CCDI), accompanied by ongoing clinical
trials such as the comprehensive omics analysis of pediatric solid
tumors (NCT01109394), should collectively provide a relevant
infrastructure for C-AYA solid tumors which are currently con-
sidered difficult to treat because of non-druggable targets.

Our study has several limitations, including lack of matched
tumor or RNAseq data for many of our cases. Our series were not
population-based cohorts; and only 5-year survivors were inclu-
ded in the St. Jude series. Therefore, the prioritized variants here
for cancer risk may be challenged by survivor bias. Future studies
(including from the St. Jude side) should fulfill these gaps.
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Methods
Patients enrollment/sample selection. Patients’ data for this project were
obtained from two sources:

1. Cleveland Clinic Foundation (CCF): 50 patients initially diagnosed under 29
years of age with a solid tumor, presenting to the Pediatric Hematology-
Oncology or the Cancer Genetics Clinics, were prospectively enrolled in this
study under Cleveland Clinic-approved IRB protocol 8458. Informed
consent obtained from each individual participant. Final diagnosis and
tumor types were confirmed by reviewing electronic medical records (EMR),
including primary care physician notes, surgical notes, and pathological
reports. Family history data and pedigrees were obtained by CCF genetic
counselors. Any occurrence of related cancer in first and/or second-degree
relatives counted as a positive family history. Patients were evaluated for the
occurrence of any relapse, metastasis, second primary malignant neoplasm
(SMN), or death, which collectively we classified them as patients with poor
outcome.

2. St. Jude (StJ) cloud: The rest of the patients’ germline/clinical data were
obtained from two datasets within the St. Jude Cloud, generated by St. Jude
Children Research Hospital and McDonnell Genome Institute of Washing-
ton University School of Medicine, under legal agreement 4147653:

(a) 193 patients from the Pediatric Cancer Genome Project (PCGP)38

(b) 1269 patients from St. Jude Lifetime (SJLIFE)8

Sample preparation and sequencing. Genomic DNA of CCF patients was
extracted from either peripheral-blood leukocytes (ReliaPrep Large Volume HT
gDNA System/Promega, Madison, WI) or buccal mucosa (DNeasy Blood & Tissue
Kit/Qiagen, Germantown, MD) by standard methods at the Cleveland Clinic
Genomic Medicine Biorepository (Cleveland, OH). For whole-exome sequencing
on DNA samples from CCF, we used the Nextera Rapid Capture Exome library
prep kit (Illumina, San Diego, CA). Samples were quantified and QC’ed using a
Qubit fluorometer (Invitrogen, Carlsbad, CA) with the dsDNA broad-range assay
kit and E-gel electrophoresis system (Invitrogen). Total DNA input was 50 ng,
which was then sheared enzymatically. After ligating Illumina adapters and unique
barcodes, libraries were validated using the Qubit dsDNA broad-range assay kit
and evenly pooled using 500 ng of each tagged library. Hybridization using Illu-
mina capture probes was completed on the final pool and amplified by PCR.
Validation of the final enriched library pool was completed using the Qubit fluo-
rometer to derive concentration (ng/μl), Bioanalyzer for library quality and average
bp size, and final quantification via qPCR (KAPA Biosystems, Illumina library
quantification kit). The final enriched pool was diluted, denatured, and loaded
according to the standard Illumina protocols for the HiSeq 2500 system. Samples
were run across two rapid run flowcells, 2 × 100 bp (paired-end) run.

Alignments and variant calling. Sequencing data of CCF cases were received in
binary alignment map (BAM) format. We re-generated Fast-Q files, and raw reads
were mapped to the human reference haploid genome sequence GRCH37/hg19
using Burrows-Wheeler Aligner (BWA v.0.6.1)39. Genome Analysis Toolkit
(GATK 3.5)40, Sequence Alignment/Map (SAMtools)41, and Picard (http://
broadinstitute.github.io/picard/) were used for indel-realignment, removal of PCR
duplicates, and base- and quality-score recalibrations. GATK Haplotype Caller was
used for variant calling of SNVs and short (<50 bp) indels.

Variant classification. The variant annotation and interpretation analysis for both
datasets were generated through the use of Ingenuity® Variant Analysis™ (IVA)
software (www.qiagenbioinformatics.com) from Ingenuity Systems (version
5.4.20190121). We kept variants with call quality at least 20.0, read depth at least
20.0, genotype quality at least 30.0, and outside top 5.0% most exonically variable
100-base windows in healthy public genomes (1000 genomes). Variants kept up to
20 bases to the intronic region if they were predicted to disrupt splicing by
MaxEntScan42. Variants were excluded if the allele frequency was greater than or
equal to 1.0% in any of the following population databases: 1000 Genomes Project
(phase3v5b), NHLBI ESP exomes (ESP6500SI-V2), ExAC Frequency (0.3.1), and
the gnomAD Maximum Frequency (2.0.1). Variants with a Phred-scaled CADD
(v1.3) score <10 (http://cadd.gs.washington.edu/info)43 or tolerant SIFT prediction
(2016-02-23) were excluded as well unless there was an established pathogenic
common variant. Subsequently, only variants that were classified as pathogenic and
likely pathogenic (P/LP) by auto-classification of IVA, based on the American
College of Medical Genetics and Genomics (ACMG) guidelines, were kept for
further evaluation. In addition, IVA used data from the following databases for the
auto-classification: Allele Frequency Community (2018-09-06), RefSeq Gene
Model (2018-07-10), PolyPhen-2 (v2.2.2), PhyloP (2009-11), DbSNP (151), Tar-
getScan (6.2), GENCODE (Release 28), CentoMD (5.0), Ingenuity Knowledge Base
(Stepford 190106.000), OMIM (May 26, 2017), BSIFT (2016-02-23), TCGA (2013-
09-05), ClinVar (2018-08-01), DGV (2016-05-15), COSMIC (v86), HGMD
(2018.3). P/LP variants were excluded if ClinVar (https://preview.ncbi.nlm.nih.gov/
clinvar/) called them benign or likely benign. All prioritized CCF variants and the

majority of indels in StJ datasets were inspected through the Integrative Genomics
Viewer (IGV) to rule out artifacts44(Supplementary Fig. 1).

Cancer predisposition gene selection. We compiled a list of 204 known cancer-
predisposing genes (KCPG) using published literature and databases1,2,5–7,45,46

(Cancer Gene Census Germline 2019 https://cancer.sanger.ac.uk/census#cl_search)
(Supplementary Data 2). We assigned all the prioritized variants to two groups,
namely, the KCPG group or the Candidate gene group based on this list. We only
counted a heterozygous variant KCPG if it had a dominant inheritance pattern.
None of our KCPG autosomal-recessive (AR) genes had homozygous or com-
pound heterozygous variants.

Variant analysis in the control population. Case–control analysis, using 13 non-
cancer patients from CCF and 340 non-cancer samples from the StJ dataset as
controls, was performed to exclude pipeline alignment errors in our IVA analysis.

Also, we extracted germline exome data, for all the KCPG and candidate genes
found in our study, and independently performed another IVA analysis, with the
same parameters, on 53,105 individuals from non-TCGA ExAC database to
compare the frequency of P/LP allele variants between C-AYA patients with solid
tumors and this non-cancer control population.

CNV analysis. We used VarSeq™ v2.1.0 (Golden Helix, Inc., Bozeman, MT, www.
goldenhelix.com) to detect CNVs in our CCF dataset, using depth of coverage
following the manufacturer’s instructions (https://link.springer.com/protocol/
10.1007%2F978-1-4939-8666-8_9). Principle component analysis (PCA) and
reference sample normalization were used to normalize the data. We used two
metrics to detect a CNV event: (1) Z-score, which is the number of standard
deviations from the reference sample mean and (2) ratio, which is then normalized
read depth for the sample of interest divided by the normalized mean depth over
the reference samples. Both metrics are computed from normalized coverage. We
used ratio ≤ 0.75 and Z-score ≤−2.5 for screening of heterozygous deletion and
ratio ≥ 1.25 and Z-score ≥ 2.5 for primary detection of the duplications. 1000
Genomes, ExAC, ClinVar, and Database of Genomic Variants (DGV) were used
for data annotation. The Z-scores were used to compute P values for each called
event. eXome Hidden Markov Model (XHMM) algorithm47 was used with default
parameters to confirm our CNV findings. The mean per-target depth of coverage
for detected CNVs was 149.

Pathway analysis. We used the OncogenicPathways function of maftools48 to
check for the enrichment of known oncogenic signaling pathways in our dataset.
To calculate the fraction affected, we divided the number of genes affected in each
pathway to the total number of genes within that pathway. Next, we used the
Qiagen IPA49 to generate networks for our target genes. We included only genes
with four or more P/LP variants in our dataset, in KCPG and candidate genes, after
optimization. Each gene ID was mapped to its corresponding object in Ingenuity’s
knowledge base. These genes served as seeds for generating our networks. Net-
works were then algorithmically generated based on the connectivity of our genes
of interest with other molecules existing in the Ingenuity’s knowledge base.

Reconstruction of the drug–target network. We collected physical drug–target
interactions for FDA-approved drugs from seven commonly used data sources.
Specifically, drug–target interactions were acquired from the DrugBank50, the
Therapeutic Target Database51, the PharmGKB52, and DrugCentral53. Bioactivity
data of drug–target pairs were collected from three commonly used databases:
ChEMBL54, BindingDB55, and IUPHAR/BPS Guide to Pharmacology56. Herein,
we defined a physical drug–target interaction using the reported binding affinity/
inhibitory data: inhibition constant/potency (Ki), dissociation constant (Kd),
median effective concentration (EC50), or median inhibitory concentration (IC50),
each ≤10 µM. After extracting the bioactivity data related to the drugs from the
prepared bioactivity databases, only those items meeting the following four criteria
were retained: (i) binding affinities, including Ki, Kd, IC50, or EC50, ≤10 μM; (ii)
proteins represented by unique UniProt accession number; (iii) proteins marked as
“reviewed” in the UniProt database57, and (iv) proteins of human origin. In total,
we collected 13,567 drug–target pairs connecting 2248 targets and 1703 US FDA-
approved drugs (December 2018). We defined the therapeutic drug families based
on the Anatomical Therapeutic Chemical (ATC) classification codes downloaded
from DrugBank50 and DrugCentral53. For example, we defined the antineoplastic
and immunomodulating agents based on the first level of the ATC code as L. To
select druggable genes, we cross-matched our prioritized gene list with the
reconstructed drug-target network and used the Sankey diagram (R package-net-
workD3) for the visualization.

Statistical analysis. In pathway analysis, the network scores were created based on
the hypergeometric distribution and were calculated with the right-tailed Fisher’s
exact test. B–H P value correction was used to reduce the FDR. In our case–control
comparison analysis, we calculated the P values, ORs, and 95% CIs with a two-
sided Fisher´s exact test implemented in R statistical software. P values were
adjusted, when we compared the frequency of P/LP variants in C-AYA with solid
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tumors versus non-TCGA ExAC control population, for multiple testing with
Bonferroni correction considering 593 tests. FDR threshold of 0.05 considered a
significant event. We used an independent dataset from St. Jude Children’s
Research hospital to reproduce the data from our pilot study on Cleveland Clinic
series. All the analysis of this study performed multiple time to ensure the
reproducibility of the findings.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The whole-exome data for C-AYA cases with solid tumors from Cleveland Clinic have
been deposited in the NCBI Sequence Read Archive (SRA) database under the accession
code PRJNA559601. Whole-exome data for C-AYA cases with solid tumors from St. Jude
Children’s Research hospital is accessible at https://www.stjude.cloud/ website. The non-
TCGA data referenced during the study are available in a public repository from Broad
Institute website at ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/subsets/.
All the other data supporting the findings of this study are available within the article and
its Supplementary Information files and from the corresponding author upon reasonable
request. A reporting summary for this article is available as a Supplementary
Information file.

Code availability
All data analysis, visualization, and codes related to this study are available at the
following GitHub link: https://github.com/EngLabGMI/
germline_caya_solidtumor_analysis.
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