metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*N*-Ethyl-*N*-phenyldithiocarbamato-κ*S*)triphenyltin(IV)

Nurul Farahana Kamaludin,^a‡ Ibrahim Baba,^b Normah Awang,^a Mohamed Ibrahim Mohamed Tahir^c and Edward R. T. Tiekink^d*

^aEnvironmental Health Programme, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia, ^bSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, ^cDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 9 December 2011; accepted 12 December 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.022; wR factor = 0.055; data-to-parameter ratio = 18.8.

The title compound, $[Sn(C_6H_5)_3(C_9H_{10}NS_2)]$, has two independent molecules in the asymmetric unit and each features a tetrahedrally coordinated Sn^{IV} atom as the dithiocarbamate ligand coordinates in a monodentate fashion. As the non-coordinating thione S atom is proximate to the Sn atom $[Sn \cdots S(\text{thione}) = 3.1477 \ (6)$ and 2.9970 (5) Å for the independent molecules], distortions from the ideal geometry are evident [the widest angle being 120.48 (5)°]. The most notable feature of the crystal packing is the formation of $C-H\cdots\pi$ interactions that lead to the formation of supramolecular layers parallel to $(\overline{321})$.

Related literature

For a review on the applications and structural chemistry of tin dithiocarbamates, see: Tiekink (2008). For the recently reported *n*-butyl derivative, see: Kamaludin *et al.* (2011).

‡ Additional correspondence author, e-mail: aibi@ukm.my.

Experimental

Crystal data

 $\begin{bmatrix} \text{Sn}(\text{C}_6\text{H}_5)_3(\text{C}_9\text{H}_{10}\text{NS}_2) \end{bmatrix} & \gamma = 110.687 \ (2)^{\circ} \\ M_r = 546.29 & V = 2484.39 \ (8) \ \text{Å}^3 \\ \text{Triclinic, } P\overline{1} & Z = 4 \\ a = 9.6973 \ (2) \ \text{Å} & \text{Mo } K\alpha \text{ radiation} \\ b = 12.2804 \ (2) \ \text{Å} & \mu = 1.21 \ \text{mm}^{-1} \\ c = 22.8523 \ (4) \ \text{\AA} & T = 150 \ \text{K} \\ \alpha = 90.588 \ (2)^{\circ} & 0.30 \times 0.24 \times 0.19 \ \text{mm} \\ \beta = 101.573 \ (2)^{\circ} \\ \end{bmatrix}$

Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) $T_{\rm min} = 0.748, T_{\rm max} = 0.795$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ 561 parameters $wR(F^2) = 0.055$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.55$ e Å⁻³10558 reflections $\Delta \rho_{min} = -0.44$ e Å⁻³

Table 1

Selected bond lengths (Å).

Sn1-C10	2.1339 (19)	Sn2-C37	2.1413 (18)
Sn1-C16	2.1541 (19)	Sn2-C43	2.1605 (19)
Sn1-C22	2.1210 (18)	Sn2-C49	2.1379 (19)
Sn1-S1	2.4539 (5)	Sn2-S3	2.4662 (5)

62467 measured reflections

 $R_{\rm int}=0.038$

10558 independent reflections

9633 reflections with $I > 2\sigma(I)$

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

<i>Cg</i> 1, <i>Cg</i> 2, and	Cg3 are the centroids of the C16–C21, C37–C42 and C43–C	48
benzene rings,	respectively.	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	D-H	$I \cdots A$
$C9 - H9 \cdots Cg1^{i}$ $C25 - H25 \cdots Cg2^{ii}$ $C32 - H32 \cdots Cg3^{iii}$	0.95 0.95 0.95	2.72 2.90 2.92	3.630 (3) 3.639 (3) 3.824 (2)	160 135 160	
Symmetry codes:	(i) - <i>x</i> +	1, -y + 2, -z + 1;	(ii)	x - 1, y, z;	(iii)

-x + 2, -y + 2, -z + 2.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997), *DIAMOND* (Brandenburg, 2006) and *QMol* (Gans & Shalloway, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors thank the Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08–27-111), the Ministry of Higher Education (UKM-ST-06-FRGS0092–2010) and the Universiti Putra Malaysia for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2044).

References

- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
 Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.
- Kamaludin, N. F., Baba, I., Awang, N., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m555–m556.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tiekink, E. R. T. (2008). *Appl. Organomet. Chem.* **22**, 533–550. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

Acta Cryst. (2012). E68, m62-m63 [doi:10.1107/S1600536811053591]

(N-Ethyl-N-phenyldithiocarbamato-KS)triphenyltin(IV)

N. F. Kamaludin, I. Baba, N. Awang, M. I. Mohamed Tahir and E. R. T. Tiekink

Comment

Potential applications as anti-cancer agents, anti-microbials and insecticides, and as convenient synthetic precursors for tin sulfide nanoparticles, characterize organotin dithiocarbamates (Tiekink, 2008). This background motivates our interest in this class of compound and led to the investigation of the title compound, (I). Recently, the structure of the *n*-butyl derivative was described (Kamaludin *et al.*, 2011) and herein, we describe the analysis of (I).

There are two independent molecules in the asymmetric unit of (I): the molecular structures are shown in Fig. 1. Each molecule features Sn coordinated by the dithiocarbamate ligand and three *ipso*-C atoms of three benzene rings. The dithiocarbamate ligand coordinates essentially in a monodentate fashion, an assignment supported by the large disparity in the C—S bond distances, Table 1. The coordination geometry is based on a tetrahedron with the range of tetrahedral angles being 94.46 (5) to 120.48 (5)° for the Sn1-containing molecule and 95.28 (5) to 118.66 (5)° for the other. The wider angles are ascribed to the influence of the proximate thione-S atom [Sn1...S2 = 3.1477 (6) Å and Sn2...S4 = 2.9970 (5) Å]. The major differences between the independent molecules is highlighted in the overlay diagram, Fig. 2, showing that the chemically equivalent phenyl rings do not overlap significantly.

The crystal packing of (I) features C—H··· π interactions involving the Sn- and *N*-phenyl rings as donors, and Sn-bound phenyl rings as acceptors, Table 2. The result is the formation of supramolecular layers parallel to ($\overline{3}$ 2 T), Fig. 3.

Experimental

The title compound was prepared using an *in situ* method. A mixture of ethanol (50 ml) and *N*-ethylaniline (30 m*M*) was added to an ammonia solution (0.25%). The solution was stirred for half an hour at approximately 277 K. Carbon disulfide (30 m*M*) was added drop-wise and stirring was continued for another 6–8 h at 277 K. Triphenytin(IV) chloride (30 m*M*), dissolved in ethanol (20 ml), was added and stirring continued for a further 3 h. The white precipitate formed was filtered, washed with cold ethanol and dried in a vacuum desiccator. Recrystallization was from its ethanol:ethyl acetate (1:1) solution. Yield: 32%. *M*.pt. 381–382 K. Elemental analysis. Found (calculated) for C₂₇H₂₅NS₂Sn: C, 59.19 (59.36); H 4.33 (4.61); N 2.52 (2.56); S 11.30 (11.74) %. IR (KBr): v(C—H) 2986 m; v(C:::N) 1478 m; v(N—C) 1125 s; v(C:::S) 997 s; v(Sn—S) 357 s cm^{-1.13}C NMR (CDCl₃): δ (CS₂) 198.63 p.p.m..

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2 to $1.5U_{equiv}(C)$.

Figures

Ft S

Fig. 1. The molecular structure of the two independent molecules comprising (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2. An overlay diagram of the two independent molecules comprising (I) aligned so that the Sn—S—C planes are superimposed. The red image illustrates the molecule containing the Sn1 atom.

Fig. 3. A view of the supramolecular layer parallel to $[\overline{3} \ 2 \ \overline{1}]$ in (I) mediated by C—H··· π interactions (purple dashed lines).

(N-Ethyl-N-phenyldithiocarbamato-κS)triphenyltin(IV)

Crystal data	
$[Sn(C_6H_5)_3(C_9H_{10}NS_2)]$	Z = 4
$M_r = 546.29$	F(000) = 1104
Triclinic, PT	$D_{\rm x} = 1.461 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 9.6973 (2) Å	Cell parameters from 39367 reflections
b = 12.2804 (2) Å	$\theta = 2 - 29^{\circ}$
c = 22.8523 (4) Å	$\mu = 1.21 \text{ mm}^{-1}$
$\alpha = 90.588 \ (2)^{\circ}$	T = 150 K
$\beta = 101.573 \ (2)^{\circ}$	Block, colourless
$\gamma = 110.687 \ (2)^{\circ}$	$0.30\times0.24\times0.19~mm$
$V = 2484.39 (8) \text{ Å}^3$	

Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer	10558 independent reflections
Radiation source: fine-focus sealed tube	9633 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.038$
Detector resolution: 16.1952 pixels mm ⁻¹	$\theta_{\text{max}} = 26.8^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2010)	$k = -15 \rightarrow 15$

$T_{\min} = 0.748, \ T_{\max} = 0.795$	$l = -28 \rightarrow 28$
62467 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.022$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.055$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.0259P)^2 + 1.489P]$ where $P = (F_0^2 + 2F_c^2)/3$
10558 reflections	$(\Delta/\sigma)_{\text{max}} = 0.004$
561 parameters	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.425600 (14)	0.868539 (11)	0.613068 (5)	0.02407 (4)
S1	0.25460 (6)	0.77901 (4)	0.51651 (2)	0.02845 (10)
S2	0.39527 (6)	0.61380 (5)	0.57263 (2)	0.03395 (11)
N1	0.2447 (2)	0.58873 (15)	0.45887 (7)	0.0337 (4)
C1	0.2955 (2)	0.65087 (17)	0.51249 (8)	0.0284 (4)
C2	0.2836 (3)	0.4851 (2)	0.44586 (11)	0.0478 (6)
H2A	0.3831	0.4944	0.4715	0.057*
H2B	0.2923	0.4815	0.4035	0.057*
C3	0.1682 (3)	0.3731 (2)	0.45672 (13)	0.0614 (8)
H3A	0.1678	0.3723	0.4996	0.092*
H3B	0.1931	0.3071	0.4439	0.092*
H3C	0.0682	0.3663	0.4338	0.092*
C4	0.1517 (2)	0.62092 (17)	0.40950 (8)	0.0314 (4)
C5	-0.0031 (3)	0.5806 (2)	0.40371 (10)	0.0386 (5)
H5	-0.0482	0.5333	0.4324	0.046*
C6	-0.0915 (3)	0.6096 (2)	0.35598 (11)	0.0510 (6)

H6	-0.1980	0.5823	0.3517	0.061*
C7	-0.0259 (4)	0.6780 (3)	0.31455 (11)	0.0610 (8)
H7	-0.0871	0.6985	0.2819	0.073*
C8	0.1281 (4)	0.7169 (2)	0.32016 (11)	0.0602 (8)
H8	0.1725	0.7636	0.2911	0.072*
C9	0.2197 (3)	0.6885 (2)	0.36788 (10)	0.0440 (5)
Н9	0.3260	0.7149	0.3717	0.053*
C10	0.6605 (2)	0.89709 (18)	0.62716 (8)	0.0293 (4)
C11	0.7603 (2)	0.9959 (2)	0.60893 (10)	0.0408 (5)
H11	0.7239	1.0507	0.5885	0.049*
C12	0.9148 (3)	1.0149 (3)	0.62057 (13)	0.0574 (7)
H12	0.9828	1.0815	0.6072	0.069*
C13	0.9681 (3)	0.9371 (3)	0.65134 (14)	0.0624 (8)
H13	1.0730	0.9503	0.6591	0.075*
C14	0.8709 (3)	0.8402 (2)	0.67092 (12)	0.0517 (7)
H14	0.9086	0.7877	0.6929	0.062*
C15	0.7171 (2)	0.8197 (2)	0.65846 (9)	0.0359 (5)
H15	0.6499	0.7521	0.6714	0.043*
C16	0.4002 (2)	1.03524 (16)	0.60391 (8)	0.0271 (4)
C17	0.3810 (2)	1.09529 (17)	0.65201 (9)	0.0332 (4)
H17	0.3829	1.0632	0.6897	0.040*
C18	0.3592 (3)	1.20067 (19)	0.64607 (10)	0.0408 (5)
H18	0.3465	1.2399	0.6795	0.049*
C19	0.3559 (3)	1.24854 (19)	0.59177 (11)	0.0421 (5)
H19	0.3412	1.3208	0.5877	0.051*
C20	0.3740 (3)	1,1909 (2)	0.54327 (10)	0.0415 (5)
H20	0.3716	1 2235	0.5057	0.050*
C21	0.3956 (2)	1 08579 (19)	0 54950 (9)	0.0350 (5)
H21	0 4077	1 0469	0 5158	0.042*
C22	0.3337(2)	0 80327 (17)	0 68794 (8)	0.0268(4)
C23	0.1960(2)	0.7136(2)	0.68340(10)	0.0286(1)
H23	0.1416	0.6716	0.6457	0.046*
C24	0.1371(3)	0.6849(2)	0.73484(14)	0.0581 (7)
H24	0.0423	0.6237	0.7321	0.070*
C25	0.0123 0.2182 (4)	0.7465 (3)	0.78978 (12)	0.0635 (8)
H25	0.1774	0.7282	0.8245	0.0055 (0)
C26	0.1774 0.3555 (4)	0.7282 0.8328 (2)	0.0243 0.79434 (11)	0.070
H26	0.4117	0.8730	0.8322	0.0555 (8)
C27	0.4122(3)	0.8612 (2)	0.74395 (9)	0.071
H27	0.4122 (3)	0.0012 (2)	0.74333 (3)	0.0410 (3)
Sn2	0.849644 (14)	0.767651 (10)	0.914470 (5)	0.07217(4)
S112 S2	0.049044(14) 0.73045(6)	0.77465(4)	0.914470(3)	0.02217(4)
S3	0.73043(0)	0.77403(4) 0.56018(4)	0.99945(2) 0.99945(2)	0.02307(10) 0.03252(11)
N2	0.82307(0) 0.71753(19)	0.50518(4)	1.08192(7)	0.03232(11) 0.0289(3)
C28	0.71755(19) 0.7555(2)	0.65068 (16)	1.02941 (8)	0.0209(3) 0.0257(4)
C20	0.7378(2)	0.52486 (10)	1 11280 (11)	0.0237 (4)
U29 H20A	0.7570(5)	0.32400 (19)	1.11200 (11)	0.0403 (0)
1127A	0.7174	0.4001	1.0020	0.050*
C30	0.0050	0.47/0	1.1302	0.030
0.50	0.0737 (4)	0.3302 (3)	1.13140(13)	0.0720(9)

H30A	0.9696	0.5783	1.1258	0.109*
H30B	0.9035	0.4921	1.1738	0.109*
H30C	0.9168	0.6256	1.1797	0.109*
C31	0.6641 (2)	0.69863 (16)	1.11445 (8)	0.0273 (4)
C32	0.7662 (2)	0.79839 (17)	1.14875 (9)	0.0335 (4)
H32	0.8711	0.8217	1.1497	0.040*
C33	0.7126 (3)	0.86425 (19)	1.18188 (10)	0.0409 (5)
H33	0.7811	0.9330	1.2059	0.049*
C34	0.5593 (3)	0.8294 (2)	1.17981 (10)	0.0420 (5)
H34	0.5227	0.8747	1.2022	0.050*
C35	0.4607 (3)	0.7303 (2)	1.14582 (11)	0.0440 (5)
H35	0.3557	0.7072	1.1447	0.053*
C36	0.5116 (2)	0.66293 (19)	1.11289 (10)	0.0360 (5)
H36	0.4427	0.5934	1.0897	0.043*
C37	1.0884 (2)	0.80657 (15)	0.93488 (8)	0.0225 (4)
C38	1.1777 (2)	0.91710 (16)	0.92315 (8)	0.0251 (4)
H38	1.1314	0.9708	0.9084	0.030*
C39	1.3336 (2)	0.95029 (17)	0.93266 (8)	0.0297 (4)
H39	1.3931	1.0261	0.9244	0.036*
C40	1.4021 (2)	0.87260 (18)	0.95422 (9)	0.0313 (4)
H40	1.5086	0.8947	0.9605	0.038*
C41	1.3150 (2)	0.76280 (18)	0.96660 (9)	0.0320 (4)
H41	1.3621	0.7099	0.9818	0.038*
C42	1.1587 (2)	0.72925 (17)	0.95689 (8)	0.0284 (4)
H42	1.0997	0.6534	0.9653	0.034*
C43	0.8300 (2)	0.92594 (16)	0.88000 (8)	0.0249 (4)
C44	0.8243 (2)	1.01716 (18)	0.91533 (9)	0.0329 (4)
H44	0.8266	1.0101	0.9568	0.040*
C45	0.8153 (3)	1.1176 (2)	0.89075 (10)	0.0413 (5)
H45	0.8109	1.1786	0.9154	0.050*
C46	0.8125 (2)	1.12962 (18)	0.83056 (9)	0.0350 (5)
H46	0.8052	1.1983	0.8137	0.042*
C47	0.8206 (2)	1.04148 (18)	0.79481 (9)	0.0330 (4)
H47	0.8205	1.0499	0.7535	0.040*
C48	0.8287 (2)	0.94077 (17)	0.81961 (8)	0.0300 (4)
H48	0.8335	0.8803	0.7947	0.036*
C49	0.7240 (2)	0.64207 (16)	0.83962 (8)	0.0285 (4)
C50	0.5873 (3)	0.6435 (2)	0.80722 (10)	0.0440 (5)
H50	0.5436	0.6937	0.8215	0.053*
C51	0.5138 (3)	0.5727 (2)	0.75430 (12)	0.0630 (8)
H51	0.4197	0.5741	0.7329	0.076*
C52	0.5760 (4)	0.5013 (2)	0.73294 (12)	0.0695 (10)
H52	0.5261	0.4539	0.6963	0.083*
C53	0.7108 (4)	0.4976 (2)	0.76434 (13)	0.0670 (9)
Н53	0.7537	0.4474	0.7494	0.080*
C54	0.7849 (3)	0.5676 (2)	0.81818 (11)	0.0456 (6)
H54	0.8772	0.5639	0.8401	0.055*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.02483 (7)	0.02598 (7)	0.01999 (7)	0.00680 (5)	0.00633 (5)	0.00045 (5)
S 1	0.0337 (3)	0.0290 (2)	0.0217 (2)	0.0118 (2)	0.00338 (19)	-0.00109 (18)
S2	0.0372 (3)	0.0334 (3)	0.0284 (2)	0.0131 (2)	0.0004 (2)	0.0015 (2)
N1	0.0406 (10)	0.0317 (9)	0.0273 (8)	0.0143 (8)	0.0021 (7)	-0.0043 (7)
C1	0.0275 (10)	0.0282 (10)	0.0256 (9)	0.0054 (8)	0.0061 (8)	0.0005 (7)
C2	0.0574 (15)	0.0529 (15)	0.0401 (13)	0.0336 (13)	0.0016 (11)	-0.0077 (11)
C3	0.0743 (19)	0.0410 (14)	0.0637 (18)	0.0265 (14)	-0.0058 (15)	-0.0103 (12)
C4	0.0423 (12)	0.0292 (10)	0.0209 (9)	0.0136 (9)	0.0017 (8)	-0.0057 (7)
C5	0.0437 (13)	0.0378 (12)	0.0331 (11)	0.0155 (10)	0.0043 (9)	-0.0046 (9)
C6	0.0518 (15)	0.0561 (15)	0.0439 (14)	0.0285 (13)	-0.0079 (11)	-0.0133 (12)
C7	0.094 (2)	0.0664 (18)	0.0312 (13)	0.0537 (18)	-0.0121 (14)	-0.0081 (12)
C8	0.105 (3)	0.0555 (16)	0.0303 (12)	0.0382 (17)	0.0208 (14)	0.0141 (11)
С9	0.0528 (14)	0.0423 (13)	0.0371 (12)	0.0143 (11)	0.0156 (11)	0.0035 (10)
C10	0.0262 (10)	0.0353 (11)	0.0235 (9)	0.0072 (8)	0.0067 (7)	-0.0044 (8)
C11	0.0342 (11)	0.0423 (12)	0.0364 (12)	0.0015 (10)	0.0102 (9)	-0.0028 (9)
C12	0.0339 (13)	0.0641 (17)	0.0583 (16)	-0.0058 (12)	0.0190 (12)	-0.0106 (13)
C13	0.0251 (12)	0.085 (2)	0.0691 (18)	0.0136 (13)	0.0054 (12)	-0.0264 (16)
C14	0.0388 (13)	0.0656 (17)	0.0501 (14)	0.0266 (13)	-0.0048 (11)	-0.0192 (12)
C15	0.0327 (11)	0.0408 (12)	0.0313 (11)	0.0131 (9)	0.0017 (8)	-0.0062 (9)
C16	0.0255 (9)	0.0253 (9)	0.0284 (10)	0.0057 (8)	0.0077 (8)	0.0004 (7)
C17	0.0392 (11)	0.0293 (10)	0.0294 (10)	0.0074 (9)	0.0133 (9)	0.0011 (8)
C18	0.0484 (13)	0.0341 (11)	0.0426 (12)	0.0136 (10)	0.0187 (10)	-0.0035 (9)
C19	0.0488 (13)	0.0317 (11)	0.0518 (14)	0.0192 (10)	0.0158 (11)	0.0055 (10)
C20	0.0521 (14)	0.0416 (12)	0.0377 (12)	0.0227 (11)	0.0139 (10)	0.0119 (10)
C21	0.0427 (12)	0.0358 (11)	0.0295 (10)	0.0157 (10)	0.0119 (9)	0.0030 (8)
C22	0.0322 (10)	0.0313 (10)	0.0222 (9)	0.0163 (8)	0.0085 (8)	0.0059 (7)
C23	0.0366 (12)	0.0419 (12)	0.0376 (12)	0.0122 (10)	0.0116 (9)	0.0128 (9)
C24	0.0554 (16)	0.0576 (16)	0.075 (2)	0.0238 (14)	0.0380 (15)	0.0376 (15)
C25	0.106 (3)	0.0722 (19)	0.0443 (15)	0.0525 (19)	0.0494 (17)	0.0245 (14)
C26	0.105 (2)	0.0549 (16)	0.0273 (12)	0.0363 (17)	0.0212 (14)	0.0058 (11)
C27	0.0556 (14)	0.0401 (12)	0.0254 (10)	0.0173 (11)	0.0050 (10)	0.0002 (9)
Sn2	0.02496 (7)	0.02192 (7)	0.01935 (6)	0.00797 (5)	0.00520 (5)	0.00102 (5)
S3	0.0357 (3)	0.0334 (3)	0.0260 (2)	0.0199 (2)	0.0129 (2)	0.00964 (19)
S4	0.0459 (3)	0.0260 (2)	0.0315 (3)	0.0154 (2)	0.0169 (2)	0.00464 (19)
N2	0.0399 (9)	0.0213 (8)	0.0287 (8)	0.0100 (7)	0.0164 (7)	0.0061 (6)
C28	0.0257 (9)	0.0238 (9)	0.0252 (9)	0.0054 (8)	0.0066 (7)	0.0018 (7)
C29	0.0849 (19)	0.0261 (11)	0.0492 (14)	0.0252 (12)	0.0386 (14)	0.0172 (10)
C30	0.122 (3)	0.0634 (19)	0.0487 (16)	0.059 (2)	0.0063 (17)	0.0182 (14)
C31	0.0375 (11)	0.0254 (9)	0.0216 (9)	0.0116 (8)	0.0119 (8)	0.0063 (7)
C32	0.0340 (11)	0.0281 (10)	0.0365 (11)	0.0086 (9)	0.0081 (9)	0.0031 (8)
C33	0.0569 (15)	0.0311 (11)	0.0318 (11)	0.0141 (10)	0.0072 (10)	-0.0033 (9)
C34	0.0608 (15)	0.0445 (13)	0.0341 (11)	0.0281 (12)	0.0233 (11)	0.0073 (10)
C35	0.0404 (13)	0.0488 (14)	0.0498 (14)	0.0173 (11)	0.0231 (11)	0.0099 (11)
C36	0.0363 (11)	0.0335 (11)	0.0346 (11)	0.0063 (9)	0.0113 (9)	0.0027 (9)

C37	0.0259 (9)	0.0247 (9)	0.0173 (8)	0.0100 (7)	0.0042 (7)	-0.0011 (7)
C38	0.0295 (10)	0.0253 (9)	0.0210 (9)	0.0117 (8)	0.0031 (7)	0.0005 (7)
C39	0.0287 (10)	0.0296 (10)	0.0259 (9)	0.0052 (8)	0.0050 (8)	0.0004 (8)
C40	0.0258 (10)	0.0387 (11)	0.0267 (10)	0.0117 (9)	0.0002 (8)	-0.0069 (8)
C41	0.0349 (11)	0.0341 (11)	0.0290 (10)	0.0190 (9)	-0.0002 (8)	-0.0031 (8)
C42	0.0346 (10)	0.0243 (9)	0.0272 (9)	0.0123 (8)	0.0054 (8)	0.0007 (7)
C43	0.0243 (9)	0.0270 (9)	0.0234 (9)	0.0101 (8)	0.0038 (7)	0.0019 (7)
C44	0.0471 (12)	0.0356 (11)	0.0222 (9)	0.0210 (10)	0.0098 (9)	0.0026 (8)
C45	0.0644 (15)	0.0368 (12)	0.0362 (12)	0.0303 (11)	0.0188 (11)	0.0054 (9)
C46	0.0422 (12)	0.0311 (11)	0.0366 (11)	0.0179 (9)	0.0105 (9)	0.0110 (9)
C47	0.0391 (11)	0.0333 (11)	0.0224 (9)	0.0100 (9)	0.0034 (8)	0.0052 (8)
C48	0.0391 (11)	0.0259 (10)	0.0228 (9)	0.0090 (8)	0.0071 (8)	-0.0003 (7)
C49	0.0334 (10)	0.0222 (9)	0.0230 (9)	0.0011 (8)	0.0072 (8)	0.0007 (7)
C50	0.0428 (13)	0.0346 (12)	0.0420 (13)	0.0060 (10)	-0.0040 (10)	0.0021 (10)
C51	0.0662 (18)	0.0442 (15)	0.0438 (14)	-0.0060 (13)	-0.0172 (13)	0.0028 (12)
C52	0.092 (2)	0.0412 (15)	0.0336 (13)	-0.0187 (15)	0.0006 (14)	-0.0061 (11)
C53	0.095 (2)	0.0418 (15)	0.0559 (17)	0.0058 (15)	0.0331 (17)	-0.0173 (13)
C54	0.0497 (14)	0.0393 (13)	0.0450 (13)	0.0111 (11)	0.0139 (11)	-0.0103 (10)

Geometric parameters (Å, °)

Sn1—C10	2.1339 (19)	Sn2—C37	2.1413 (18)
Sn1—C16	2.1541 (19)	Sn2—C43	2.1605 (19)
Sn1—C22	2.1210 (18)	Sn2—C49	2.1379 (19)
Sn1—S1	2.4539 (5)	Sn2—S3	2.4662 (5)
S1—C1	1.759 (2)	S3—C28	1.7496 (19)
S2—C1	1.680 (2)	S4—C28	1.6862 (19)
N1—C1	1.342 (2)	N2—C28	1.333 (2)
N1—C4	1.448 (3)	N2—C31	1.449 (2)
N1—C2	1.492 (3)	N2—C29	1.481 (3)
C2—C3	1.496 (4)	C29—C30	1.518 (4)
C2—H2A	0.9900	С29—Н29А	0.9900
C2—H2B	0.9900	С29—Н29В	0.9900
С3—НЗА	0.9800	С30—Н30А	0.9800
С3—Н3В	0.9800	С30—Н30В	0.9800
С3—НЗС	0.9800	С30—Н30С	0.9800
C4—C9	1.382 (3)	C31—C32	1.381 (3)
C4—C5	1.382 (3)	C31—C36	1.379 (3)
C5—C6	1.379 (3)	C32—C33	1.393 (3)
С5—Н5	0.9500	С32—Н32	0.9500
C6—C7	1.374 (4)	C33—C34	1.384 (3)
С6—Н6	0.9500	С33—Н33	0.9500
C7—C8	1.376 (4)	C34—C35	1.363 (3)
С7—Н7	0.9500	С34—Н34	0.9500
C8—C9	1.391 (4)	C35—C36	1.386 (3)
С8—Н8	0.9500	С35—Н35	0.9500
С9—Н9	0.9500	С36—Н36	0.9500
C10—C15	1.393 (3)	C37—C38	1.391 (3)
C10—C11	1.388 (3)	C37—C42	1.396 (3)

C11—C12	1.400 (3)	C38—C39	1.389 (3)
C11—H11	0.9500	С38—Н38	0.9500
C12—C13	1.375 (4)	C39—C40	1.386 (3)
C12—H12	0.9500	С39—Н39	0.9500
C13—C14	1.375 (4)	C40—C41	1.382 (3)
С13—Н13	0.9500	C40—H40	0.9500
C14—C15	1.389 (3)	C41—C42	1.392 (3)
C14—H14	0.9500	C41—H41	0.9500
C15—H15	0.9500	C42—H42	0.9500
C16—C17	1.396 (3)	C43—C48	1.392 (3)
C16—C21	1.395 (3)	C43—C44	1.398 (3)
C17—C18	1.387 (3)	C44—C45	1.384 (3)
С17—Н17	0.9500	C44—H44	0.9500
C18—C19	1.378 (3)	C45—C46	1.381 (3)
C18—H18	0.9500	C45—H45	0.9500
C19—C20	1.382 (3)	C46—C47	1.383 (3)
С19—Н19	0.9500	C46—H46	0.9500
C20—C21	1.384 (3)	C47—C48	1.386 (3)
С20—Н20	0.9500	С47—Н47	0.9500
C21—H21	0.9500	C48—H48	0.9500
C22—C27	1.390 (3)	C49—C50	1.389 (3)
C22—C23	1.382 (3)	C49—C54	1.384 (3)
C23—C24	1.403 (3)	C50—C51	1.386 (3)
С23—Н23	0.9500	С50—Н50	0.9500
C24—C25	1.390 (4)	C51—C52	1.362 (5)
C24—H24	0.9500	C51—H51	0.9500
C25—C26	1.361 (4)	C52—C53	1.376 (5)
С25—Н25	0.9500	С52—Н52	0.9500
C26—C27	1.370 (3)	C53—C54	1.398 (4)
С26—Н26	0.9500	С53—Н53	0.9500
С27—Н27	0.9500	С54—Н54	0.9500
C22—Sn1—C10	112.49 (7)	C49—Sn2—C37	115.41 (7)
C22—Sn1—C16	105.17 (7)	C49—Sn2—C43	101.51 (7)
C10—Sn1—C16	108.02 (8)	C37—Sn2—C43	103.22 (7)
C22—Sn1—S1	113.28 (6)	C49—Sn2—S3	118.66 (5)
C10—Sn1—S1	120.48 (5)	C37—Sn2—S3	117.12 (5)
C16—Sn1—S1	94.46 (5)	C43—Sn2—S3	95.28 (5)
C1—S1—Sn1	98.20 (7)	C28—S3—Sn2	95.09 (6)
C1—N1—C4	121.45 (17)	C28—N2—C31	122.39 (15)
C1—N1—C2	122.48 (18)	C28—N2—C29	121.82 (16)
C4—N1—C2	116.05 (16)	C31—N2—C29	115.65 (15)
N1—C1—S2	123.77 (16)	N2	123.09 (14)
N1—C1—S1	115.59 (15)	N2-C28-S3	116.67 (14)
S2—C1—S1	120.63 (11)	S4—C28—S3	120.24 (11)
N1—C2—C3	112.3 (2)	N2—C29—C30	111.3 (2)
N1—C2—H2A	109.1	N2—C29—H29A	109.4
C3—C2—H2A	109.1	С30—С29—Н29А	109.4
N1—C2—H2B	109.1	N2—C29—H29B	109.4
C3—C2—H2B	109.1	С30—С29—Н29В	109.4

H2A—C2—H2B	107.9	H29A—C29—H29B	108.0
С2—С3—НЗА	109.5	С29—С30—Н30А	109.5
С2—С3—Н3В	109.5	С29—С30—Н30В	109.5
НЗА—СЗ—НЗВ	109.5	H30A—C30—H30B	109.5
С2—С3—Н3С	109.5	С29—С30—Н30С	109.5
НЗА—СЗ—НЗС	109.5	H30A—C30—H30C	109.5
НЗВ—СЗ—НЗС	109.5	H30B-C30-H30C	109.5
C9—C4—C5	121.3 (2)	C32—C31—C36	121.41 (19)
C9—C4—N1	119.0 (2)	C32—C31—N2	119.92 (18)
C5-C4-N1	119.70 (19)	C36—C31—N2	118.56 (18)
C6—C5—C4	119.5 (2)	C31—C32—C33	118.8 (2)
С6—С5—Н5	120.2	С31—С32—Н32	120.6
С4—С5—Н5	120.2	С33—С32—Н32	120.6
C7—C6—C5	120.1 (3)	C34—C33—C32	119.9 (2)
С7—С6—Н6	120.0	С34—С33—Н33	120.0
С5—С6—Н6	120.0	С32—С33—Н33	120.0
C8—C7—C6	120.2 (2)	C35—C34—C33	120.3 (2)
С8—С7—Н7	119.9	С35—С34—Н34	119.9
С6—С7—Н7	119.9	С33—С34—Н34	119.9
С7—С8—С9	120.8 (3)	C34—C35—C36	120.8 (2)
С7—С8—Н8	119.6	С34—С35—Н35	119.6
С9—С8—Н8	119.6	С36—С35—Н35	119.6
C4—C9—C8	118.2 (2)	C31—C36—C35	118.8 (2)
С4—С9—Н9	120.9	С31—С36—Н36	120.6
С8—С9—Н9	120.9	С35—С36—Н36	120.6
C15-C10-C11	118.9 (2)	C38—C37—C42	118.60 (17)
C15-C10-Sn1	119.93 (15)	C38—C37—Sn2	116.12 (13)
C11—C10—Sn1	121.02 (16)	C42—C37—Sn2	125.26 (14)
C10-C11-C12	120.0 (2)	C39—C38—C37	121.05 (17)
C10—C11—H11	120.0	С39—С38—Н38	119.5
C12—C11—H11	120.0	С37—С38—Н38	119.5
C13—C12—C11	120.0 (3)	C38—C39—C40	119.83 (19)
С13—С12—Н12	120.0	С38—С39—Н39	120.1
C11—C12—H12	120.0	С40—С39—Н39	120.1
C12—C13—C14	120.6 (2)	C41—C40—C39	119.82 (19)
C12—C13—H13	119.7	C41—C40—H40	120.1
C14—C13—H13	119.7	C39—C40—H40	120.1
C13—C14—C15	119.7 (3)	C40—C41—C42	120.42 (18)
C13—C14—H14	120.2	C40—C41—H41	119.8
C15—C14—H14	120.2	C42—C41—H41	119.8
C10-C15-C14	120.8 (2)	C41—C42—C37	120.28 (18)
C10-C15-H15	119.6	C41—C42—H42	119.9
C14—C15—H15	119.6	С37—С42—Н42	119.9
C17—C16—C21	116.95 (18)	C48—C43—C44	117.55 (17)
C17—C16—Sn1	121.01 (14)	C48—C43—Sn2	118.58 (13)
C21—C16—Sn1	121.99 (14)	C44—C43—Sn2	123.82 (14)
C18—C17—C16	121.53 (19)	C45—C44—C43	121.00 (18)
C18—C17—H17	119.2	C45—C44—H44	119.5
C16—C17—H17	119.2	C43—C44—H44	119.5

C19—C18—C17	120.1 (2)	C44—C45—C46	120.29 (19)
C19—C18—H18	120.0	C44—C45—H45	119.9
C17—C18—H18	120.0	C46—C45—H45	119.9
C20-C19-C18	119.7 (2)	C47—C46—C45	119.88 (19)
С20—С19—Н19	120.1	C47—C46—H46	120.1
С18—С19—Н19	120.1	C45—C46—H46	120.1
C19—C20—C21	119.9 (2)	C46—C47—C48	119.56 (18)
С19—С20—Н20	120.1	C46—C47—H47	120.2
C21—C20—H20	120.1	C48—C47—H47	120.2
C20-C21-C16	121.82 (19)	C43—C48—C47	121.71 (18)
C20—C21—H21	119.1	C43—C48—H48	119.1
C16—C21—H21	119.1	C47—C48—H48	119.1
C27—C22—C23	118.84 (19)	C50—C49—C54	118.5 (2)
C27—C22—Sn1	117.20 (16)	C50—C49—Sn2	120.19 (16)
C23—C22—Sn1	123.75 (15)	C54—C49—Sn2	120.84 (16)
C22—C23—C24	119.6 (2)	C51—C50—C49	120.9 (3)
С22—С23—Н23	120.2	С51—С50—Н50	119.5
C24—C23—H23	120.2	С49—С50—Н50	119.5
C25—C24—C23	119.7 (3)	C52—C51—C50	120.1 (3)
C25—C24—H24	120.2	С52—С51—Н51	119.9
C23—C24—H24	120.2	С50—С51—Н51	119.9
C26—C25—C24	120.6 (2)	C51—C52—C53	120.1 (2)
С26—С25—Н25	119.7	С51—С52—Н52	119.9
C24—C25—H25	119.7	С53—С52—Н52	119.9
C25—C26—C27	119.6 (3)	C52—C53—C54	120.2 (3)
С25—С26—Н26	120.2	С52—С53—Н53	119.9
С27—С26—Н26	120.2	С54—С53—Н53	119.9
C26—C27—C22	121.7 (2)	C53—C54—C49	120.1 (3)
С26—С27—Н27	119.1	C53—C54—H54	120.0
С22—С27—Н27	119.1	С49—С54—Н54	120.0
C22—Sn1—S1—C1	-82.34 (8)	C49—Sn2—S3—C28	76.70 (9)
C10—Sn1—S1—C1	55.09 (9)	C37—Sn2—S3—C28	-69.32 (8)
C16—Sn1—S1—C1	169.04 (8)	C43—Sn2—S3—C28	-177.10 (8)
C4—N1—C1—S2	176.31 (16)	C31—N2—C28—S4	177.77 (15)
C2—N1—C1—S2	-5.4 (3)	C29—N2—C28—S4	2.3 (3)
C4—N1—C1—S1	-5.0 (3)	C31—N2—C28—S3	-2.6 (3)
C2—N1—C1—S1	173.26 (17)	C29—N2—C28—S3	-178.10 (17)
Sn1—S1—C1—N1	-166.86 (14)	Sn2—S3—C28—N2	174.02 (14)
Sn1—S1—C1—S2	11.88 (12)	Sn2—S3—C28—S4	-6.32 (12)
C1—N1—C2—C3	92.9 (3)	C28—N2—C29—C30	86.3 (3)
C4—N1—C2—C3	-88.7 (2)	C31—N2—C29—C30	-89.5 (2)
C1—N1—C4—C9	95.5 (2)	C28—N2—C31—C32	-80.5 (2)
C2—N1—C4—C9	-82.9 (3)	C29—N2—C31—C32	95.2 (2)
C1—N1—C4—C5	-86.6 (2)	C28—N2—C31—C36	103.0 (2)
C2—N1—C4—C5	95.0 (2)	C29—N2—C31—C36	-81.2 (2)
C9—C4—C5—C6	-0.9 (3)	C36—C31—C32—C33	-0.6 (3)
N1—C4—C5—C6	-178.75 (19)	N2—C31—C32—C33	-176.94 (18)
C4—C5—C6—C7	0.0 (3)	C31—C32—C33—C34	-0.2 (3)
C5—C6—C7—C8	0.7 (4)	C32—C33—C34—C35	0.5 (3)

C6—C7—C8—C9	-0.5 (4)	C33—C34—C35—C36	0.0 (4)
C5—C4—C9—C8	1.0 (3)	C32—C31—C36—C35	1.1 (3)
N1—C4—C9—C8	178.9 (2)	N2-C31-C36-C35	177.50 (19)
C7—C8—C9—C4	-0.3 (4)	C34—C35—C36—C31	-0.8 (3)
C22—Sn1—C10—C15	37.46 (17)	C49—Sn2—C37—C38	109.91 (13)
C16—Sn1—C10—C15	153.09 (15)	C43—Sn2—C37—C38	0.12 (14)
S1—Sn1—C10—C15	-100.26 (15)	S3—Sn2—C37—C38	-102.97 (13)
C22—Sn1—C10—C11	-138.42 (16)	C49—Sn2—C37—C42	-68.03 (17)
C16—Sn1—C10—C11	-22.79 (18)	C43—Sn2—C37—C42	-177.83 (15)
S1—Sn1—C10—C11	83.85 (16)	S3—Sn2—C37—C42	79.09 (15)
C15—C10—C11—C12	1.8 (3)	C42—C37—C38—C39	0.4 (3)
Sn1—C10—C11—C12	177.71 (17)	Sn2—C37—C38—C39	-177.68 (14)
C10-C11-C12-C13	-1.6 (4)	C37—C38—C39—C40	-0.1 (3)
C11—C12—C13—C14	0.0 (4)	C38—C39—C40—C41	-0.5 (3)
C12—C13—C14—C15	1.3 (4)	C39—C40—C41—C42	0.7 (3)
C11—C10—C15—C14	-0.5 (3)	C40—C41—C42—C37	-0.4 (3)
Sn1—C10—C15—C14	-176.47 (16)	C38—C37—C42—C41	-0.2(3)
C13—C14—C15—C10	-1.0 (3)	Sn2—C37—C42—C41	177.73 (14)
C22—Sn1—C16—C17	20.76 (18)	C49—Sn2—C43—C48	-35.27 (16)
C10—Sn1—C16—C17	-99.57 (17)	C37—Sn2—C43—C48	84.57 (16)
S1—Sn1—C16—C17	136.35 (16)	S3—Sn2—C43—C48	-155.95 (15)
C22—Sn1—C16—C21	-156.46 (16)	C49—Sn2—C43—C44	147.26 (17)
C10—Sn1—C16—C21	83.20 (17)	C37—Sn2—C43—C44	-92.89 (17)
S1—Sn1—C16—C21	-40.88 (17)	S3—Sn2—C43—C44	26.58 (17)
C21—C16—C17—C18	-0.3 (3)	C48—C43—C44—C45	1.0 (3)
Sn1—C16—C17—C18	-177.70 (17)	Sn2—C43—C44—C45	178.45 (17)
C16—C17—C18—C19	0.1 (3)	C43—C44—C45—C46	-0.3 (4)
C17—C18—C19—C20	0.2 (4)	C44—C45—C46—C47	-0.7 (4)
C18—C19—C20—C21	-0.1 (4)	C45—C46—C47—C48	1.1 (3)
C19—C20—C21—C16	-0.1 (4)	C44—C43—C48—C47	-0.6 (3)
C17—C16—C21—C20	0.4 (3)	Sn2—C43—C48—C47	-178.21 (16)
Sn1—C16—C21—C20	177.70 (17)	C46—C47—C48—C43	-0.4 (3)
C10—Sn1—C22—C27	48.80 (17)	C37—Sn2—C49—C50	-153.78 (16)
C16—Sn1—C22—C27	-68.54 (17)	C43—Sn2—C49—C50	-42.98 (18)
S1—Sn1—C22—C27	-170.33 (14)	S3—Sn2—C49—C50	59.63 (18)
C10—Sn1—C22—C23	-136.57 (17)	C37—Sn2—C49—C54	18.37 (19)
C16—Sn1—C22—C23	106.10 (17)	C43—Sn2—C49—C54	129.18 (17)
S1—Sn1—C22—C23	4.30 (18)	S3—Sn2—C49—C54	-128.22 (16)
C27—C22—C23—C24	1.5 (3)	C54—C49—C50—C51	-0.5 (3)
Sn1—C22—C23—C24	-173.10 (17)	Sn2—C49—C50—C51	171.82 (19)
C22—C23—C24—C25	-0.3 (4)	C49—C50—C51—C52	-0.7 (4)
C23—C24—C25—C26	-1.3 (4)	C50—C51—C52—C53	1.1 (4)
C24—C25—C26—C27	1.8 (4)	C51—C52—C53—C54	-0.3 (4)
C25—C26—C27—C22	-0.7 (4)	C52—C53—C54—C49	-1.0 (4)
C23—C22—C27—C26	-1.0 (3)	C50—C49—C54—C53	1.3 (3)
Sn1—C22—C27—C26	173.95 (19)	Sn2—C49—C54—C53	-170.94 (19)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, and Cg3 are the centroids o	f the C16–C21, C37–C	C42 and C43–C48	benzene rings, respe	ectively.
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C9—H9····Cg1 ⁱ	0.95	2.72	3.630 (3)	160
C25—H25···Cg2 ⁱⁱ	0.95	2.90	3.639 (3)	135
C32—H32····Cg3 ⁱⁱⁱ	0.95	2.92	3.824 (2)	160
Symmetry codes: (i) $-x+1$, $-y+2$, $-z+1$; (ii)) x-1, y, z; (iii) -x+2, -y-	+2, <i>-z</i> +2.		

Fig. 1

Fig. 2

Fig. 3

