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Abstract: Hepatocytes, the major target of hepatitis C virus (HCV), are highly polarized. HCV
infection requires extensive trafficking to distinct subcellular domains in the polarized hepatocyte.
Polarized cells and three-dimensional organoids are commonly used to study liver functions and
differentiation. Researchers have begun adapting these cell culture models that morphologically and
physiologically resemble hepatocytes in vivo to study HCV infection. This review summarizes the
use of three-dimensional cell culture systems in studies of HCV infection.
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Hepatitis C virus (HCV) is a hepatotropic, enveloped, positive-sense RNA virus of the
Flaviviridae family. The World Health Organization estimated that 71 million people were
infected with HCV in 2015, while HCV-associated hepatocellular carcinoma and cirrhosis
accounted for 1 million and 2.5 million deaths, respectively [1]. While the introduction of
highly effective direct-acting antivirals has improved HCV therapy, resistance-associated
substitutions of NS3, 5A, and 5B have been observed (reviewed in Reference [2]). The
need of further research on HCV remains in order to optimize diagnosis, therapy and the
development of vaccines [1,3].

Hepatocytes, comprising 60% of the total cells of the liver [4,5], are highly polarized,
with two distinct types of membrane domains. The apical domains of adjacent hepatocytes
form a continuous bile canaliculus into which bile is secreted, while the basolateral domains
are in contact with sinusoids and regulate the exchange of materials with the circulation.
Tight junctional proteins play a crucial role in separating the two domains and keeping bile
away from the blood circulation. In addition to membrane domains, specific cytoskeletal,
endoplasmic reticulum, and Golgi apparatus networks contribute to the complex polarity
of hepatocytes [6,7] (reviewed in References [4,8]).

In cell culture-based studies of liver functions, researchers are aware of the importance
of hepatocyte polarity. Various human polarized liver cell lines were generated, such
as HepG2 and HepaRG (reviewed in Reference [4]). Moreover, human-derived induced
pluripotent stem cells [9], human fetal liver cells [10], and bile duct cells isolated from
biopsy samples [11] were cultured in extracellular matrices, such as Matrigel and inverted
colloidal crystal scaffold, to generate hepatic organoids. The organoids performed liver
functions upon transplantation into mice [9]. Lineage and polarity markers, gene expression
profiling, and electron microscopy were used to assess differentiation status, polarity, and
the degree of similarity between the in vivo systems and the liver [4,12–17]. Currently,
researchers are exploring the use of the organoids in examining liver toxicity of drugs prior
to clinical trials [18,19].

While the use of polarized cells and organoids is not new to the field of liver research,
HCV researchers are still exploring ways to generate infection models that morphologically
and physiologically resemble the liver. The development of the cell culture system, based on
the HCV JFH-1 clone and the human-derived hepatoma Huh-7 cell line, was a breakthrough
in HCV research [20–22]. Since then, our knowledge of HCV infection in both basic and
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translational research has greatly advanced. Huh-7 cell line and its derivatives, such as
Huh-7.5 and Huh-7.5.1, are widely used in studies of HCV infection. Conventionally, the
cells are cultured in two-dimensional (2D) monolayers. The poor polarity of 2D Huh-7
cells has become increasingly appreciated, especially in studies of HCV entry.

HCV entry requires two tight junctional proteins, claudin-1 (CLDN1) and occludin
(OCLN) [23–25]. In 2D Huh-7 and 7.5 cells, tight junctional markers, ZO-1 and CLDN1,
are distributed uniformly on the plasma membrane [13,16,26]. As a result, the cells poorly
resemble the bile canaliculus structure, the distinct separation of the apical and basolateral
domains, and the retention of bile in the liver. Since CLDN1 and OCLN are known
to be essential for HCV entry, they may not exhibit completely conserved functions in
nonpolarized cells [27]. Therefore, three-dimensional (3D) cell culture systems that are
more physiologically relevant are required to study their roles in HCV entry.

Recently, Huh-7 and 7.5 cells were cultured in Matrigel in HCV studies. Matrigel is a
solubilized protein extract from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma [28].
Matrigel was first used to show the requirement of a basement membrane in the differ-
entiation and polarization of human endothelial cells [29]. Molina-Jimenez et al. [16] and
Baktash et al. [13] showed polarized localization of apical, basolateral, and tight junctional
markers when Huh-7 and 7.5 cells were cultured in Matrigel. Moreover, the bile analog
5-chloromethyfluorescein diacetate (CMFDA) was retained at the apical domains. It sug-
gested that Matrigel-cultured hepatocytes showed functional characteristics of polarization.
Using Matrigel-cultured Huh-7.5 cells and single particle fluorescent labeling of HCV
(Figure 1), Baktash et al. [13] showed the movement of HCV particles from the basolateral
domains to the tight junctions during entry. The data also suggested that HCV particles
preferentially internalized at the tight junctions. This entry pattern had not been shown
before in 2D Huh-7.5 cells, which do not have distinct apical and basolateral domains. The
findings suggest that the use of 3D cell culture systems may reveal unknown mechanisms
of HCV infection.
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Figure 1. Huh-7.5 cells cultured in Matrigel. (A) Diagrammatic of a polarized Huh-7.5 organoid with
membrane domains. (B) Huh-7.5 cells were grown in Matrigel, infected with DiD-labelled HCV (red)
for 90 min, and probed for tight junctional marker ZO-1 (green).

Baktash et al. [13] further showed that epidermal growth factor receptor (EGFR) is
dispensable for HCV to migrate to the tight junctions. However, it is required for HCV to
recruit clathrin components for endocytosis. Moreover, Brown et al. [30] used the organoid
system to characterize the role of two transmembrane proteins, Cd302 and Cr1l, in HCV
infection. They are species barriers restricting HCV replication in rodents. Expressing
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mCd302 or mCd302/mCr1l in Matrigel-cultured Huh-7.5 cells inhibits HCV trafficking
to the tight junctions. These studies suggest that Matrigel-based 3D organoid system is
useful in understanding HCV infection. Certain steps of HCV entry, such as trafficking to
the tight junctions, cannot be evaluated in 2D cells.

HepG2 is another human hepatoma cell line commonly used in HCV studies. Ex-
pressing CD81 and miR-122 in HepG2 cells significantly increases their susceptibility to
HCV infection [27,31]. HepG2 cells polarize partially. Mee et al. [31] observed that 76% of
HepG2-CD81 cells developed apical domains. The apical domains formed bile canaliculus-
like structures that retained CMFDA. While CLDN1 was distributed more uniformly on the
plasma membrane in nonpolarized cells, it predominantly localized at the apical domains
in polarized cells. However, OCLN was only detected at the apical domains in polarized
cells. As the cells became more polarized over time, an inverse correlation was observed
with respect to the cell culture derived HCV (HCVcc) and HCV pseudoparticle (HCVpp)
infection. It suggested a possible influence of hepatocyte polarity on HCV infection, and
hence the importance of polarity in HCV studies. Since HepG2 cells do not completely
polarize, researchers have attempted to isolate subclones of HepG2 with an enhanced
ability to polarize [4,32].

Other than entry, studies using 3D cell culture systems to examine other stages of the
HCV life cycle are limited. Benedicto et al. [33] evaluated the roles of clathrin and dynamin
in HCV egress and found no significant differences between 2D and Matrigel-cultured
Huh-7 cells. Besides the membrane domains, the complex polarity of hepatocytes is
displayed in cytoskeletal, endoplasmic reticulum, and Golgi apparatus networks (reviewed
in Reference [4]). The effect of cell polarity on other stages of the HCV life cycle, including
RNA replication and assembly/egress is yet to be addressed. Liu et al. [34] generated a
JFH-1 EGFP reporter virus and validated its infection in Matrigel-cultured Huh-7.5 cells.
The reporter virus may be useful in live cell analysis of HCV entry and assembly/egress
and antiviral screening in 3D cells.

Mebiolgel is another matrix-based cell culture system that has been used in HCV
studies. In contrast to Matrigel, Mebiolgel is a synthetic polymer free of potential biological
contaminants. Mebiolgel-cultured Huh-7 cells form spherical clusters and have increased
expression of hepatic differentiation markers relative to 2D cells [17]. Using an immortal-
ized hepatocyte cell line HuS-E/2, Aly et al. [35] showed a significant increase in HCV
replication when the cells were cultured in Mebiolgel, as compared to 2D cells. The 2D
and 3D cells also showed differences in gene expression profiling. The findings highlight
the significance of addressing the effect of cell culture systems on HCV infection. Further
evaluation of different 3D systems is needed to compare their relevance to infection in vivo.

In addition to extracellular matrices and various cell lines, bioreactor-based ap-
proaches have been used to culture hepatocytes in HCV studies. Radial flow and hollow
fiber bioreactors are used to mimic the cellular environment in vivo. In the bioreactors,
cells attach to semi-permeable capillaries [36,37] or porous glass beads [14]. The cells are
nurtured by continuous feeding of fresh medium and removal of toxic metabolites. Aizaki
et al. [12] and Kawada et al. [14], respectively, showed that human hepatoma cells FLC-4
and FLC-7 cultured in the radial flow bioreactor were spherical and microvilli-lined. It
was in sharp contrast to 2D cells which were flattened and extended with cytoplasmic
projections. Using FLC-4 cells cultured in the radial flow bioreactor, Murakami et al. [38]
propagated HCV from carriers’ serum samples and showed the change in quasispecies
composition. In a study of HCV production, Pihl et al. [39] cultured Huh-7.5 cells in the
hollow fiber bioreactor. Since the cells grew at a higher density in the bioreactor than in
monolayers [37], higher titers of HCV were produced. When the cells were treated with the
NS5A inhibitor daclatasvir, lower infectious viral titers were observed [39]. However, the
morphology of Huh-7.5 cells in the hollow fiber bioreactor is yet to be evaluated. Thus far,
both the radial flow and hollow fiber bioreactors have been mainly used in the production
of HCV stocks. For other viruses, such as human immunodeficiency virus and influenza
A virus, the bioreactors have been widely used to determine the pharmacodynamics of
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antivirals [40–42]. The potentials of the systems in studies of HCV life cycle and antivirals
are worth exploring.

The use of another bioreactor, the rotating wall vessel, has been explored in HCV
studies. While rotating, cells attached to collagen-coated beads experience less shear
and turbulence than in flow bioreactors (reviewed in Reference [43]). Sainz et al. [44]
showed that Huh-7 cells formed 3D aggregates in the rotating vessel. The cells had higher
expression of host factors of HCV entry, including CD81, CLDN1, and OCLN, than 2D
cells. How the change in expression affects HCV infection and its relevance to infection
in vivo are yet to be addressed.

To conclude, HCV infection, particularly entry, depends on the complex polarity of
hepatocytes. While the use of 2D Huh-7 cells have advanced our understanding of HCV
infection, the nonpolarized cells may not fully resemble the physiology of hepatocytes
in vivo. Development of the optimal 3D systems is obstructed by their relevance and
permissiveness to HCV infection. Polarized cell lines, such as HepG2, and matrix or
bioreactor-based cell culture are promising 3D infection models. Thus far, they have been
used in studies of HCV entry and egress, and showed processes of entry that are not
observed in 2D cells. Further studies of the localization and functions of host factors in 3D
cells may reveal unknown mechanisms of entry and egress. Besides membrane proteins,
other cellular components, such as the endoplasmic reticulum and secretory pathway, also
exhibit polarity in hepatocytes. Its effect on HCV replication and assembly is yet to be
evaluated.
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